MIT OpenCourseWare <u>http://ocw.mit.edu</u>

18.02 Multivariable Calculus Fall 2007

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

18.02 Lecture 18. – Tue, Oct 23, 2007

Change of variables.

Example 1: area of ellipse with semiaxes a and b: setting u = x/a, v = y/b,

$$\iint_{(x/a)^2 + (y/b)^2 < 1} dx \, dy = \iint_{u^2 + v^2 < 1} ab \, du \, dv = ab \iint_{u^2 + v^2 < 1} du \, dv = \pi ab.$$

(substitution works here as in 1-variable calculus: $du = \frac{1}{a} dx$, $dv = \frac{1}{b} dy$, so $du dv = \frac{1}{ab} dx dy$.

In general, must find out the scale factor (ratio between du dv and dx dy)?

Example 2: say we set u = 3x - 2y, v = x + y to simplify either integrand or bounds of integration. What is the relation between dA = dx dy and dA' = du dv? (area elements in xy- and uv-planes).

Answer: consider a small rectangle of area $\Delta A = \Delta x \Delta y$, it becomes in *uv*-coordinates a parallelogram of area $\Delta A'$. Here the answer is independent of which rectangle we take, so we can take e.g. the unit square in *xy*-coordinates.

In the *uv*-plane, $\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$, so this becomes a parallelogram with sides given by

vectors $\langle 3,1\rangle$ and $\langle -2,1\rangle$ (picture drawn), and area = det = $\begin{vmatrix} 3 & 1 \\ -2 & 1 \end{vmatrix} = 5 \left(= \begin{vmatrix} 3 & -2 \\ 1 & 1 \end{vmatrix} \right)$.

For any rectangle $\Delta A' = 5\Delta A$, in the limit dA' = 5dA, i.e. $du \, dv = 5dx \, dy$. So $\iint \dots dx \, dy = \iint \dots \frac{1}{5} du \, dv$.

General case: approximation formula $\Delta u \approx u_x \Delta x + u_y \Delta y$, $\Delta v \approx v_x \Delta x + v_y \Delta y$, i.e.

$$\begin{bmatrix} \Delta u \\ \Delta v \end{bmatrix} \approx \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

A small xy-rectangle is approx. a parallelogram in uv-coords, but scale factor depends on x and y now. By the same argument as before, the scale factor is the determinant.

Definition: the Jacobian is $J = \frac{\partial(u, v)}{\partial(x, y)} = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix}$. Then $du \, dv = |J| \, dx \, dy$.

(absolute value because area is the absolute value of the determinant).

Example 1: polar coordinates $x = r \cos \theta$, $y = r \sin \theta$:

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} x_r & x_\theta \\ y_r & y_\theta \end{vmatrix} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r\cos^2\theta + r\sin^2\theta = r.$$

So $dx dy = r dr d\theta$, as seen before.

Example 2: compute $\int_0^1 \int_0^1 x^2 y \, dx \, dy$ by changing to u = x, v = xy (usually motivation is to simplify either integrand or region; here neither happens, but we just illustrate the general method).

1) Area element: Jacobian is $\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ y & x \end{vmatrix} = x$, so $du \, dv = x \, dx \, dy$, i.e. $dx \, dy = \frac{1}{x} du \, dv$.

2) Express integrand in terms of $u, v: x^2y \, dx \, dy = x^2y \frac{1}{x} \, du \, dv = xy \, du \, dv = v \, du \, dv$.

3) Find bounds (picture drawn): if we integrate du dv, then first we keep v = xy constant, slice looks like portion of hyperbola (picture shown), parametrized by u = x. The bounds are: at the top boundary y = 1, so v/u = 1, i.e. u = v; at the right boundary, x = 1, so u = 1. So the inner

integral is \int_{v}^{1} . The first slice is v = 0, the last is v = 1; so we get

$$\int_0^1 \int_v^1 v \, du \, dv.$$

Besides the picture in xy coordinates (a square sliced by hyperbolas), I also drew a picture in uv coordinates (a triangle), which some students may find is an easier way of getting the bounds for u and v.

18.02 Lecture 19. – Thu, Oct 25, 2007

Handouts: PS7 solutions; PS8.

Vector fields.

 $\vec{F} = M\hat{\imath} + N\hat{\jmath}$, where M = M(x, y), N = N(x, y): at each point in the plane we have a vector \vec{F} which depends on x, y.

Examples: velocity fields, e.g. wind flow (shown: chart of winds over Pacific ocean); force fields, e.g. gravitational field.

Examples drawn on blackboard: (1) $\vec{F} = 2\hat{\imath} + \hat{\jmath}$ (constant vector field); (2) $\vec{F} = x\hat{\imath}$; (3) $\vec{F} = x\hat{\imath} + y\hat{\jmath}$ (radially outwards); (4) $\vec{F} = -y\hat{\imath} + x\hat{\jmath}$ (explained using that $\langle -y, x \rangle$ is $\langle x, y \rangle$ rotated 90° counterclockwise).

Work and line integrals.

