
PASCAL Workshop
Thurnau March 16-18, 2005

MODERN CONVEX OPTIMIZATION

Arkadi Nemirovski
Technion - Israel Institute of Technology

nemirovs@ie.technion.ac.il

• Convex Programs

• Efficient solvability of generic convex programs

• Interior-point polynomial time algorithms
for well-structured convex programs

• Beyond the scope of interior-point algorithms:
simple methods for extremely large-scale convex programs

1

♣ Geometrically, a convex program is

min
x

{

cTx : x ∈ X
}

[X ⊂ Rn : convex set]

♠ In applications, optimization programs usually arise in the form of

min
u∈Rn

{f0(u) : fi(u) ≤ 0, i = 1, ..., m} . (∗)

When all functions f0(u), ..., fm(u) are convex, (∗) can be rewritten as

min
x=(t,u)∈X

t, X = {(t, u) : f0(u) ≤ t, f1(u) ≤ 0, ..., fm(u) ≤ 0}
︸ ︷︷ ︸

convex set!

and thus (∗) is a convex program.

2

min
u∈Rn

{f0(u) : fi(u) ≤ 0, i = 1, ..., m} . (∗)
♠ The simplest case of a convex program is a Linear Programming

program where all fi are linear. Such a problem can be posed in the
canonical form

min
x

{

cTx : Ax − b ∈ K ≡ Rn
+

}

. (LP)

♦ Nonlinearity in (∗), if any, “sits” in the objective and in the con-
straints. It is easily seen that a convex program (∗) can be represented
in the conic form similar to (LP):

min
x

{

cTx : Ax − b ∈ K
}

(CP)

where K ⊂ RN is a cone (closed, pointed, convex and with a nonempty
interior), and x 7→ Ax : Rn → RN is a linear embedding.

3

min
x

{

cTx : Ax − b ∈ K
}

(CP)

♠ An extremely wide variety of convex programs “is captured” by just
three generic cones K:
♥ Nonnegative orthant Rn

+ = {x ∈ Rn : x ≥ 0} ⇒LP
♥ Direct products of Lorentz cones Ln = {(x, t) ∈ Rn × R : ‖x‖2 ≤ t}

⇒conic quadratic programs

min
x

{

cTx : ‖Aix − bi‖2 ≤ cT
i x − di

}

♥ Semidefinite cone Sn
+ = {X ∈ Sn : X º 0} ⇒semidefinite programs

min
x






cTx :

∑

j
xjAj − B º 0






.

♠ Specific nice structure of the three generic cones in question under-
lies modern powerful primal-dual interior point methods for Linear, Conic
Quadratic and Semidefinite Programming.
♠ There exists a kind of calculus of “conic quadratic and semidefi-
nite representable sets and functions” which offers a systematic way
to recognize the possibility to reformulate a convex program as a conic
quadratic or semidefinite program.

4

minimize cTx subject to

(a)







Ax = b
x ≥ 0

(b)










8∑

i=1
|xi|3





1/3
≤ x

1/7
2 x

2/7
3 x

3/7
4 + 2x

1/5
1 x

2/5
5 x

1/5
6

5x2 ≥ 1

x
1/2
1 x2

2

+ 2

x
1/3
2 x3

3x
5/8
4













x2 x1

x1 x4 x3

x3 x6 x3

x3 x8















¹ 5I

(c)





















x1 x2 − x1 x3 − x2 x4 − x3

x2 − x1 x2 x3 − x2 x4 − x3

x3 − x2 x3 − x2 x3 x4 − x3

x4 − x3 x4 − x3 x4 − x3 x4















º 0

x1 + x2 sin(φ) + x3 sin(2φ) + x4 sin(4φ) ≥ 0 ∀φ ∈
[

0, π
2

]

♠ The problem can be converted, in a systematic way, into SDP
♠ Removing constraints (c), the resulting problem can be converted,
in a systematic way, into CQP, and can be can be approximated, in a
polynomial time fashion, by LP.

5

Why convex programming?

♠ Convex Programming admits nice and powerful Duality Theory ca-
pable to certify optimality and to quantify reliably the quality of an
approximate solution.
In contrast to this, in a typical nonconvex problems there are no easy
ways to certify (global) optimality and to quantify the “level of non-
optimality” of an approximate solution.

While typically Convex Duality does not allow to get a solution in
a closed analytic form, it still allows for deep understanding of the
problem of interest, for building its highly instructive and nontrivial
reformulations, etc.

♠ Generic convex programs, under mild computability and bounded-
ness assumptions, are computationally tractable - they admit theoretically
(and to some extent, also practically) efficient solution methods.
In contrast to this, nonconvex optimization programs for which a
global solution can be efficiently found numerically are rare exceptions
(mainly due to “hidden convexity” which we are lucky to recognize).

