PASCAL Workshop
Thurnau March 16-18, 2005

MODERN CONVEX OPTIMIZATION

Arkadi Nemirovski
Technion - Israel Institute of Technology
nemirovs@ie.technion.ac.1l

e Convex Programs
e Efficient solvability of generic convex programs

e Interior-point polynomial time algorithms
for well-structured convex programs

e Beyond the scope of interior-point algorithms:
simple methods for extremely large-scale convex programs

& Geometrically, a convex program is

min{c'z : v € X} (X C R": convex set|
& In applications, optimization programs usually arise in the form of

min { fo(u) : fi(u) <0,i=1,....,m}. ()

ucR"?

When all functions fy(u), ..., fm(u) are convex, (x) can be rewritten as

min f X ={(tw): folw) S () 0, fnlw) < 0}

convex set!

and thus () is a convex program.

min { fo(u) : fi(u) <0,i=1,....,m}. ()

ueR"

& The simplest case of a convex program is a Linear Programming
program where all f; are linear. Such a problem can be posed in the
canonical form

min{c'z: Az —be K = R}. (LP)
{» Nonlinearity in (x), if any, “sits” in the objective and in the con-

straints. It is easily seen that a convex program (x) can be represented
in the conic form similar to (LP):

min "z Az —be K] (CP)

where K C R" is a cone (closed, pointed, convex and with a nonempty
interior), and z — Az : R" — R is a linear embedding.

min 'z Az — b e K]} (CP)
& An extremely wide variety of convex programs “is captured” by just
three generic cones K:
O Nonnegative orthant R = {zr ¢ R": 2 > 0} =LP
O Direct products of Lorentz cones L" = {(z,t) € R" x R : ||z|» < t}
—=>conic quadratic programs

min {cTa:‘ A —bills < ¢ @ — d;

O Semidefinite cone S = {X € S": X > 0} =semidefinite programs
min {CTCIZ YA — B> O} .
J

Specific nice structure of the three generic cones in question under-
lies modern powerful primal-dual interior point methods for Linear, Conic
Quadratic and Semidefinite Programming.

® There exists a kind of calculus of “conic quadratic and semidefi-
nite representable sets and functions” which offers a systematic way
to recognize the possibility to reformulate a convex program as a conic
quadratic or semidefinite program.

4

minimize ¢’z subject to

Ar =0
(a) >0

1/3 1/7_2/7 3/7 1/5,2/5, 1/5
(2 1) < o a3l + 20l

2
STy 2 1/2 + 1/3 5 5/8

] 1’2 L3Ly
(b) i) 1
r1T T4 T
’ < 5]
I3 T I3
L3 I8
1 To — X1 X3 — L9 Xy — X3
o — X1 L2 I3 — T2 Ty — T3 “
() T3 — To T3 — To T3 Ty — T | —
Xy — X3 Xy — X3 Xy — X3 Ty

T1 + o sin(¢) + x3sin(2¢) + rysin(dg) >0 Vo € (0,7

® The problem can be converted, in a systematic way, into SDP

#® Removing constraints (c¢), the resulting problem can be converted,
in a systematic way, into CQP, and can be can be approximated, in a

polynomial time fashion, by LP.

Why convex programming?

& Convex Programming admits nice and powerful Duality Theory ca-
pable to certify optimality and to quantify reliably the quality of an
approximate solution.

In contrast to this, in a typical nonconvex problems there are no easy
ways to certify (global) optimality and to quantify the “level of non-
optimality” of an approximate solution.

While typically Convex Duality does not allow to get a solution in
a closed analytic form, it still allows for deep understanding of the
problem of interest, for building its highly instructive and nontrivial
reformulations, etc.

#® Generic convex programs, under mild computability and bounded-
ness assumptions, are computationally tractable - they admit theoretically
(and to some extent, also practically) efficient solution methods.

In contrast to this, nonconvex optimization programs for which a
global solution can be efficiently found numerically are rare exceptions
(mainly due to “hidden convexity” which we are lucky to recognize).

&% Convex Duality [conic programming case]

Opt = min {ch - Axr —b € K} (P)
® The origin of duality is in the desire to find a systematic way to
bound from below the optimal value in (CP). In other words, we are
interested in a mechanism for deriving from the constraints of (P) their
consequences of the form

clr > Q.
e The simplest way to build a linear inequality which is a consequence
of the constraints of (P) is linear aggregation

Az —be K = N (Az —b) >0 ()
e Question: What should be a “weight vector” A\ in order to make the impli-
cation (*) valid?

o Answer: The necessary and sufficient condition is that \'¢ > 0 for every
¢ e K:

AMe K, ={\: My >0vy e K}

e Fact: When K is a closed, convex and pointed cone with a nonempty
interior, so is the dual cone K,, and (K,), = K.

