MIT OpenCourseWare
http://ocw.mit.edu
18.02 Multivariable Calculus

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
18.02 Lecture 26. - Tue, Nov 13, 2007

Spherical coordinates (ρ, ϕ, θ).
$\rho=$ rho $=$ distance to origin. $\phi=\varphi=\mathrm{phi}=$ angle down from z-axis. $\theta=$ same as in cylindrical coordinates. Diagram drawn in space, and picture of 2D slice by vertical plane with z, r coordinates.

Formulas to remember: $z=\rho \cos \phi, r=\rho \sin \phi$ (so $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta)$.
$\rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{r^{2}+z^{2}}$. The equation $\rho=a$ defines the sphere of radius a centered at 0 .
On the surface of the sphere, ϕ is similar to latitude, except it's 0 at the north pole, $\pi / 2$ on the equator, π at the south pole. θ is similar to longitude.
$\phi=\pi / 4$ is a cone (asked using flash cards) $\left(z=r=\sqrt{x^{2}+y^{2}}\right) . \phi=\pi / 2$ is the xy-plane.
Volume element: $d V=\rho^{2} \sin \phi d \rho d \phi d \theta$.
To understand this formula, first study surface area on sphere of radius a : picture shown of a "rectangle" corresponding to $\Delta \phi, \Delta \theta$, with sides $=$ portion of circle of radius a, of length $a \Delta \phi$, and portion of circle of radius $r=a \sin \phi$, of length $r \Delta \theta=a \sin \phi \Delta \theta$. So $\Delta S \approx a^{2} \sin \phi \Delta \phi \Delta \theta$, which gives the surface element $d S=a^{2} \sin \phi d \phi d \theta$.

The volume element follows: for a small "box", $\Delta V=\Delta S \Delta \rho$, so $d V=d \rho d S=\rho^{2} \sin \phi d \rho d \phi d \theta$.
Example: recall the complicated example at end of Friday's lecture (region sliced by a plane inside unit sphere). After rotating coordinate system, the question becomes: volume of the portion of unit sphere above the plane $z=1 / \sqrt{2}$? (picture drawn). This can be set up in cylindrical (left as exercise) or spherical coordinates.

For fixed ϕ, θ we are slicing our region by rays straight out of the origin; ρ ranges from its value on the plane $z=1 / \sqrt{2}$ to its value on the sphere $\rho=1$. Spherical coordinate equation of the plane: $z=\rho \cos \phi=1 / \sqrt{2}$, so $\rho=\sec \phi / \sqrt{2}$. The volume is:

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{\frac{1}{\sqrt{2}} \sec \phi}^{1} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

(Bound for ϕ explained by looking at a slice by vertical plane $\theta=$ constant: the edge of the region is at $z=r=\frac{1}{\sqrt{2}}$).

Evaluation: not done. Final answer: $\frac{2 \pi}{3}-\frac{5 \pi}{6 \sqrt{2}}$.

Application to gravitation.

Gravitational force exerted on mass m at origin by a mass ΔM at (x, y, z) (picture shown) is given by $|\vec{F}|=\frac{G \Delta M m}{\rho^{2}}, \operatorname{dir}(\vec{F})=\frac{\langle x, y, z\rangle}{\rho}$, i.e. $\vec{F}=\frac{G \Delta M m}{\rho^{3}}\langle x, y, z\rangle . \quad(G=$ gravitational constant).

If instead of a point mass we have a solid with density δ, then we must integrate contributions to gravitational attraction from small pieces $\Delta M=\delta \Delta V$. So

$$
\vec{F}=\iiint_{R} \frac{G m\langle x, y, z\rangle}{\rho^{3}} \delta d V, \quad \text { i.e. } z \text {-component is } \quad F_{z}=G m \iiint_{R} \frac{z}{\rho^{3}} \delta d V, \ldots
$$

If we can set up to use symmetry, then F_{z} can be computed nicely using spherical coordinates.
General setup: place the mass m at the origin (so integrand is as above), and place the solid so that the z-axis is an axis of symmetry. Then $\vec{F}=\left\langle 0,0, F_{z}\right\rangle$ by symmetry, and we have only one
component to compute. Then

$$
F_{z}=G m \iiint_{R} \frac{z}{\rho^{3}} \delta d V=G m \iiint_{R} \frac{\rho \cos \phi}{\rho^{3}} \delta \rho^{2} \sin \phi d \rho d \phi d \theta=G m \iiint_{R} \delta \cos \phi \sin \phi d \rho d \phi d \theta .
$$