6

♣ Convex Duality [conic programming case]

Opt = min
x

{

cTx : Ax − b ∈ K
}

(P)

♠ The origin of duality is in the desire to find a systematic way to
bound from below the optimal value in (CP). In other words, we are
interested in a mechanism for deriving from the constraints of (P) their
consequences of the form

cTx ≥ a.

• The simplest way to build a linear inequality which is a consequence
of the constraints of (P) is linear aggregation

Ax − b ∈ K ⇒ λT (Ax − b) ≥ 0 (∗)
• Question: What should be a “weight vector” λ in order to make the impli-

cation (*) valid?
• Answer: The necessary and sufficient condition is that λTξ ≥ 0 for every

ξ ∈ K:
λ ∈ K∗ ≡ {λ : λTy ≥ 0∀y ∈ K}.

• Fact: When K is a closed, convex and pointed cone with a nonempty
interior, so is the dual cone K∗, and (K∗)∗ = K.

7

Opt = min
x

{

cTx : Ax − b ∈ K
}

(P)

K∗ =
{

λ : λTξ ≥ 0∀ξ ∈ K
}

Ax − b ∈ K ⇒ λT (Ax − b) ≥ 0

• Conclusion: Let λ ∈ K∗ be such that ATλ = c. Then Opt ≥ bTλ.
Equivalently: Let us associate with (P) the dual problem

Opt∗ = max
λ

{

bTλ : ATλ = c, λ ∈ K∗
}

(D)

Then Opt∗ is a lower bound on Opt.
Note: x 7→ Ax is an embedding, so that (P) can be rewritten equiva-
lently as

(Pr): Opt = min
ξ

{

eTξ : ξ ∈ (L − b)
⋂

K
} [

e : ATe = c;L = ImA
]

(D) is of the same geometric structure:

(Dl): Opt∗ = max
λ

{

bTλ : λ ∈ (M + e)
⋂

K∗
} [

M = Ker AT = L⊥]

♥ Geometrically, conic problem is to minimize a linear functional over the inter-
section of affine plane and a cone. Such a problem is called strictly feasible, if
the affine plane intersects the interior of the cone.

8

(P): Opt = min
x

{

cTx : Ax − b ∈ K
}

m
(Pr): min

ξ

{

eTξ : ξ ∈ (L − b) ⋂ K
} [

e : ATe = c;L = ImA
]

(Dl): max
λ

{

bTλ : λ ∈ (M + e) ⋂ K∗
} [

M = Ker AT = L⊥]

m
(D): Opt∗ = max

λ

{

bTλ : ATλ = c, λ ∈ K∗
}

♣ Conic Duality Theorem. (i) Conic duality is symmetric: (D) is a conic
problem, and the problem dual to (D) is (equivalent to) (P).
(ii) [Weak Duality]: Opt∗ ≤ Opt, so that whenever x is primal, and λ is dual
feasible, the duality gap

cTx − bTλ = [Ax − b]Tλ =
[

cTx − Opt
]

+ [Opt − Opt∗]
︸ ︷︷ ︸

≥0

+
[

Opt∗ − bTλ
]

is nonnegative.
(iii) [Strong Duality] Let one of the problems (P), (D) be strictly feasible and
bounded. Then the other problem is solvable, and Opt = Opt∗.

In particular, if both (P), (D) are strictly feasible, both problems are solvable
with equal optimal values.

9

(P): Opt = min
x

{

cTx : Ax − b ∈ K
}

(D): Opt∗ = max
λ

{

bTλ : ATλ = c, λ ∈ K∗
}

♣ Optimality conditions: Let both (P), (D) be strictly feasible. Then a
pair (x, λ) of primal-dual optimal solutions is comprised of optimal solutions to
the respective problems
• if and only if

cTx − bTλ = 0 [zero duality gap]

and
• if and only if

[Ax − b]Tλ = 0 [complementary slackness]

♣ Note: Nonnegative orthant, Lorentz and Semidefinite cones are self-
dual. As a result, program dual to an LP/CQP/SDP program is
LP/CQP/SDP, respectively.

10

♣ A generic convex problem P is a family of convex programs – instances

(p) : min
x

{

f(p)(x) : x ∈ X(p) ⊂ Rn(p)
}

[f(p) : Rn(p) → R]

parameterized by finite-dimensional data vectors Data(p) and equipped
with infeasibility measure IP(x, p).
♥ Infeasibility measure quantifies the infeasibility of a candidate so-
lution x ∈ Rn(p) to an instance (p). As a function of x ∈ Rn(p), the
infeasibility measure IP(x, p) should be
• nonnegative everywhere and zero if and only if x is feasible for (p)
• convex in x.