7

Opt = min{c'z: Az — b € K} (P)
K, ={\: Mg >0V € K}
Ar —be K= M (Az —b) >0

e Conclusion: Let A € K, be such that A"\ = ¢. Then Opt > bl .
Equivalently: Let us associate with (P) the dual problem

Opt, = max "N A"N=c, X e K.} (D)

Then Opt, is a lower bound on Opt.
Note: = — Az is an embedding, so that (P) can be rewritten equiva-
lently as

(Pr): Opt = mm{ ¢ ¢e(L-b)NK) e: Ale=c¢; L =1mA]

(D) is of the same geometric structure:
(D1): Opt, = mAaX{bTA A€ (M+e)nK,} M =Ker AT = L]

O Geometrically, conic problem is to minimize a linear functional over the inter-
section of affine plane and a cone. Such a problem is called strictly feasible, if
the affine plane intersects the interior of the cone.

8

(P): Opt = min{c'z : Az — b € K}

0

(Pr): mgin e ¢e (L —-b)nK] e: Ale=c¢; L =1mA]
(DI): max b'A: X e (M+e)nK,| M =Ker AT = L]
(D): Opt, = mfux{bT)\ AN =c,) e K.}

&% Conic Duality Theorem. (i) Conic duality is symmetric: (D) is a conic
problem, and the problem dual to (D) is (equivalent to) (P).

(ii) [Weak Duality|: Opt, < Opt, so that whenever x is primal, and X\ is dual
feasible, the duality gap

'z — 0"\ =[Azx —b]' X = [¢"z — Opt| + [Opt — Opt,] + [Opt, — b" A

>0

1s nonnegative.
(iii) [Strong Duality| Let one of the problems (P), (D) be strictly feasible and
bounded. Then the other problem is solvable, and Opt = Opt,.

In particular, if both (P), (D) are strictly feasible, both problems are solvable
with equal optimal values.

(P): Opt = min {c¢'z : Az — b € K}
(D): Opt, = max PN AN =¢,) e K,

&% Optimality conditions: Let both (P), (D) be strictly feasible. Then a
pair (x,) of primal-dual optimal solutions is comprised of optimal solutions to
the respective problems

e if and only if

e —b'A=0 zero duality gap]

and
e if and only if

Az —b]' A =0 lcomplementary slackness|

& Note: Nonnegative orthant, Lorentz and Semidefinite cones are self-
dual. As a result, program dual to an LP/CQP/SDP program is
LP/CQP/SDP, respectively.

10

& A generic convex problem P is a family of convex programs — instances
(p): min {f(p) (z):x e X C Rn(p)} fi R"®) — R]

parameterized by finite-dimensional data vectors Data(p) and equipped
with infeasibility measure Ip(x,p).

¢ Infeasibility measure quantifies the infeasibility of a candidate so-
lution z € R"?) to an instance (p). As a function of r € R""), the
infeasibility measure Ip(x,p) should be

e nonnegative everywhere and zero if and only if x is feasible for (p)
e convex in .

O The dimension of the data vector of an instance (p) € P is called the
size Size(p) of the instance.

11

e Linear Programming is a generic problem with instances
min{c’'z : Az —b > 0},
i
the data vectors being (dim ¢,dim b, ¢, A,b). As an infeasibility measure,
one can take

Irp(z,p) =min{t >0: Az —b+t1 >0}, 1=(1,...,1)";
e Conic Quadratic Programming is a generic problem with instances
min o |Aix = bl < ¢z —dii=1,...,m},
the data vectors being (dim z,m,dim by,...,dim b,,, ¢, {A;, b;, ¢;, d;}). As
an infeasibility measure, one can take

Iegp(z,p) =min{t > 0: ||[Ax —bills < clx—di+t,i=1,..,m};
e Semidefinite Programming is a generic problem with instances
mlm{c X ij:tjAj — B > 0},
data vectors being (dim z,dim B, ¢, {A;}{" ", B). As an infeasibility mea-
sure, one can take

J

12

e Geometric Programming is a generic problem with instances
min{ fo(z) : fiz) <0,1=1,...,m},
k
() = In (jzl exp{ai; + a;fjx})

data vectors being (dim z,m. k, {a;;,a;;}; ;). As an infeasibility measure,
one can take

Igp(x,p) =min{t >0: fi(x) <t,i=1,...m}.

