MIT OpenCourseWare <u>http://ocw.mit.edu</u>

18.02 Multivariable Calculus Fall 2007

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

18.02 Lecture 26. – Tue, Nov 13, 2007

Spherical coordinates (ρ, ϕ, θ) .

 $\rho = \text{rho} = \text{distance to origin.}$ $\phi = \varphi = \text{phi} = \text{angle down from } z\text{-axis.}$ $\theta = \text{same as in cylindrical coordinates.}$ Diagram drawn in space, and picture of 2D slice by vertical plane with z, r coordinates.

Formulas to remember: $z = \rho \cos \phi$, $r = \rho \sin \phi$ (so $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$).

 $\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{r^2 + z^2}$. The equation $\rho = a$ defines the sphere of radius *a* centered at 0. On the surface of the sphere, ϕ is similar to *latitude*, except it's 0 at the north pole, $\pi/2$ on the equator, π at the south pole. θ is similar to *longitude*.

 $\phi = \pi/4$ is a cone (asked using flash cards) $(z = r = \sqrt{x^2 + y^2})$. $\phi = \pi/2$ is the xy-plane.

Volume element: $dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$.

To understand this formula, first study surface area on sphere of radius a: picture shown of a "rectangle" corresponding to $\Delta\phi$, $\Delta\theta$, with sides = portion of circle of radius a, of length $a\Delta\phi$, and portion of circle of radius $r = a \sin \phi$, of length $r\Delta\theta = a \sin \phi\Delta\theta$. So $\Delta S \approx a^2 \sin \phi \Delta\phi\Delta\theta$, which gives the surface element $dS = a^2 \sin \phi \, d\phi d\theta$.

The volume element follows: for a small "box", $\Delta V = \Delta S \Delta \rho$, so $dV = d\rho dS = \rho^2 \sin \phi d\rho d\phi d\theta$.

Example: recall the complicated example at end of Friday's lecture (region sliced by a plane inside unit sphere). After rotating coordinate system, the question becomes: volume of the portion of unit sphere above the plane $z = 1/\sqrt{2}$? (picture drawn). This can be set up in cylindrical (left as exercise) or spherical coordinates.

For fixed ϕ, θ we are slicing our region by rays straight out of the origin; ρ ranges from its value on the plane $z = 1/\sqrt{2}$ to its value on the sphere $\rho = 1$. Spherical coordinate equation of the plane: $z = \rho \cos \phi = 1/\sqrt{2}$, so $\rho = \sec \phi/\sqrt{2}$. The volume is:

$$\int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{\frac{1}{\sqrt{2}}\sec\phi}^{1} \rho^{2}\sin\phi \,d\rho \,d\phi \,d\theta.$$

(Bound for ϕ explained by looking at a slice by vertical plane $\theta = \text{constant}$: the edge of the region is at $z = r = \frac{1}{\sqrt{2}}$).

Evaluation: not done. Final answer: $\frac{2\pi}{3} - \frac{5\pi}{6\sqrt{2}}$.

Application to gravitation.

Gravitational force exerted on mass m at origin by a mass ΔM at (x, y, z) (picture shown) is given by $|\vec{F}| = \frac{G \Delta M m}{\rho^2}$, $dir(\vec{F}) = \frac{\langle x, y, z \rangle}{\rho}$, i.e. $\vec{F} = \frac{G \Delta M m}{\rho^3} \langle x, y, z \rangle$. (G = gravitational constant).

If instead of a point mass we have a solid with density δ , then we must integrate contributions to gravitational attraction from small pieces $\Delta M = \delta \Delta V$. So

$$\vec{F} = \iiint_R \frac{Gm \langle x, y, z \rangle}{\rho^3} \, \delta \, dV, \quad \text{i.e. } z \text{-component is} \quad F_z = Gm \iiint_R \frac{z}{\rho^3} \delta \, dV, \ \dots$$

If we can set up to use symmetry, then F_z can be computed nicely using spherical coordinates.