♥ The dimension of the data vector of an instance (p) ∈ P is called the
size Size(p) of the instance.

11

• Linear Programming is a generic problem with instances

min
x
{cTx : Ax − b ≥ 0},

the data vectors being (dim c, dim b, c, A, b). As an infeasibility measure,
one can take

ILP(x, p) = min {t ≥ 0 : Ax − b + t1 ≥ 0} , 1 = (1, ..., 1)T ;

• Conic Quadratic Programming is a generic problem with instances

min
x

{

cTx : ‖Aix − bi‖2 ≤ cT
i x − di, i = 1, ..., m

}

,

the data vectors being (dim x, m, dim b1, ..., dim bm, c, {Ai, bi, ci, di}m
i=1). As

an infeasibility measure, one can take

ICQP(x, p) = min
{

t ≥ 0 : ‖Aix − bi‖2 ≤ cT
i x − di + t, i = 1, ..., m

}

;

• Semidefinite Programming is a generic problem with instances

min
x






cTx :

∑

j
xjAj − B º 0






,

data vectors being (dim x, dim B, c, {Aj}dim x
j=1 , B). As an infeasibility mea-

sure, one can take

ISDP(x, p) = min






t ≥ 0 :

∑

j
xjAj − B + tI º 0






;

12

• Geometric Programming is a generic problem with instances

min
x

{f0(x) : fi(x) ≤ 0, i = 1, ..., m} ,

f`(x) = ln





k∑

j=1
exp{aij + αT

ijx}





data vectors being (dim x, m, k, {aij, αij}i,j). As an infeasibility measure,
one can take

IGP(x, p) = min {t ≥ 0 : fi(x) ≤ t, i = 1, ..., m} .

13

♣ A solution algorithm A for a generic problem P is a code for a Real
Arithmetic Computer which, given on input
• the data vector Data(p) of an instance

(p) : min
x

{

f(p)(x) : x ∈ X(p) ⊂ Rn(p)
}

of P, and
• a required accuracy ε > 0,

returns on output
• either an ε-solution to (p), that is, a vector xε which is ε-optimal and

ε-feasible for (p):

f(p)(xε) − Opt(p) ≤ ε & IP(xε, p) ≤ ε,

• or a correct conclusion “(p) is infeasible”,
• or a correct conclusion “Opt(p) = −∞”.

♣ The ε-complexity of (p) ∈ P w.r.t. a solution algorithm A is the number
TA(ε, p) of Real Arithmetic operations required to process the input
(Data(p), ε)

14

♣ A solution algorithm A for a generic problem P is called polynomial
time (“theoretically efficient”), if

TA(ε, p) ≤ Poly
(

Size(p), Digits(p)(ε)
)

,

where

Digits(p)(ε) = ln







Size(p) + ‖Data(p)‖∞ + ε2

ε







is the number of accuracy digits in an ε-solution to (p).
Interpretation: When a solution algorithm is polynomial time, 10-fold
increase in computer power allows
• to increase by an absolute constant factor the sizes Size(p) of in-

stances which can be solved within a given accuracy in a given time,
or
• to increase by an absolute constant factor the number of accuracy

digits which can be obtained in a given time on instances of a given
size.

♣ A generic problem P is called polynomially solvable (“computationally
tractable”), if it admits a polynomial time solution algorithm.

15

• Claim: Under mild computability and boundedness assumptions, a generic
convex problem is polynomially solvable.

In particular, adding to instances of LP/CQP/SDP/GP box con-
straints

‖x‖∞ ≤ R

and treating R as part of the data vectors, we make the corresponding
generic problems polynomially solvable.

16

♣ The basic fact underlying polynomial time solvability of generic con-
vex problems is as follows:

Theorem. Consider an optimization program

min
x

{f (x) : x ∈ Bn ≡ {x ∈ Rn : ‖x‖2 ≤ 1}} ,

with convex and continuous on Bn objective f . There exists an explicit algorithm
which, for every ε > 0, is capable to find a feasible ε-solution to the problem at
the cost of computing the values f (xi) and subgradients f ′(xi) of the objective at

N(ε) = O(1)n2 ln
(

n + n V(f)
ε

)

,

V(f) = max
Bn

f − min
Bn

f

recursively generated points xi ∈ int Bn, with O(1)n2 additional arithmetic oper-
ations per every one of these computations.

17

♠ “Universal” polynomial time algorithms like the one mentioned in
the Theorem use local information (values and subgradients) on the ob-
jective and the constraints and therefore cannot utilize a priori knowl-
edge of problem’s structure. For “well-structured” convex problems,
like LP/CQP/SDP, there exist Interior Point Polynomial Time algorithms
which do utilize problem’s structure and, as a result, yield better com-
plexity bounds and exhibit much better practical performance.

