# Improving Pronunciation Modelling in Automatic Speech Recognition (ASR)

Mathew Magimai Doss and Hervé Bourlard

{mathew, bourlard}@idiap.ch

IDIAP Research Institute, Martigny, Switzerland

Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland





# Standard ASR Approach



#### Lexicon should reflect

- Intra- and inter-speaker variability
- Lexical variability (coarticulation, assimilation)

# **Standard Pronunciation Modeling**

Lexical model = first-order Markov model/graph of phonetic units:

- Standard lexical dictionary
- Knowledge-based, e.g. enriched by applying phonological rules
- Data-driven, e.g., MM inference from recognition output followed by HMM retraining
- Mix of the above.

#### Goal of this work

- Evaluating the "stability" of baseform pronunciations.
- Improving "stability" of pronunciation models by introducing "auxiliary variables".
- Evaluate lexical models without looking at recognition rates.

# **Auxiliary Variables**

- Instead of:
  - Changing the acoustic features and/or
  - Changing the baseform topologies
- Add a conditional (auxiliary) variable, a, to the HMM emission PDF, i.e.:

$$p(x|q) \rightarrow p(x|q,a)$$

# Stability of Pronunciation Models

- When decoding a lexical entity through a "perturbed" HMM topology, how much/fast does the inferred phonetic transcription change?
- In our case:
  - Perturbation: constrained -> unconstrained (relaxed) lexical model
  - Stability measured in terms of:
    - Confidence measure
    - Levenshtein distance wrt baseform

# Relaxing Lexical Constraint



 $\epsilon=\infty$ , bi-gram phoneme language model

 $\epsilon=0$ , unigram phoneme language model

$$\begin{bmatrix} 0.0 & \frac{1}{3+3\epsilon} & \frac{1+3\epsilon}{3+3\epsilon} & \frac{1}{3+3\epsilon} & 0.0 \\ 0.0 & \frac{1}{4+4\epsilon} & \frac{1+4\epsilon}{4+4\epsilon} & \frac{1}{4+4\epsilon} & \frac{1}{4+4\epsilon} \\ 0.0 & \frac{1+4\epsilon}{4+8\epsilon} & \frac{1}{4+8\epsilon} & \frac{1}{4+8\epsilon} & \frac{1+4\epsilon}{4+8\epsilon} \\ 0.0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$

# Stability of Pronunciation Models



# Cont. (with Auxiliary Variable)



# **Experimental Setup**

- Phonebook: Speaker-independent task-independent isolated word recognition.
- Vocabulary: 8 different sets of 75 word lexicon or single lexicon of 602 words.
   Number of context-independent phonemes: 42
- Acoustic feature: 21 dim. MFCC and △MFCC features.
   Auxiliary feature: pitch frequency and short-term energy.
- Training set: 19420 utt.; Validation set: 7290 utt.
   Development set: 2969 utt.; Test set: 3639 utt.

### **Lexical Models**

Acoustic model: baseline+pitch

 $\#models \times \#words$   $1 \times 441$   $2 \times 106$   $3 \times 48$   $4 \times 7$ 

Total words: 602

Total lexical forms: 825

## Results

75 word lexicon (word error rate, expressed in %)

| Systems        | Original | Updated          |
|----------------|----------|------------------|
|                | lexicon  | lexicon          |
| baseline       | 4.2      | $3.0^{\dagger}$  |
| baseline+pitch | 2.5      | 1.7 <sup>†</sup> |

#### 602 word lexicon

| Systems        | Original      | Updated       |
|----------------|---------------|---------------|
|                | lexicon (602) | lexicon (825) |
| baseline       | 11.0          | 10.1          |
| baseline+pitch | 7.3           | 6.4           |

## **Conclusion and Future Work**

- Preliminary studies yield significant performance improvement with limited number of lexical models.
- Can be used to evaluate and compare different acoustic models without recognition.
- To be extended to spontaneous speech recognition tasks.

# Thank you for your attention!