 $W = (\text{force}).(\text{distance}) = \vec{F} \cdot \Delta \vec{r}$ for a small motion $\Delta \vec{r}$. Total work is obtained by summing these along a trajectory C: get a "line integral"

$$W = \int_C \vec{F} \cdot d\vec{r} \, \left(= \lim_{\Delta \vec{r} \to 0} \sum_i \vec{F} \cdot \Delta \vec{r}_i \right).$$

To evaluate the line integral, we observe C is parametrized by time, and give meaning to the notation $\int_C \vec{F} \cdot d\vec{r}$ by

$$\int_C \vec{F} \cdot d\vec{r} = \int_{t_1}^{t_2} \left(\vec{F} \cdot \frac{d\vec{r}}{dt} \right) dt.$$

Example: $\vec{F} = -y\hat{\imath} + x\hat{\jmath}$, C is given by x = t, $y = t^2$, $0 \le t \le 1$ (portion of parabola $y = x^2$ from (0,0) to (1,1)). Then we substitute expressions in terms of t everywhere:

$$\vec{F} = \langle -y, x \rangle = \langle -t^2, t \rangle, \quad \frac{d\vec{r}}{dt} = \langle \frac{dx}{dt}, \frac{dy}{dt} \rangle = \langle 1, 2t \rangle,$$

so $\int_C \vec{F} \cdot d\vec{r} = \int_0^1 \vec{F} \cdot \frac{d\vec{r}}{dt} dt = \int_0^1 \langle -t^2, t \rangle \cdot \langle 1, 2t \rangle dt = \int_0^1 t^2 dt = \frac{1}{3}$. (in the end things always reduce to a one-variable integral.)

In fact, the definition of the line integral does not involve the parametrization: so the result is the same no matter which parametrization we choose. For example we could choose to parametrize the parabola by $x = \sin \theta$, $y = \sin^2 \theta$, $0 \le \theta \le \pi/2$. Then we'd get $\int_C \vec{F} \cdot d\vec{r} = \int_0^{\pi/2} \dots d\theta$, which would be equivalent to the previous one under the substitution $t = \sin \theta$ and would again be equal to $\frac{1}{3}$. In practice we always choose the simplest parametrization!

New notation for line integral: $\vec{F} = \langle M, N \rangle$, and $d\vec{r} = \langle dx, dy \rangle$ (this is in fact a differential: if we divide both sides by dt we get the component formula for the velocity $d\vec{r}/dt$). So the line integral

becomes

$$\int_C \vec{F} \cdot d\vec{r} = \int_C M \, dx + N \, dy.$$

The notation is dangerous: this is not a sum of integrals w.r.t. x and y, but really a line integral along C. To evaluate one must express everything in terms of the chosen parameter.

In the above example, we have x = t, $y = t^2$, so dx = dt, dy = 2t dt by implicit differentiation; then

$$\int_{C} -y \, dx + x \, dy = \int_{0}^{1} -t^{2} \, dt + t \, (2t) \, dt = \int_{0}^{1} t^{2} \, dt = \frac{1}{3}$$

(same calculation as before, using different notation).

Geometric approach.

Recall velocity is $\frac{d\vec{r}}{dt} = \frac{ds}{dt} \hat{T}$ (where s = arclength, $\hat{T} = \text{unit tangent vector to trajectory}$). So $d\vec{r} = \hat{T} ds$, and $\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} \vec{F} \cdot \hat{T} ds$. Sometimes the calculation is easier this way!

Example: $C = \text{circle of radius } a \text{ centered at origin, } \vec{F} = x\hat{\imath} + y\hat{\jmath}, \text{ then } \vec{F} \cdot \hat{T} = 0 \text{ (picture drawn),}$ so $\int_C \vec{F} \cdot \hat{T} \, ds = \int 0 \, ds = 0.$

Example: same $C, \vec{F} = -y\hat{\imath} + x\hat{\jmath}$, then $\vec{F} \cdot \hat{T} = |\vec{F}| = a$, so $\int_C \vec{F} \cdot \hat{T} \, ds = \int a \, ds = a \, (2\pi a) = 2\pi a^2$; checked that we get the same answer if we compute using parametrization $x = a \cos \theta, y = a \sin \theta$.

18.02 Lecture 20. – Fri, Oct 26, 2007

Line integrals continued.

Recall: line integral of $\vec{F} = M\hat{\imath} + N\hat{\jmath}$ along a curve C: $\int_C \vec{F} \cdot d\vec{r} = \int_C M \, dx + N \, dy = \int_C \vec{F} \cdot \hat{T} \, ds.$

Example: $\vec{F} = y\hat{\imath} + x\hat{\jmath}$, $\int_C \vec{F} \cdot d\vec{r}$ for $C = C_1 + C_2 + C_3$ enclosing sector of unit disk from 0 to $\pi/4$. (picture shown). Need to compute $\int_{C_i} y \, dx + x \, dy$ for each portion:

1) x-axis: $x = t, y = 0, dx = dt, dy = 0, 0 \le t \le 1$, so $\int_{C_1} y \, dx + x \, dy = \int_0^1 0 \, dt = 0$. Equivalently, geometrically: along x-axis, y = 0 so $\vec{F} = x\hat{j}$ while $\hat{T} = \hat{i}$ so $\int_{C_1} \vec{F} \cdot \hat{T} \, ds = 0$.