13

& A solution algorithm A for a generic problem P is a code for a Real
Arithmetic Computer which, given on input
e the data vector Data(p) of an instance

(p) : min {f(p)(a:) x € X C R”(p)}
of P, and

e a required accuracy ¢ > 0,
returns on output

e either an e-solution to (p), that is, a vector z. which is e-optimal and
e-feasible for (p):

fo)(xe) = Opt(p) < € & Ip(xe,p) <,

e or a correct conclusion “(p) is infeasible”,
e or a correct conclusion “Opt(p) = —00”.
& The e-complexity of (p) € P w.r.t. a solution algorithm A is the number

T4(e,p) of Real Arithmetic operations required to process the input
(Data(p), €)

14

& A solution algorithm A for a generic problem P is called polynomial
time (“theoretically efficient”), if

Tu(e,p) < Poly (Size(p), Digits(p)(e)> :

where

Size(p) + [|[Data(p)|| + 62)
€

Digits,(€) = In (

is the number of accuracy digits in an e-solution to (p).
Interpretation: When a solution algorithm is polynomial time, 10-fold
increase in computer power allows

e to increase by an absolute constant factor the sizes Size(p) of in-
stances which can be solved within a given accuracy in a given time,
or

e to increase by an absolute constant factor the number of accuracy
digits which can be obtained in a given time on instances of a given
size.

& A generic problem P is called polynomially solvable (*“computationally
tractable”), if it admits a polynomial time solution algorithm.

15

e Claim: Under mild computability and boundedness assumptions, a generic

convex problem is polynomially solvable.
In particular, adding to instances of LP/CQP/SDP/GP box con-

straints
2] < R

and treating R as part of the data vectors, we make the corresponding
generic problems polynomially solvable.

16

& The basic fact underlying polynomial time solvability of generic con-
vex problems is as follows:

Theorem. Consider an optimization program

min{f(x):z € B, ={z € R": |z|]2 < 1}},

with convex and continuous on B,, objective f. There exists an explicit algorithm
which, for every € > 0, is capable to find a feasible e-solution to the problem at
the cost of computing the values f(x;) and subgradients f'(x;) of the objective at

N(e) = O(1)n?In (n + V1)
V(f) = max f — min f

n n

recursively generated points z; € int B,,, with O(1)n* additional arithmetic oper-
ations per every one of these computations.

17

& “Universal” polynomial time algorithms like the one mentioned in
the Theorem use local information (values and subgradients) on the ob-
jective and the constraints and therefore cannot utilize a priori knowl-
edge of problem’s structure. For “well-structured” convex problems,
like LP/CQP/SDP, there exist Interior Point Polynomial Time algorithms
which do utilize problem’s structure and, as a result, yield better com-
plexity bounds and exhibit much better practical performance.

18

& Consider a canonical cone

n n
K=L"x..xL%x S/ x..x S
C E=R"T x .. xRwtl x 8wl x ... x S+

e [/ is equipped with the inner product
(EA) =& M+ & A+ Tr(pii) + o+ Te(Eprghprg)
e K is equipped with canonical barrier
K =Ki(&)+ ...+ Kpg(&piy) - int K— R,

where
e for a Lorentz factor L" = {(z,t) e R" x R : ||z||s < t}, we set

Ki(z,t)=—In(t* —2"2),
e for a semidefinite factor S’ = {z € S" : x = 0} we set
Ki(z) = —1InDet ().

e We define the parameter ¥(K) of barrier K as twice the number of

Lorentz faactors plus the total row size of the semidefinite factors in
K.

19

K=L"x..xL%xS""x .. xS
K¢ =K(&)+ ...+ Kpg(&pry) it K— R
Important facts:
e K is self-dual;
e The anti-gradient mapping £ — —VK({) is a one-to-one mapping of
int K onto itself which is self-inverse:

~VK(-VEK(£)) = ¢ V¢ € int K.