18

♣ Consider a canonical cone

K = Ln1 × ... × Lnp × S
np+1
+ × ... × S

np+q
+

⊂ E = Rn1+1 × ... × Rnp+1 × Snp+1 × ... × Snp+q

• E is equipped with the inner product

〈ξ, λ〉 = ξT
1 λ1 + ...ξT

p λp + Tr(ξp+1λp+1) + ... + Tr(ξp+qλp+q)

• K is equipped with canonical barrier

K(ξ) = K1(ξ1) + ... + Kp+q(ξp+q) : int K → R,

where
• for a Lorentz factor Lni = {(x, t) ∈ Rni × R : ‖x‖2 ≤ t}, we set

Ki(x, t) = − ln
(

t2 − xTx
)

,

• for a semidefinite factor Sni
+ = {x ∈ Sni : x º 0} we set

Ki(x) = − ln Det (x).

• We define the parameter ϑ(K) of barrier K as twice the number of
Lorentz faactors plus the total row size of the semidefinite factors in
K.

19

K = Ln1 × ... × Lnp × S
np+1
+ × ... × S

np+q
+

K(ξ) = K1(ξ1) + ... + Kp+q(ξp+q) : int K → R

Important facts:
• K is self-dual;
• The anti-gradient mapping ξ → −∇K(ξ) is a one-to-one mapping of

int K onto itself which is self-inverse:

−∇K(−∇K(ξ)) = ξ ∀ξ ∈ int K.

20

♣ Given a primal-dual pair of strictly feasible conic problems

(Pr): min
ξ

{〈e, ξ〉 : ξ ∈ [L − b]
⋂

K} (Dl): max
λ

{

〈b, λ〉 : λ ∈ [L⊥ + e]
⋂

K
}

we associate with the pair

• primal central path ξ∗(t) = argmin
ξ

{t〈e, ξ〉 + K(ξ) : ξ ∈ [L − b]
⋂

K} [t > 0]

• dual central path λ∗(t) = argmin
λ

{

−t〈b, λ〉 + K(ξ) : λ ∈ [L⊥ + e]
⋂

K
}

[t > 0]

♠ Important facts:
• both paths are well-defined on (0,∞) and belong to the sets of

strictly feasible solutions to the respective problems
• both paths are images of each other under scaled anti-gradient

mapping:

λ∗(t) = −t−1∇K(ξ∗(t)); ξ∗(t) = −t−1∇K(λ∗(t))

• Along the primal-dual central path (ξ∗(t), λ∗(t)), the duality gap is ϑ(K)/t:

DualityGap(ξ, λ) ≡ 〈ξ, λ〉 ≡ [〈e, ξ〉 − Opt(Pr)] + [Opt(Dl) − 〈b, λ〉]| ξ=ξ∗(t)
λ=λ∗(t)

=
ϑ(K)

t

21

♠ We have seen that as t → ∞, the duality gap along the primal-dual
central path goes to 0, so that the path approaches the set of primal-
dual optimal solutions. In primal-dual path-following methods, one traces the
path as t → ∞, staying in an appropriately defined neighbourhood of the path
and thus approaching primal-dual optimality.

22

♠ “Feasible start” generic primal-dual path-following algorithm:
• A pair (ξ = ξ∗(t), λ = λ∗(t)) on the central path is fully characterized
by the following conditions:

ξ ∈ [L − b] ⋂ int K [strict primal feasibility]
λ ∈ [L⊥ + e] ⋂ int K [strict dual feasibility]

tλ + ∇K(ξ)
︸ ︷︷ ︸

B(ξ,λ,t)

= 0







augmented complementary slackness
in LP: λiξi = t−1 ∀i







(∗)

• In order to trace the path, one iterates the following scheme:

Given a current triple (ξ, λ, t) with strictly primal-dual feasible
(ξ, λ), we
• choose a target value t+ ≥ t of the penalty;
• find a primal-dual search direction (∆ξ, ∆λ) by linearizing (*):

∆ξ ∈ L; ∆λ ∈ L⊥; B(ξ, λ, t+) +
∂B(ξ, λ, t+)

∂ξ
∆ξ +

∂B(ξ, λ, t+)

∂λ
∆λ = 0

• Update the triple

(ξ, λ, t) ← (ξ+ = ξ + ∆ξ, λ+ = λ + ∆λ, t+)

23

Various primal-dual path-following IP’s follow the outlined scheme,
utilizing two additional options:
• incorporating line search at the updating step
• exploiting various equivalent forms of the augmented complemen-

tary slackness condition.

Augmented Complementary Slackness tλ + ∇K(ξ) = 0 can be
rewritten in many equivalent forms (e.g., tξ + ∇K(λ) = 0). Out-
side of the central path, linearizations of various forms of A.C.S. are not
equivalent to each other, so that different forms of A.C.S. lead to
different path-following methods.