2) C_2 : $x = \cos \theta$, $y = \sin \theta$, $dx = -\sin \theta \, d\theta$, $dy = \cos \theta \, d\theta$, $0 \le \theta \le \frac{\pi}{4}$. So

$$\int_{C_2} y \, dx + x \, dy = \int_0^{\pi/4} \sin \theta (-\sin \theta) d\theta + \cos \theta \cos \theta \, d\theta = \int_0^{\pi/4} \cos(2\theta) d\theta = \left[\frac{1}{2}\sin(2\theta)\right]_0^{\pi/4} = \frac{1}{2}.$$

3) C_3 : line segment from $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ to (0, 0): could take $x = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}t$, y = same, $0 \le t \le 1$, ... but easier: C_3 backwards (" $-C_3$ ") is y = x = t, $0 \le t \le \frac{1}{\sqrt{2}}$. Work along $-C_3$ is opposite of work along C_3 .

$$\int_{C_3} y \, dx + x \, dy = \int_{1/\sqrt{2}}^0 t \, dt + t \, dt = -\int_0^{1/\sqrt{2}} 2t \, dt = -[t^2]_0^{1/\sqrt{2}} = -\frac{1}{2}$$

If \vec{F} is a gradient field, $\vec{F} = \nabla f = f_x \hat{\imath} + f_y \hat{\jmath}$ (*f* is called "potential function"), then we can simplify evaluation of line integrals by using the fundamental theorem of calculus.

Fundamental theorem of calculus for line integrals:

 $\int_C \nabla f \cdot d\vec{r} = f(P_1) - f(P_0) \text{ when } C \text{ runs from } P_0 \text{ to } P_1.$

Equivalently with differentials:
$$\int_{C} f_{x} dx + f_{y} dy = \int_{C} df = f(P_{1}) - f(P_{0}).$$
 Proof:
$$\int_{C} \nabla f \cdot d\vec{r} = \int_{t_{0}}^{t_{1}} (f_{x} \frac{dx}{dt} + f_{y} \frac{dy}{dt}) dt = \int_{t_{0}}^{t_{1}} \frac{d}{dt} (f(x(t), y(t)) dt = [f(x(t), y(t))]_{t_{0}}^{t_{1}} = f(P_{1}) - f(P_{0}).$$

E.g., in the above example, if we set f(x, y) = xy then $\nabla f = \langle y, x \rangle = \vec{F}$. So \int_{C_i} can be calculated just by evaluating f = xy at end points. Picture shown of C, vector field, and level curves.

Consequences: for a gradient field, we have:

• Path independence: if C_1, C_2 have same endpoints then $\int_{C_1} \nabla f \cdot d\vec{r} = \int_{C_2} \nabla f \cdot d\vec{r}$ (both equal to $f(P_1) - f(P_0)$ by the theorem). So the line integral $\int_C \nabla f \cdot d\vec{r}$ depends only on the end points, not on the actual trajectory.

• Conservativeness: if C is a closed loop then $\int_C \nabla f \cdot d\vec{r} = 0 \ (= f(P) - f(P)).$ (e.g. in above example, $\int_C = 0 + \frac{1}{2} - \frac{1}{2} = 0.$)

WARNING: this is only for gradient fields!

Example: $\vec{F} = -y\hat{\imath} + x\hat{\jmath}$ is not a gradient field: as seen Thursday, along C = circle of radius a counterclockwise $(\vec{F}/\hat{T}), \int_C \vec{F} \cdot d\vec{r} = 2\pi a^2$. Hence \vec{F} is not conservative, and not a gradient field.

Physical interpretation.

If the force field \vec{F} is the gradient of a potential f, then work of \vec{F} = change in value of potential. E.g.: 1) \vec{F} = gravitational field, f = gravitational potential; 2) \vec{F} = electrical field; f = electrical potential (voltage). (Actually physicists use the opposite sign convention, $\vec{F} = -\nabla f$).

Conservativeness means that energy comes from change in potential f, so no energy can be extracted from motion along a closed trajectory (conservativeness = conservation of energy: the change in kinetic energy equals the work of the force equals the change in potential energy).

We have four equivalent properties:

(1) \vec{F} is conservative $(\int_C \vec{F} \cdot d\vec{r} = 0 \text{ for any closed curve } C)$

(2) $\int F \cdot d\vec{r}$ is path independent (same work if same end points)

(3) \vec{F} is a gradient field: $\vec{F} = \nabla f = f_x \hat{\imath} + f_y \hat{\jmath}$.

(4) M dx + N dy is an exact differential $(= f_x dx + f_y dy = df.)$

((1) is equivalent to (2) by considering C_1, C_2 with same endpoints, $C = C_1 - C_2$ is a closed loop. (3) \Rightarrow (2) is the FTC, \Leftarrow will be key to finding potential function: if we have path independence then we can get f(x, y) by computing $\int_{(0,0)}^{(x,y)} \vec{F} \cdot d\vec{r}$. (3) and (4) are reformulations of the same property).