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Gaussian Processes in Practice Workshop

Why use GPs in RL?

• A Bayesian approach to value estimation

• Forces us to to make our assumptions explicit

• Non-parametric – priors are placed and inference is performed

directly in function space (kernels).

• Domain knowledge intuitively coded into priors

• Provides full posterior, not just point estimates

• Efficient, on-line implementation, suitable for large problems
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Markov Decision Processes

X : state space

U : action space

p: X × X × U → [0, 1], xt+1 ∼ p(·|xt,ut)

q: IR ×X × U → [0, 1], R(xt,ut) ∼ q(·|xt,ut)

A Stationary policy:

µ: U × X → [0, 1], ut ∼ µ(·|xt)

Discounted Return: Dµ(x) =
∑∞

i=0 γiR(xi,ui)|(x0 = x)

Value function: V µ(x) = Eµ[Dµ(x)]

Goal: Find a policy µ∗ maximizing V µ(x) ∀x ∈ X
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Bellman’s Equation

For a fixed policy µ:

V µ(x) = E
x

′,u|x

[

R(x,u) + γV µ(x′)
]

Optimal value and policy:

V ∗(x) = max
µ

V µ(x) , µ∗ = argmax
µ

V µ(x)

How to solve it?

- Methods based on Value Iteration (e.g. Q-learning)

- Methods based on Policy Iteration (e.g. SARSA, OPI,

Actor-Critic)
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Solution Method Taxonomy

Value−Function based
Purely Policy based
(Policy Gradient)

Policy Iteration typeValue Iteration type
(Q−Learning) (Actor−Critic, OPI, SARSA)

RL  Algorithms

PI methods need a “subroutine” for policy evaluation
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Gaussian Process Temporal Difference Learning

Model Equations:

R(xi) = V (xi) − γV (xi+1) + N(xi)

Or, in compact form:

Rt = Ht+1Vt+1 + Nt

Ht =
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0 1 −γ . . . 0

...
...

0 0 . . . 1 −γ















.

Our (Bayesian) goal:

Find the posterior distribution of V (·), given a sequence

of observed states and rewards.
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The Posterior

General noise covariance: Cov[Nt] = Σt

Joint distribution:




Rt−1

V (x)
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Invoke Bayes’ Rule:

E[V (x)|Rt−1] = kt(x)>αt

Cov[V (x), V (x′)|Rt−1] = k(x,x′) − kt(x)>Ctkt(x
′)

kt(x) = (k(x1,x), . . . , k(xt,x))>
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The Octopus Arm

Can bend and twist at any point

Can do this in any direction

Can be elongated and shortened

Can change cross section

Can grab using any part of the arm

Virtually infinitely many DOF
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The Muscular Hydrostat Mechanism

A constraint: Muscle fibers can only contract (actively)

In vertebrate limbs, two separate muscle groups - agonists and

antagonists - are used to control each DOF of every joint, by exerting

opposite torques.

But the Octopus has no skeleton!

Balloon example

Muscle tissue is incompressible, therefore, if muscles are arranged

such that different muscle groups are interleaved in perpendicular

directions in the same region, contraction in one direction will result

in extension in at least one of the other directions.

This is the Muscular Hydrostat mechanism
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Octopus Arm Anatomy 101
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Our Arm Model
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The Muscle Model
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f(a) = (k0 + a(kmax − k0)) (` − `0) + β
d`

dt

a ∈ [0, 1]
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Other Forces

• Gravity

• Buoyancy

• Water drag

• Internal pressures (maintain constant compartmental volume)

Dimensionality

10 compartments ⇒

22 point masses × (x, y, ẋ, ẏ)

= 88 state variables
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The Control Problem

Starting from a random position, bring {any part, tip} of arm

into contact with a goal region, optimally.

Optimality criteria:

Time, energy, obstacle avoidance

Constraint:

We only have access to sampled trajectories

Our approach:

Define problem as a MDP

Apply Reinforcement Learning algorithms
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The Task
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Actions

Each action specifies a set of fixed activations –

one for each muscle in the arm.

Action # 1 Action # 2 Action # 3

Action # 4 Action # 5 Action # 6

Base rotation adds duplicates of actions 1,2,4 and 5 with

positive and negative torques applied to the base.
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Rewards

Deterministic rewards:

+10 for a goal state,

Large negative value for obstacle hitting,

-1 otherwise.

Energy economy:

A constant multiple of the energy expended by the muscles in

each action interval was deducted from the reward.
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Fixed Base Task I
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Fixed Base Task II
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Rotating Base Task I
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Rotating Base Task II
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To Wrap Up

• There’s more to GPs than regression and classification

• Online sparsification works

Challenges

• How to use value uncertainty?

• What’s a disciplined way to select actions?

• What’s the best noise covariance?

• More complicated tasks
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