24

♠ Example: “Primal” path-following method. With A.C.S. written as
tλ + ∇K(ξ) = 0 and the primal-dual pair coming from the program

min
x

{

cTx : Ax − b ∈ K
}

,

the outlined scheme results in the essentially purely primal recurrence

t 7→ t+ > t, x 7→ x+ = x − [AT∇2K(Ax − b
︸ ︷︷ ︸

ξ

)A]−1 [

t+c + AT∇K(ξ)
]

ξ 7→ ξ+ = Ax+ − b, λ 7→ λ+ = −t−1
+

[

∇K(ξ) + ∇2K(ξ)[ξ+ − ξ]
]

(∗)

♥ Theorem [short-step primal path-following method] Let (*) be ini-
tialized at a starting point x = x0, t = t0 > 0 “close to the path”:

[tc + AT∇K(ξ)]T [AT∇2K(ξ)A]−1[tc + AT∇K(ξ)] ≤ 0.12 [ξ = Ax − b]

Then, with the penalty updating policy t+ = t[1 + 0.1ϑ−1/2(K)], the algo-
rithm is well-defined, keeps all iterates close to the path and, for every
ε > 0, results in primal-dual strictly feasible solution with duality gap
≤ ε in no more than

N(ε) = O(1)
√

ϑ(K) ln





2 +

ϑ(K)

t0ε







steps.

25

♥ Theorem assumes that the algorithm is started “close to the path”.
This can be ensured, keeping the complexity bound essentially intact, by a
suitable initialization scheme (based on the same path-following tech-
niques as applied to an appropriate auxiliary problem).
♥ The theoretical complexity bounds stated by Theorem are the best
known for LP/CQP/SDP. At the same time, the associated worst-case-
oriented “short step” penalty updating policy t 7→ t

(

1 + O(1)ϑ−1/2(K)
)

is
too slow from the practical viewpoint.

“Practical” IPm’s do not require “close to the path” (or even feasi-
ble) starting point, use more “aggressive” stepsize policies, operate in
much wider neighbourhood of the central path and are “symmetric”
with respect to primal and dual variables. As a result, practical IPM’s
exhibit much better behaviour in actual computations than the short-
step primal path-following method (although at the price of “spoiling”

the theoretical complexity bound to O(1)ϑ(K) ln
(

ϑ(K)
ε

)

).

26

♣ After two decades of Interior Point Revolution, the entire Convex
Programming is “within the reach” of Interior Point Polynomial Time
methods
⇒ theoretical (and to some extent – practical) possibility to solve con-
vex programs to high accuracy with low iteration count

However: When solving programs with n variables, an IPM iteration
requires assembling and solving n × n Newton system of linear equa-
tions. With standard Linear Algebra, this costs O(n3) operations, un-
less the matrix of the system is highly sparse with favourable sparsity
pattern. As a matter of fact,

• typical LPs of real-world origin do lead to sparse Newton systems
⇒ IPMs are capable to solve LPs with 104 – 105 and even 106 variables

• typical nonlinear convex programs (especially SDPs) lead to dense
Newton systems
⇒ in reality, IPMs can fail to solve a nonlinear convex program with

“just” 104 variables – the very first iteration will last forever...

27

(!) With design dimension n ∼ 104, iteration cost O(n3) becomes
prohibitively large, and with n ∼ 105 and more, a linear in n iteration
cost becomes a must...

♣ In the “extremely large-scale case” (n of order of tens and hun-
dreds of thousands), (!) rules out all advanced convex optimization
techniques, including all known polynomial time algorithms. As far as
nonsmooth and/or constrained convex problems are concerned, at the
present level of our knowledge (!) leaves us with the only option: first
order gradient-type methods.

28

♣ A convenient framework for presenting gradient methods is Convex
Programming in saddle point form, where the problem of interest is

min
x∈X






f (x) = max

y∈Y
φ(x, y)






(S)

• X and Y – compact convex sets in Euclidean spaces
• φ(x, y) : X × Y → R – Lipschitz continuous function convex in
x ∈ X and concave in y ∈ Y .