Example: Newton's theorem: the gravitational attraction of a spherical planet with uniform density δ is the same as that of the equivalent point mass at its center.
[[Setup: the sphere has radius a and is centered on the positive z-axis, tangent to $x y$-plane at the origin; the test mass is m at the origin. Then
$F_{z}=G m \iiint_{R} \frac{z}{\rho^{3}} \delta d V=G m \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{2 a \cos \phi} \delta \cos \phi \sin \phi d \rho d \phi d \theta=\cdots=\frac{4}{3} G m \delta \pi a=\frac{G M m}{a^{2}}$ where $M=$ mass of the planet $=\frac{4}{3} \pi a^{3} \delta$. (The bounds for ρ and ϕ need to be explained carefully, by drawing a diagram of a vertical slice with z and r coordinate axes, and the inscribed right triangle with vertices the two poles of the sphere + a point on its surface, the hypothenuse is the diameter $2 a$ and we get $\rho=2 a \cos \phi$ for the spherical coordinate equation of the sphere).]]

18.02 Lecture 27. - Thu, Nov 15, 2007

Handouts: PS10 solutions, PS11

Vector fields in space.

At every point in space, $\vec{F}=P \hat{\boldsymbol{\imath}}+Q \hat{\boldsymbol{\jmath}}+R \hat{\boldsymbol{k}}$, where P, Q, R are functions of x, y, z.
Examples: force fields (gravitational force $\vec{F}=-c\langle x, y, z\rangle / \rho^{3}$; electric field \mathbf{E}, magnetic field \mathbf{B}); velocity fields (fluid flow, $\boldsymbol{v}=\boldsymbol{v}(x, y, z)$); gradient fields (e.g. temperature and pressure gradients).

Flux.
Recall: in 2D, flux of a vector field \vec{F} across a curve $C=\int_{C} \vec{F} \cdot \hat{\boldsymbol{n}} d s$.
In 3D, flux of a vector field is a double integral: flux through a surface, not a curve!
\vec{F} vector field, S surface, $\hat{\boldsymbol{n}}$ unit normal vector: \quad Flux $=\iint \vec{F} \cdot \hat{\boldsymbol{n}} d S$.
Notation: $d \vec{S}=\hat{\boldsymbol{n}} d S$. (We'll see that $d \vec{S}$ is often easier to compute than $\hat{\boldsymbol{n}}$ and $d S$).
Remark: there are 2 choices for $\hat{\boldsymbol{n}}$ (choose which way is counted positively!)

Geometric interpretation of flux:

As in 2D, if $\vec{F}=$ velocity of a fluid flow, then flux $=$ flow per unit time across S.
Cut S into small pieces, then over each small piece: what passes through ΔS in unit time is the contents of a parallelepiped with base ΔS and third side given by \vec{F}.

Volume of box $=$ base \times height $=(\vec{F} \cdot \hat{\boldsymbol{n}}) \Delta S$.

- Examples:

1) $\vec{F}=x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}+z \hat{\boldsymbol{k}}$ through sphere of radius a centered at 0 .
$\hat{\boldsymbol{n}}=\frac{1}{a}\langle x, y, z\rangle$ (other choice: $-\frac{1}{a}\langle x, y, z\rangle$; traditionally choose $\hat{\boldsymbol{n}}$ pointing out).
$\vec{F} \cdot \hat{\boldsymbol{n}}=\langle x, y, z\rangle \cdot \hat{\boldsymbol{n}}=\frac{1}{a}\left(x^{2}+y^{2}+z^{2}\right)=a$, so $\iint_{S} \vec{F} \cdot \hat{\boldsymbol{n}} d S=\iint_{S} a d S=a\left(4 \pi a^{2}\right)$.
2) Same sphere, $\vec{H}=z \hat{\boldsymbol{k}}: \vec{H} \cdot \hat{\boldsymbol{n}}=\frac{z^{2}}{a}$.

$$
\iint_{S} \vec{H} \cdot d \vec{S}=\iint_{S} \frac{z^{2}}{a} d S=\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{a^{2} \cos ^{2} \phi}{a} a^{2} \sin \phi d \phi d \theta=2 \pi a^{3} \int_{0}^{\pi} \cos ^{2} \phi \sin \phi d \phi=\frac{4}{3} \pi a^{3} .
$$

Setup. Sometimes we have an easy geometric argument, but in general we must compute the surface integral. The setup requires the use of two parameters to describe the surface, and $\vec{F} \cdot \hat{\boldsymbol{n}} d S$ must be expressed in terms of them. How to do this depends on the type of surface. For now, formulas to remember:
$0)$ plane $z=a$ parallel to $x y$-plane: $\hat{\boldsymbol{n}}= \pm \hat{\boldsymbol{k}}, d S=d x d y$. (similarly for planes $/ / x z$ or $y z$-plane).