General setup: place the mass m at the origin (so integrand is as above), and place the solid so that the z-axis is an axis of symmetry. Then $\vec{F} = \langle 0, 0, F_z \rangle$ by symmetry, and we have only one

component to compute. Then

$$F_z = Gm \iiint_R \frac{z}{\rho^3} \,\delta \, dV = Gm \iiint_R \frac{\rho \cos \phi}{\rho^3} \,\delta \,\rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = Gm \iiint_R \delta \cos \phi \sin \phi \, d\rho \, d\phi \, d\theta.$$

Example: Newton's theorem: the gravitational attraction of a spherical planet with uniform density δ is the same as that of the equivalent point mass at its center.

[[Setup: the sphere has radius a and is centered on the positive z-axis, tangent to xy-plane at the origin; the test mass is m at the origin. Then

$$F_z = Gm \iiint_R \frac{z}{\rho^3} \,\delta \, dV = Gm \int_0^{2\pi} \int_0^{\pi/2} \int_0^{2a \cos \phi} \delta \,\cos \phi \,\sin \phi \,d\rho \,d\phi \,d\theta = \dots = \frac{4}{3} Gm \delta \,\pi a = \frac{GMm}{a^2}$$

where M = mass of the planet $= \frac{4}{3}\pi a^3 \delta$. (The bounds for ρ and ϕ need to be explained carefully, by drawing a diagram of a vertical slice with z and r coordinate axes, and the inscribed right triangle with vertices the two poles of the sphere + a point on its surface, the hypothenuse is the diameter 2a and we get $\rho = 2a \cos \phi$ for the spherical coordinate equation of the sphere).]]

18.02 Lecture 27. – Thu, Nov 15, 2007

Handouts: PS10 solutions, PS11

Vector fields in space.

At every point in space, $\vec{F} = P\hat{\imath} + Q\hat{\jmath} + R\hat{k}$, where P, Q, R are functions of x, y, z.

Examples: force fields (gravitational force $\vec{F} = -c\langle x, y, z \rangle / \rho^3$; electric field **E**, magnetic field **B**); velocity fields (fluid flow, $\boldsymbol{v} = \boldsymbol{v}(x, y, z)$); gradient fields (e.g. temperature and pressure gradients).

Flux.

Recall: in 2D, flux of a vector field \vec{F} across a curve $C = \int_C \vec{F} \cdot \hat{n} \, ds$.

In 3D, flux of a vector field is a *double* integral: flux through a *surface*, not a curve!

 \vec{F} vector field, S surface, \hat{n} unit normal vector: Flux = $\iint \vec{F} \cdot \hat{n} dS$.

Notation: $d\vec{S} = \hat{n} dS$. (We'll see that $d\vec{S}$ is often easier to compute than \hat{n} and dS).

Remark: there are 2 choices for \hat{n} (choose which way is counted positively!)

Geometric interpretation of flux:

As in 2D, if \vec{F} = velocity of a fluid flow, then flux = flow per unit time across S.

Cut S into small pieces, then over each small piece: what passes through ΔS in unit time is the contents of a parallelepiped with base ΔS and third side given by \vec{F} .

Volume of box = base × height = $(\vec{F} \cdot \hat{n}) \Delta S$.

• Examples:

1) $\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$ through sphere of radius *a* centered at 0. $\hat{n} = \frac{1}{a} \langle x, y, z \rangle$ (other choice: $-\frac{1}{a} \langle x, y, z \rangle$; traditionally choose \hat{n} pointing out). $\vec{F} \cdot \hat{n} = \langle x, y, z \rangle \cdot \hat{n} = \frac{1}{a} (x^2 + y^2 + z^2) = a$, so $\iint_S \vec{F} \cdot \hat{n} dS = \iint_S a \, dS = a \, (4\pi a^2)$. 2) Same sphere, $\vec{H} = z\hat{k}$: $\vec{H} \cdot \hat{n} = \frac{z^2}{a}$.

$$\iint_{S} \vec{H} \cdot d\vec{S} = \iint_{S} \frac{z^{2}}{a} \, dS = \int_{0}^{2\pi} \int_{0}^{\pi} \frac{a^{2} \cos^{2} \phi}{a} \, a^{2} \sin \phi \, d\phi d\theta = 2\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \sin \phi \, d\phi = \frac{4}{3}\pi a^{3} \int_{0}^{\pi} \cos^{2} \phi \, d\phi = \frac$$