Note: A convex program min
x∈X

f (x) can be in many ways reduced to (S):

♦ there always is a trivial possibility φ(x, y) ≡ f (x)
♦ when f is “well-structured”, other options are possible, e.g.:

• [x ∈ Rn] f (x) ≡ max
1≤j≤m

[aT
i x + bi] = max

y







∑

i
yi[a

T
i x + bi] : y ≥ 0,

∑

i
yi = 1







• [x ∈ Sm] f (x) ≡ λmax(x) = max
y

{Tr(yx) : y º 0, Tr(y) = 1}
[λmax(x) ≡ λ1(x) ≥ λ2(x) ≥ ... ≥ λm(x) are eigenvalues of x ∈ Sm]

• [x ∈ Sm] f (x) ≡ λ1(x) + ... + λk(x) = max
y

{Tr(xy) : 0 ¹ y ¹ I, Tr(y) = k}
• [x ∈ Sm] f (x) ≡ ‖x‖ = max

u,v
{Tr(x[u − v]) : u, v º 0, Tr(u) = Tr(v) = 1}

♠ Here, f is highly nonsmooth and nonlinear, while φ is just bilinear!

29

min
x∈X






f (x) = max

y∈Y
φ(x, y)






(S)

♣ In contrast to IPMs, all known first order methods for solving (S)
are unable to utilize detailed a propri knowledge of problem’s structure
and use black box representation of (S). In this representation,

• the sets X, Y are known in advance
• φ is known to belong to a given family F of convex-concave
Lipschitz continuous functions on Z = X × Y
• quantitative information is obtained during the solution process
via subsequent calls to the First Order Oracle which, given on input
(x, y) ∈ X × Y , returns φ(x, y) along with a subgradient φ′

x(x, y) of
φ in x and a supergradient φ′

y(x, y) of φ in y.

30

f ∗
φ = min

x∈X






fφ(x) = max

y∈Y
φ(x, y)






, φ ∈ F (S)

♣ Limits of performance of black-box-oriented methods for (S) are given
by Information-Based Complexity Theory.
♠ In IBCT, one considers a class (X, Y,F) of problems of the form of (S)
associated with X, Y and a given family F of convex-concave functions
φ. A solution method B is a collection of rules for generating

• search points zt = (xt, yt) ∈ X = X × Y where φ, φ′ are computed;
• approximate solutions xt ∈ X.

The only restriction on rules is casuality: zt and xt should depend solely
on the “past information” {φ(zτ), φ

′(zτ)}τ<t.
♠ The ε-complexity of (X,Y,F) w.r.t. B is the minimal number of steps
N in which B solves all problems from the class within accuracy ε:

ComplB(ε) = min
{

N : fφ(x
t) − f ∗

φ ≤ ε ∀(φ ∈ F , t ≥ N)
}

.

♠ The ε-complexity of (X, Y,F) is the best of complexities w.r.t. B’s:

Compl(ε) = min
B

ComplB(ε).

31

f ∗
φ = min

x∈X
{fφ(x) = max

y∈Y
φ(x, y)}; φ 7→ Φ(x, y) =







φ′
x(x, y)

−φ′
y(x, y)





 (S)

♣ Information-Based Complexity Compl(·) yields “ultimate” limits on
worst-case performance of black-box-oriented methods as applied to
a given class of problems (S). These limits are known for all “non-
parametric” classes of convex problems, including large-scale ones.
Here are “large-scale” results related to the case of “Euclidean ge-
ometry”:

Let X, Y be subsets of the unit Euclidean ball Bn in Rn. Then
A. Nonsmooth case: If F is the set of all convex-concave functions
φ such that ‖Φ(z′) − Φ(z′′)‖2 ≤ L for all z′, z′′ ∈ X × Y , then

10 (L/ε)2 ≥ Compl(ε) ≥ 1

10
(L/ε)2

︸ ︷︷ ︸

provided X = Y = Bn

and n ≥ (L/ε)2

The lower bound remains valid even in the minimization case, i.e.,
when φ’s are further restricted to be independent of y and to be
as simple as φ(x, y) = max

1≤i≤n
[εixi + ai], εi = ±1.

32

B. Smooth saddle point case: If F is the set of all convex-concave
functions φ such that ‖Φ(z′) − Φ(z′′)‖2 ≤ L‖z′ − z′′‖2 for all z′, z′′ ∈
X × Y , then

10 (L/ε) ≥ Compl(ε) ≥ 1

10
(L/ε)

︸ ︷︷ ︸

provided X = Y = Bn

and n ≥ L/ε

The lover bound remains valid when φ’s are further restricted to
be bilinear: φ(x, y) = aTx + xTAy + bTy.

C. Smooth minimization case: If, in addition to smoothness from
B, φ’s are restricted to be independent of y, then

10 (L/ε)1/2 ≥ Compl(ε) ≥ 1

10
(L/ε)1/2

︸ ︷︷ ︸

provided X = Bn and

n ≥ (L/ε)1/2

The lower bound remains valid when φ’s are further restricted
to be convex quadratic forms of x: φ(x, y) = xTAx − 2bTx, A º 0.

Note: The outlined complexity bounds are dimension-independent!