1) sphere of radius a centered at origin: use ϕ, θ (substitute $\rho=a$ for evaluation); $\hat{\boldsymbol{n}}=\frac{1}{a}\langle x, y, z\rangle$, $d S=a^{2} \sin \phi d \phi d \theta$.
2) cylinder of radius a centered on z-axis: use z, θ (substitute $r=a$ for evaluation): $\hat{\boldsymbol{n}}$ is radially out in horizontal directions away from z-axis, i.e. $\hat{\boldsymbol{n}}=\frac{1}{a}\langle x, y, 0\rangle$; and $d S=a d z d \theta$ (explained by drawing a picture of a "rectangular" piece of cylinder, $\Delta S=(\Delta z)(a \Delta \theta))$.
3) graph $z=f(x, y)$: use x, y (substitute $z=f(x, y)$). We'll see on Friday that $\hat{\boldsymbol{n}}$ and $d S$ separately are complicated, but $\hat{\boldsymbol{n}} d S=\left\langle-f_{x},-f_{y}, 1\right\rangle d x d y$.
18.02 Lecture 28. - Fri, Nov 16, 2007

Last time, we defined the flux of \vec{F} through surface S as $\iint \vec{F} \cdot \hat{\boldsymbol{n}} d S$, and saw how to set up in various cases. Continue with more:

Flux through a graph. If S is the graph of some function $z=f(x, y)$ over a region R of $x y$-plane: use x and y as variables. Contribution of a small piece of S to flux integral?

Consider portion of S lying above a small rectangle $\Delta x \Delta y$ in $x y$-plane. In linear approximation it is a parallelogram. (picture shown)

The vertices are $(x, y, f(x, y)) ;(x+\Delta x, y, f(x+\Delta x, y)) ;(x, y+\Delta y, f(x, y+\Delta y))$; etc. Linear approximation: $f(x+\Delta x, y) \simeq f(x, y)+\Delta x f_{x}(x, y)$, and $f(x, y+\Delta y) \simeq f(x, y)+\Delta y f_{y}(x, y)$.

So the sides of the parallelogram are $\left\langle\Delta x, 0, \Delta x f_{x}\right\rangle$ and $\left\langle 0, \Delta y, \Delta y f_{y}\right\rangle$, and

$$
\Delta \vec{S}=\left(\Delta x\left\langle 1,0, f_{x}\right\rangle\right) \times\left(\Delta y\left\langle 0,1, f_{y}\right\rangle\right)=\Delta x \Delta y\left|\begin{array}{ccc}
\hat{\boldsymbol{\imath}} & \hat{\boldsymbol{\jmath}} & \hat{\boldsymbol{k}} \\
1 & 0 & f_{x} \\
0 & 1 & f_{y}
\end{array}\right|=\left\langle-f_{x},-f_{y}, 1\right\rangle \Delta x \Delta y
$$

So $d \vec{S}= \pm\left\langle-f_{x},-f_{y}, 1\right\rangle d x d y$.
(From this we can get $\hat{\boldsymbol{n}}=\operatorname{dir}(d \vec{S})=\frac{\left\langle-f_{x},-f_{y}, 1\right\rangle}{\sqrt{f_{x}^{2}+f_{y}^{2}+1}}$ and $d S=|d \vec{S}|=\sqrt{f_{x}^{2}+f_{y}^{2}+1} d x d y$. The conversion factor $\sqrt{\cdots}$ between $d S$ and $d A$ relates area on S to area of projection in $x y$-plane.)