20

& Given a primal-dual pair of strictly feasible conic problems
(Pr): min{{e.¢): €€ [L—0)nK} (D): mAaX{<b, A e L +enK]|

we associate with the pair
e primal central path &.(t) = argmin{t(e,&) + K(£): &€ [L —bNK} [t >0
§

e dual central path \.(t) = argmin {—t(b, N+ K@) Ne L+ HK} it > 0]
A

& Important facts:

e both paths are well-defined on (0,00) and belong to the sets of
strictly feasible solutions to the respective problems

e both paths are images of each other under scaled anti-gradient
mapping:

A(t) = =t VK (&), &(t) = —t T VE(A(1))
e Along the primal-dual central path (£.(t), M\i(t)), the duality gap is U(K)/t:

DualityGap(&, \) = (€, A) = [(e, &) — Opt(Pr)] + [Opt(DI1) — (b, A}]]ti(&))

~—

21

® We have seen that as t — oo, the duality gap along the primal-dual
central path goes to 0, so that the path approaches the set of primal-
dual optimal solutions. In primal-dual path-following methods, one traces the
path as t — oo, staying in an appropriately defined neighbourhood of the path

and thus approaching primal-dual optimality:.

22

® “Feasible start” generic primal-dual path-following algorithm:
e A pair (¢ = &,(t), A = A\(t)) on the central path is fully characterized
by the following conditions:
£ e [L—0blnint K [strict primal feasibility]
A€ [L+ +elnint K [strict dual feasibility] .
augmented complementary slackness *
(A ;(Zj (§) =0 in LP: \¢ — (! Vi

e In order to trace the path, one iterates the following scheme:

Given a current triple (¢, \,¢) with strictly primal-dual feasible
(€0, wo

e choose a target value ¢, >t of the penalty;

e find a primal-dual search direction (A&, AX) by linearizing (*):

aB(fa)‘7 t+>A§ + 83(5,)‘7 t—l-)

A\ =
¢ I\ A=l

AEEL: ANE LT BE L)+

e Update the triple
(EN1) — (4 =E+AE N =X+ AN L)

23

Various primal-dual path-following IP’s follow the outlined scheme,
utilizing two additional options:
e incorporating line search at the updating step

e exploiting various equivalent forms of the augmented complemen-
tary slackness condition.

Augmented Complementary Slackness ¢\ + VK (¢) = 0 can be
rewritten in many equivalent forms (e.g., t£ + VK(\) = 0). Out-
side of the central path, linearizations of various forms of A.C.S. are not
equivalent to each other, so that different forms of A.C.S. lead to
different path-following methods.

24

& Example: “Primal” path-following method. With A.C.S. written as
tA+ VK(£) =0 and the primal-dual pair coming from the program

minl{CTZC Ar — b € K},

the outlined scheme results in the essentially purely primal recurrence

tste >t oo, =1 — [ATVEK(Az — DA e+ ATVK(E)]

; (*)
=& =Avy —b, A= Ay =~ [VK() + V2K (g4 — €]

O Theorem [short-step primal path-following method]| Let (*) be ini-
tialized at a starting point z = zy, t =ty > 0 “close to the path”:

te+ ATVK (O ATV K (A te+ ATVEK(€)] < 0.1 € = Az — D)

Then, with the penalty updating policy ¢, = t[1 + 0.19~"/?(K)|, the algo-
rithm is well-defined, keeps all iterates close to the path and, for every
e > 0, results in primal-dual strictly feasible solution with duality gap
< ¢ in no more than

N(e) = O(1)/9(K) In (2 + ﬁgj >)

steps.

25

¢ Theorem assumes that the algorithm is started ‘“close to the path”.
This can be ensured, keeping the complexity bound essentially intact, by a
suitable initialization scheme (based on the same path-following tech-
niques as applied to an appropriate auxiliary problem).

¢ The theoretical complexity bounds stated by Theorem are the best
known for LP/CQP/SDP. At the same time, the associated worst-case-
oriented “short step” penalty updating policy ¢ — t (1 + O(1)971/2(K)) is
too slow from the practical viewpoint.

“Practical” IPm’s do not require “close to the path” (or even feasi-
ble) starting point, use more “aggressive” stepsize policies, operate in
much wider neighbourhood of the central path and are “symmetric”
with respect to primal and dual variables. As a result, practical IPM’s
exhibit much better behaviour in actual computations than the short-
step primal path-following method (although at the price of “spoiling”

the theoretical complexity bound to O(1)J(K)In (@))

26

& After two decades of Interior Point Revolution, the entire Convex
Programming is “within the reach” of Interior Point Polynomial Time
methods
= theoretical (and to some extent — practical) possibility to solve con-
vex programs to high accuracy with low iteration count

However: When solving programs with n variables, an IPM iteration
requires assembling and solving n X n Newton system of linear equa-
tions. With standard Linear Algebra, this costs O(n’) operations, un-
less the matrix of the system is highly sparse with favourable sparsity
pattern. As a matter of fact,

e typical LPs of real-world origin do lead to sparse Newton systems
= IPMs are capable to solve LPs with 10* — 10° and even 10° variables

e typical nonlinear convex programs (especially SDPs) lead to dense
Newton systems

= in reality, IPMs can fail to solve a nonlinear convex program with
“just” 10* variables — the very first iteration will last forever...