33

♣ The outlined IBCT results and their extensions/modifications pro-
vide us with

Bad news: In large-scale case, gradient type algorithms, same as all
black-box-oriented methods, possess slow – sublinear – rate of conver-
gence.
⇒ With gradient type methods, one cannot hope to get high accuracy

solutions, provided that n is large.
However,

In numerous applications, all we need are medium-accuracy solutions
⇒ What is of primary importance in large-scale optimization, is whether
the rate of convergence does or does not deteriorate as the dimension
grows, and not whether this rate is high or slow.

Good news: In the case of problems with “favourable geometry”, the
complexity is dimension-independent (or nearly so)
More good news: The (nearly) dimension-independent complexity is
yielded by computationally cheap gradient-type methods.
⇒ When solving large-scale problems, gradient methods are natural

candidates...

34

♣ Some History:

♠ The very first gradient-type method for solving min
X

f (x) with non-

smooth convex f – Subgradient Descent

xt+1 = argmin
x∈X

‖[xt − γtf
′(xt)] − x‖2

2

originates from N. Shor (’63) and B. Polyak (’65) and over years was
intensively modified, primarily via utilizing past information (bundle
methods).

♠ SD is intrinsically adjusted to problems with Euclidean geome-
try. A substantial generalization of SD, the Mirror Descent method
[Nem.&Yudin’77, Ben-Tal,Margalit,Nem.’01, Teboulle&Beck’03] allows
to adjust the scheme to nonsmooth minimization and saddle point
problems on
• simplexes

∆n = {x ∈ Rn : x ≥ 0, ∑

i
xi ≤ 1}

• spectahedrons
Σn = {x ∈ Sn : x º 0, Tr(x) ≤ 1},

etc.

35

♠ Until recently, common wisdom said that
• The only way to exploit problem’s structure in nonlinear convex

minimization is offered by IPMs (and thus is too computationally de-
manding in the extremely large-scale case);
• Computationally cheap gradient type methods are black-box ori-

ented and thus must obey the IBCT limits of performance. Conse-
quently, when solving a large-scale convex program

min
x∈X

f (x), (∗)
accuracy after t steps cannot be better than
♦ O(t−1/2) for a nonsmooth Lipschitz continuous f (really slow...)
♦ O(t−2) for C1,1-smooth f (alas, smoothness is a rare commodity...)

♠ A breakthrough in understanding the situation is due to Yu. Nes-
terov (’03) who observed that if f is of nice analytic structure, it usually
can be represented as f (x) = max

y∈Y
φ(x, y) with C1,1-smooth φ, and therefore

the resulting saddle point problem can be solved by simple methods
at the rate O(t−1).

Note: Accelerating convergence from the “common wisdom” O(t−1/2)

to O(t−1) indeed makes a difference!

36

min
x∈X






f (x) = max

y∈Y
φ(x, y)






(S)

♣ Nesterov’s O(t−1)-method combines a large-scale optimal algorithm
for minimizing smooth convex functions with smooth approximation of
f , based on saddle point representation and adjusted from step to step.

We are about to present an alternative O(t−1)-method – Mirror Prox
– which works directly with (S).
♣ Setup for MP is given by Z = X×Y , a norm ‖·‖ on the space E where
Z lives and a C1 strongly convex distance-generating function ω(·) : Z → R.
We associate with the setup data the parameters

Θ = max
u,v∈Z

[ω(u) − ω(v) − 〈ω′(v), u − v〉]
︸ ︷︷ ︸

local distance ωv(u)

α = max
{

c : ωv(u) ≥ c
2‖u − v‖2 ∀u, v ∈ Z

}

and the prox mappings

Pv(ξ) = argmin
z∈Z

{〈ξ, z〉 + ωv(z)} .

♠ “Implementability Assumption”: Z and ω(·) are simple and fit each
other, so that prox mappings are easy to compute.

37

min
x∈X






f (x) = max

y∈Y
φ(x, y)







m
max
y∈Y






g(y) = min

x∈X
φ(x, y)













7→ Φ(x, y) =







φ′
x(x, y)

−φ′
y(x, y)





 (S)

♣ The basic Mirror Prox algorithm is

zt−1 7→ wt := Pzt−1(γtΦ(zt−1)) 7→ zt := Pzt−1(γtΦ(wt))

st ≡ (xt, yt) =







t∑

τ=bt/2c
γτ







t∑

τ=bt/2c
γτwτ

where γt > 0 are stepsizes.
Theorem: Let Φ(·) be Hölder continuous with exponent σ ∈ [0, 1] and
constant L:

‖Φ(z) − Φ(z′)‖∗ ≤ L‖z − z′‖σ ∀z, z′ ∈ Z.

Then the stepsize policy γt = 0.7L−1
(

Θ
t

)1−σ
2 α

1+σ
2 ensures that

ε(st) ≡


f (xt) − min
X

f


 +


max
Y

g − g(yt)


 ≤ O(1)L





Θ

αt






1+σ
2

.

