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E Why Location?

® Assisted Cognition
Project:
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® |ndoor/outdoor
navigation agent

® Users with cognitive
Impairments

® Requires realtime
location tracking
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EE Why Location?

Location is a
fundamental building
block in higher level
state estimation and
activity recognition
applications
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Why Wifi?
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® Cheap, ubiquitous o b e
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® |ndoor and outdoor
coverage

® Privacy observant

Downtown Seattle
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EE .
= Contributions

® Gaussian process + signal strength localization
not new (Schwaighofer, et al. 2003)

® High accuracy Wifi localization (RSS 2006):
® Hybrid graph-based free-space model

® Custom kernels for Wifi

® Robust handling of sparse training data
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Qutline

e Motivation
°
® Introduction
e Kernel Selection

® Results

e GP for SLAM

9 University #Wuﬂgm Computer Science & Engineering



==. Wifi Localization

We wish to model:
P(z|x)
where:
Z = measurement
X = location

Measurement is signal
strengths from visible

access points:
<A=-80 B=-59 C=-26>
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=.. Existing Techniques

° : Given known AP locations, localize
to centroid of currently visible APs

° : Attempt to model signal
strength wrt. AP location, walls, furniture

° : Record signal strength at all
points of interest

° : Hybrid models
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EE .
= Gaussian Processes

® Combines the strengths of previous
techniques in one model:

° : does not require discrete
Input space

° : correct handling of uncertainty

° : model parameter estimation
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aussian Kernel

Original Data

Signal

Longer Kernel Width Shorter Kernel Width
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=.. Different Kernels

° :a separate Gaussian
kernel each maintained for each x,y,z dim

° : difference in radial
distance from the access point

° :includes underlying generative
model of input space appropriate to Wifi
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N . .
= Dimensional Kernel

® Model each cartesian dimension with a
separate Gaussian

o 2
K(p,q) =aexp (2o gl 4
o) py—ay||?
0L eXp (— yZG%y ) +
. 2
O(% exp (_ PZZG%ZH )

® Shorter kernel width in Z dimension
reflects propagation through floors
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=.. AP Distance Kernel

® Use difference in distance from
- access point of readings

SN ) — exp (0 =5arl = by — ]

L@ o) = X 7

\ “H: . .

" s ® Captures poFentlaI radial symmetry
around the signal source

® Useful against sparse training data!?
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=.. Fisher Kernel

® |ncorporates a
generative model of P(x)
into the discriminative
GP classifier

0.06 |-

® For Wifi, we choose xas ..
distance from the AP

and mOdel P(X) as a ° 10 20 30 a0 50 50
Gaussian Reading likelihood vs. distance from AP

e HHWH'#}! dea.rking Computer Science & Engineering



. AP Location

® Kernels require location of access point
® Assume a simple linear propagation model

® Optimize AP location by minimizing
difference of model vs (x;,y;) training pairs

o f=Y, (i—mllxi—xap|| —b)°
=1
® b = max signal strength right at the AP
® m = a negative drop-off slope
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==. Wifi Localization

® Model each Wifi AP with a
single GP

® Model building as a graph

® Edges for hallways

® Polygons for free space

e Particle filter for
localization
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I .
. Experiments

® Training:

® Full data: all readings

® Sparse data: only readings ///? ; \\
region |

® Test:|10 traces spanning
hallways, offices, stairs,
elevators
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=I Kernel Results

Average Localization Error (in meters)
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s L
= Localization Results

® Qur best-case results:

® :2.12 meters
® : 1.69 meters
° : 80% correct

® Compared to other methods:
e |.8 meters [Letchner] - Hallway only

® 2.| meters [Haeberlen] - No extrapolation
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Qutline

® Motivation
® GP for Localization
°

e GPLVM

® Dynamics Model

® Results
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5 Wifi SLAM

® | ocalization model Fa
requires labeled [
training data

® Can we build this
model without a map?

® Simultaneous
localization and

mapping (SLAM)
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5 Wifi SLAM

® We've already solved -/
(Y|X) for localization

® Can we solve P(X|Y)!? N

® (Gaussian Process
Latent Variable
Modeling (GPLVM)
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= Gaussian Process

® Use basic Gaussian kernel
® fixed parameters from localization model
® forces latent space to proper scale

® Why not advanced kernels!?
® Only working in 2D

® Access point locations add complexity

e HHWH'#}! dea.rking Computer Science & Engineering



=.. Dynamics Model

® We consider: Xii1

® distance between
latent points d;

® change in orientation
between points ;

Xi-1 ()
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=.. Dynamics Model

® Probability model:
Xit1

® distance:
P(di’X) — N(dinuvtiaﬁvti)
u, = velocity mean G, = velocity sigma
® orientation:
P(el’X) — N(eiaoace)

Gp = orientation sigma

Xi-1 ()
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=.. Other Details

® [nitialize with Isomap:
® nearest-neighbor provides starting point
® still very noisy

® FGPLVM for 1000 iterations

® Fixed parameters trained from previous
localization traces
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Results
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L
— Next Improvements

® More advanced
dynamics models:

® hard right angles :>

® avg. hallways lengths

® joint classification
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= Future Work

® |arge scale Wifi localization:
® robust indoor + outdoor
® Social networking study with 25 users

® Continued work with Wifi SLAM:

® Refined dynamics, odometry sensors
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Questions!?
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