Setup. Sometimes we have an easy geometric argument, but in general we must compute the surface integral. The setup requires the use of two parameters to describe the surface, and $\vec{F} \cdot \hat{n} dS$ must be expressed in terms of them. How to do this depends on the type of surface. For now, formulas to remember:

0) plane z = a parallel to xy-plane: $\hat{n} = \pm \hat{k}$, dS = dx dy. (similarly for planes // xz or yz-plane).

1) sphere of radius *a* centered at origin: use ϕ , θ (substitute $\rho = a$ for evaluation); $\hat{\boldsymbol{n}} = \frac{1}{a} \langle x, y, z \rangle$, $dS = a^2 \sin \phi \, d\phi \, d\theta$.

2) cylinder of radius *a* centered on *z*-axis: use z, θ (substitute r = a for evaluation): \hat{n} is radially out in horizontal directions away from *z*-axis, i.e. $\hat{n} = \frac{1}{a} \langle x, y, 0 \rangle$; and $dS = a \, dz \, d\theta$ (explained by drawing a picture of a "rectangular" piece of cylinder, $\Delta S = (\Delta z) (a \Delta \theta)$).

3) graph z = f(x, y): use x, y (substitute z = f(x, y)). We'll see on Friday that \hat{n} and dS separately are complicated, but $\hat{n} dS = \langle -f_x, -f_y, 1 \rangle dx dy$.

18.02 Lecture 28. - Fri, Nov 16, 2007

Last time, we defined the flux of \vec{F} through surface S as $\iint \vec{F} \cdot \hat{n} dS$, and saw how to set up in various cases. Continue with more:

Flux through a graph. If S is the graph of some function z = f(x, y) over a region R of xy-plane: use x and y as variables. Contribution of a small piece of S to flux integral?

Consider portion of S lying above a small rectangle $\Delta x \Delta y$ in xy-plane. In linear approximation it is a parallelogram. (picture shown)

The vertices are (x, y, f(x, y)); $(x + \Delta x, y, f(x + \Delta x, y))$; $(x, y + \Delta y, f(x, y + \Delta y))$; etc. Linear approximation: $f(x + \Delta x, y) \simeq f(x, y) + \Delta x f_x(x, y)$, and $f(x, y + \Delta y) \simeq f(x, y) + \Delta y f_y(x, y)$.

So the sides of the parallelogram are $\langle \Delta x, 0, \Delta x f_x \rangle$ and $\langle 0, \Delta y, \Delta y f_y \rangle$, and

$$\Delta \vec{S} = (\Delta x \langle 1, 0, f_x \rangle) \times (\Delta y \langle 0, 1, f_y \rangle) = \Delta x \Delta y \begin{vmatrix} \hat{\imath} & \hat{\jmath} & k \\ 1 & 0 & f_x \\ 0 & 1 & f_y \end{vmatrix} = \langle -f_x, -f_y, 1 \rangle \Delta x \Delta y \langle 0, 1, f_y \rangle$$

So $d\vec{S} = \pm \langle -f_x, -f_y, 1 \rangle dx dy$.

(From this we can get
$$\hat{n} = \operatorname{dir}(d\vec{S}) = \frac{\langle -f_x, -f_y, 1 \rangle}{\sqrt{f_x^2 + f_y^2 + 1}}$$
 and $dS = |d\vec{S}| = \sqrt{f_x^2 + f_y^2 + 1} \, dx \, dy$. The

conversion factor $\sqrt{\cdots}$ between dS and dA relates area on S to area of projection in xy-plane.)