38

• Setup: (ω(·), Z = X × Y, ‖ · ‖) ⇒ (Θ, α)
• Problem: min

x∈X
max
y∈Y

φ(x, y)

• Assumption: ‖Φ(z) − Φ(z′)‖∗ ≤ L‖z − z′‖σ, Φ =







φ′
x

−φ′
y







︸ ︷︷ ︸

⇓

ε(st) ≤ O(1)L





Θ

αt






1+σ
2

♠ Nonsmooth case σ = 0: φ is Lipschitz continuous with constant L
w.r.t. ‖ · ‖ ⇒ O(t−1/2)-rate of convergence

♠ Smooth case σ = 1: gradient of φ is Lipschitz continuous with con-
stant L w.r.t. ‖ · ‖: ⇒ O(t−1)-rate of convergence

♣ Adjusting (ω(·), ‖ · ‖), one can optimize the efficiency estimate, thus
adjusting the method to the geometry of problem in question.

39

♣ Good setups for MP are known when X and Y are direct products
of (simple subsets) of

• Euclidean balls {x ∈ Rn : ‖x‖2 ≤ R},
• boxes {x ∈ Rn : ‖x‖∞ ≤ R},
• “matrix boxes” {x ∈ Sn : −RI ¹ x ¹ RI},
• simplexes {x ∈ Rn : 0 ≤ x,

∑

i
xi ≤ R},

• spectahedrons {x ∈ Sn : 0 ¹ x, Tr(x) ≤ R}.
♠ The resulting efficiency estimate for MP is nearly or fully dimension-
independent, provided there are no box-type factors in X, Y

40

♣ Example: SVM
♠ Problem: Given n points zi ∈ Rd partitioned into two sets B (“blue”) and R
(“red”), find affine form

αTz + β = 0

which separates best of all the blue and the red points.
♠ Model:

min
α,β







n∑

i=1

[

1 − yi(α
Tzi + β)

]

+
: ‖α‖1 ≤ ρ






(∗)

• We have

f (α, β) ≡ ∑

i

[

1 − yi(α
Tzi + β)

]

+
=

∑

i
max

0≤λi≤1
λi[1 − yi(α

Tz + β)]

= max
0≤λi≤1

{

λT [1 + Aα] − βλTy
}

[Aij = −yiz
i
j]

⇓
F (α) ≡ min

β
f (α, β) = max

λ∈Λ
λT [1 + Aα] , Λ = {λ : 0 ≤ λi ≤ 1, λTy = 0}

• Thus, (*) reduces to the saddle point problem

min
‖α‖1≤ρ

F (α), F (α) = max
λ∈Λ

λT [1 + Aα] .

♠ With MP, an ε-solution “costs” O(1)
ρ
√

n ln d maxj ‖Aj‖2

ε multiplications of
given vectors by A, AT .

41

min
α,β







n∑

i=1

[

1 − yi(α
Tzi + β)

]

+
: ‖α‖1 ≤ ρ






(∗)

m
min‖α‖1≤ρ F (α), F (α) = maxλ∈Λ λT [1 + Aα] (∗∗)

A =
[

−y1z
1, ...,−ynz

n
]T

: n × d, Λ = {λ ∈ Rn : 0 ≤ λ ≤ 1, yTλ = 0}
♣ Numerical illustration:

♠ Training set: n = 15, 000 randomly generated sparse vectors
(7,506 blue and 7,494 red) in d = 5, 000-dimensional space
⇒ 3,142,764 nonzeros in 15000 × 5000 matrix A (density 0.04)
♠ Generation ensures that the blue and the red vectors admit
sparse “near-separator” αT

∗ z + β∗ which misclassifies ≈ 6% of vec-
tors.
♠ (*) can be posed as an LP program with 25,001 variables and
25,001 inequality constraints and can be solved by IP methods.
(**) can be solved by Mirror Prox.

42

♠ With ρ = 3.0, the results are as follows:

CPU # of matrix-vector relative error classification error
time multiplications in objective training set testing set

Mirror Prox solutions:

62′ 114 3.4e-3 9.5% 8.9%
125′ 230 1.3e-3 9.5% 10.1%
188′ 346 5.0e-4 9.5% 9.7%
251′ 462 2.7e-4 9.5% 9.7%
314′ 578 1.8e-4 9.5% 9.4%
506′ 916 1.8e-4 9.5% 10.0%
568′ 1028 5.4e-5 9.5% 9.8%

Interior Point solution:

1782′ — 2.e-12 9.5% 10.0%

Note: “True” separator has 71 nonzeros, MP and IP separators have
60 nonzeros.

43