- Example: flux of $\vec{F}=z \hat{\boldsymbol{k}}$ through $S=$ portion of paraboloid $z=x^{2}+y^{2}$ above unit disk, oriented with normal pointing up (and into the paraboloid): geometrically flux should be >0 (asked using flashcards). We have $\hat{\boldsymbol{n}} d S=\langle-2 x,-2 y, 1\rangle d x d y$, and

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S} z d x d y=\iint_{S}\left(x^{2}+y^{2}\right) d x d y=\int_{0}^{2 \pi} \int_{0}^{1} r^{2} r d r d \theta=\pi / 2
$$

Parametric surfaces. If we can describe S by parametric equations $x=x(u, v), y=y(u, v)$, $z=z(u, v)$ (i.e. $\vec{r}=\vec{r}(u, v)$), then we can set up flux integrals using variables u, v. To find $d \vec{S}$,
consider a small portion of surface corresponding to changes Δu and Δv in parameters, it's a parallelogram with sides $\vec{r}(u+\Delta u, v)-\vec{r}(u, v) \approx(\partial \vec{r} / \partial u) \Delta u$ and $(\partial \vec{r} / \partial v) \Delta v$, so

$$
\Delta \vec{S}= \pm\left(\frac{\partial \vec{r}}{\partial u} \Delta u\right) \times\left(\frac{\partial \vec{r}}{\partial v} \Delta v\right), \quad d \vec{S}= \pm\left(\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}\right) d u d v
$$

(This generalizes all formulas previously seen; but won't be needed on exam).
Implicit surfaces: If we have an implicitly defined surface $g(x, y, z)=0$, then we have a (nonunit) normal vector $\mathbf{N}=\nabla g$. (similarly for a slanted plane, from equation $a x+b y+c z=d$ we get $\mathbf{N}=\langle a, b, c\rangle)$.

Unit normal $\hat{\boldsymbol{n}}= \pm \mathbf{N} /|\mathbf{N}|$; surface element $\Delta S=$? Look at projection to $x y$-plane: $\Delta A=$ $\Delta S \cos \alpha=(\mathbf{N} \cdot \hat{\boldsymbol{k}} /|\mathbf{N}|) \Delta S$ (where $\alpha=$ angle between slanted surface element and horizontal: projection shrinks one direction by factor $\cos \alpha=(\mathbf{N} \cdot \hat{\boldsymbol{k}}) /|\mathbf{N}|$, preserves the other).

Hence $d S=\frac{|\mathbf{N}|}{\mathbf{N} \cdot \hat{\boldsymbol{k}}} d A$, and $\hat{\boldsymbol{n}} d S=\frac{|\mathbf{N}| \hat{\boldsymbol{n}}}{\mathbf{N} \cdot \hat{\boldsymbol{k}}} d x d y= \pm \frac{\mathbf{N}}{\mathbf{N} \cdot \hat{\boldsymbol{k}}} d x d y$.
(In fact the first formula should be $d S=\frac{|\mathbf{N}|}{|\mathbf{N} \cdot \hat{\boldsymbol{k}}|} d A$, I forgot the absolute value).
Note: if S is vertical then the denominator is zero, can't project to $x y$-plane any more (but one could project e.g. to the $x z$-plane).

Example: if S is a graph, $g(x, y, z)=z-f(x, y)=0$, then $\mathbf{N}=\left\langle g_{x}, g_{y}, g_{z}\right\rangle=\left\langle-f_{x},-f_{y}, 1\right\rangle$, $\mathbf{N} \cdot \hat{\boldsymbol{k}}=1$, so we recover the formula $d \vec{S}=\left\langle-f_{x},-f_{y}, 1\right\rangle d x d y$ seen before.

Divergence theorem. ("Gauss-Green theorem") - 3D analogue of Green theorem for flux.
If S is a closed surface bounding a region D, with normal pointing outwards, and \vec{F} vector field defined and differentiable over all of D, then

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iiint_{D} \operatorname{div} \vec{F} d V, \quad \text { where } \quad \operatorname{div}(P \hat{\imath}+Q \hat{\jmath}+R \hat{\boldsymbol{k}})=P_{x}+Q_{y}+R_{z}
$$

Example: flux of $\vec{F}=z \hat{\boldsymbol{k}}$ out of sphere of radius a (seen Thursday): $\operatorname{div} \vec{F}=0+0+1=1$, so $\iint_{S} \vec{F} \cdot d \vec{S}=3 \operatorname{vol}(D)=4 \pi a^{3} / 3$.

Physical interpretation (mentioned very quickly and verbally only): $\operatorname{div} \vec{F}=$ source rate $=$ flux generated per unit volume. So the divergence theorem says: the flux outwards through S (net amount leaving D per unit time) is equal to the total amount of sources in D.