• Example: flux of $\vec{F} = z\hat{k}$ through S = portion of paraboloid $z = x^2 + y^2$ above unit disk, oriented with normal pointing up (and into the paraboloid): geometrically flux should be > 0 (asked using flashcards). We have $\hat{n} dS = \langle -2x, -2y, 1 \rangle dx dy$, and

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} z \, dx \, dy = \iint_{S} (x^{2} + y^{2}) \, dx \, dy = \int_{0}^{2\pi} \int_{0}^{1} r^{2} r \, dr \, d\theta = \pi/2.$$

Parametric surfaces. If we can describe S by parametric equations x = x(u, v), y = y(u, v), z = z(u, v) (i.e. $\vec{r} = \vec{r}(u, v)$), then we can set up flux integrals using variables u, v. To find $d\vec{S}$,

consider a small portion of surface corresponding to changes Δu and Δv in parameters, it's a parallelogram with sides $\vec{r}(u + \Delta u, v) - \vec{r}(u, v) \approx (\partial \vec{r} / \partial u) \Delta u$ and $(\partial \vec{r} / \partial v) \Delta v$, so

$$\Delta \vec{S} = \pm \left(\frac{\partial \vec{r}}{\partial u} \Delta u\right) \times \left(\frac{\partial \vec{r}}{\partial v} \Delta v\right), \qquad d\vec{S} = \pm \left(\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}\right) \, du \, dv$$

(This generalizes all formulas previously seen; but won't be needed on exam).

Implicit surfaces: If we have an implicitly defined surface g(x, y, z) = 0, then we have a (nonunit) normal vector $\mathbf{N} = \nabla g$. (similarly for a slanted plane, from equation ax + by + cz = d we get $\mathbf{N} = \langle a, b, c \rangle$).

Unit normal $\hat{\boldsymbol{n}} = \pm \mathbf{N}/|\mathbf{N}|$; surface element $\Delta S = ?$ Look at projection to xy-plane: $\Delta A = \Delta S \cos \alpha = (\mathbf{N} \cdot \hat{\boldsymbol{k}}/|\mathbf{N}|) \Delta S$ (where α = angle between slanted surface element and horizontal: projection shrinks one direction by factor $\cos \alpha = (\mathbf{N} \cdot \hat{\boldsymbol{k}})/|\mathbf{N}|$, preserves the other).

Hence
$$dS = \frac{|\mathbf{N}|}{\mathbf{N} \cdot \hat{k}} dA$$
, and $\hat{n} dS = \frac{|\mathbf{N}|\hat{n}}{\mathbf{N} \cdot \hat{k}} dx dy = \pm \frac{\mathbf{N}}{\mathbf{N} \cdot \hat{k}} dx dy$.

(In fact the first formula should be $dS = \frac{|\mathbf{I}\mathbf{N}|}{|\mathbf{N}\cdot\hat{k}|} dA$, I forgot the absolute value).

Note: if S is vertical then the denominator is zero, can't project to xy-plane any more (but one could project e.g. to the xz-plane).

Example: if S is a graph, g(x, y, z) = z - f(x, y) = 0, then $\mathbf{N} = \langle g_x, g_y, g_z \rangle = \langle -f_x, -f_y, 1 \rangle$, $\mathbf{N} \cdot \hat{\mathbf{k}} = 1$, so we recover the formula $d\vec{S} = \langle -f_x, -f_y, 1 \rangle dx dy$ seen before.

Divergence theorem. ("Gauss-Green theorem") – 3D analogue of Green theorem for flux.

If S is a closed surface bounding a region D, with normal pointing outwards, and \vec{F} vector field defined and differentiable over all of D, then

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iiint_{D} \operatorname{div} \vec{F} \, dV, \quad \text{where} \quad \operatorname{div} \left(P\hat{\imath} + Q\hat{\jmath} + R\hat{k}\right) = P_{x} + Q_{y} + R_{z}.$$

Example: flux of $\vec{F} = z\hat{k}$ out of sphere of radius *a* (seen Thursday): div $\vec{F} = 0 + 0 + 1 = 1$, so $\iint_S \vec{F} \cdot d\vec{S} = 3 \operatorname{vol}(D) = 4\pi a^3/3$.

Physical interpretation (mentioned very quickly and verbally only): div \vec{F} = source rate = flux generated per unit volume. So the divergence theorem says: the flux outwards through S (net amount leaving D per unit time) is equal to the total amount of sources in D.