27

(!) With design dimension n ~ 10%, iteration cost O(n’) becomes
prohibitively large, and with n ~ 10> and more, a linear in n iteration
cost becomes a must...

& In the “extremely large-scale case” (n of order of tens and hun-
dreds of thousands), (!) rules out all advanced convex optimization
techniques, including all known polynomial time algorithms. As far as
nonsmooth and/or constrained convex problems are concerned, at the
present level of our knowledge (!) leaves us with the only option: first
order gradient-type methods.

28

& A convenient framework for presenting gradient methods is Convex
Programming in saddle point form, where the problem of interest is

mip | £(2) = maps o(,)| ()

reX yey

e X and Y — compact convex sets in Euclidean spaces
e (x,y) : X XY — R — Lipschitz continuous function convex in
xr € X and concave in y € Y.

Note: A convex program min f(z) can be in many ways reduced to (5):

{ there always is a trivial possibility ¢(z,y) = f(x)

$ when f is “well-structured”, other options are possible, e.g.:
o x cR" flx)= 1@@@[@ T + b —man{Zyz[a r+bl:y>0 Zyz = 1}
o (xS f(z)= () = max {Tr(yx) :y = 0, Tr(y) = 1}

Anax () = Ai(z) > Ao(x) > ... > A\ () are eigenvalues of x € S|

o [x€8S™ f(x)=M(z)+ ...+ () = max {Tr(zy) : 0 =2y < I,Tr(y) =k}
o [z € 8" f(z)= ||z]] = max {Tr(z[u —v]) : u,v = 0, Tr(u) = Tr(v) = 1}

& Here, f is highly nonsmooth and nonlinear, while ¢ is just bilinear!

29

mip {£(@) = myxo(z,)| S)
& In contrast to IPMs, all known first order methods for solving (S)
are unable to utilize detailed a propri knowledge of problem’s structure
and use black box representation of (S). In this representation,

e the sets X, Y are known in advance

e ¢ is known to belong to a given family F of convex-concave
Lipschitz continuous functions on 7 = X x Y

e quantitative information is obtained during the solution process
via subsequent calls to the First Order Oracle which, given on input
(x,y) € X XY, returns ¢(z,y) along with a subgradient ¢/ (z,y) of
¢ in z and a supergradient ¢ (z,y) of ¢ in y.

30

f; = mip{fola) = max (o)), € F 5)

& Limits of performance of black-box-oriented methods for (S) are given
by Information-Based Complexity Theory.

® In IBCT, one considers a class (X, Y, F) of problems of the form of (5)
associated with X,Y and a given family F of convex-concave functions
®. A solution method B is a collection of rules for generating

e search points z; = (v, y;) € X = X XY where ¢, ¢’ are computed;
e approximate solutions 2’ € X.

The only restriction on rules is casuality: z and 2’ should depend solely
on the “past information” {¢(z;), ¢ (z;)}r<t-

The c-complexity of (X,Y, F) w.r.t. B is the minimal number of steps
N in which B solves all problems from the class within accuracy e:

Compl®(e) = min (N fsa') = fi < eV(pe F,t > N)j.
& The e-complexity of (X,Y,F) is the best of complexities w.r.t. B’s:
Compl(e) = min Compl®(e).

31

fi = wig Ua) = maxot)l 60wy = | 00 (s

& Information-Based Complexity Compl(-) yields “ultimate” limits on
worst-case performance of black-box-oriented methods as applied to
a given class of problems (S). These limits are known for all “non-
parametric” classes of convex problems, including large-scale ones.

Here are “large-scale” results related to the case of “Euclidean ge-
ometry”:

Let X, Y be subsets of the unit Euclidean ball B, in R". Then
A. Nonsmooth case: If F is the set of all convex-concave functions
¢ such that ||®(z2) — &(2")||; < L for all 2/, 2" € X x Y, then
1
10(L/e)* > Compl(e) > 10(L/E)2
provided X =Y = B,
and n > (L/e)?

The lower bound remains valid even in the minimization case, i.e.,
when ¢’s are further restricted to be independent of y and to be
as simple as ¢(z,y) = e + ag]y € = %1,

ax
1<i<n

32

B. Smooth saddle point case: If F is the set of all convex-concave
functions ¢ such that ||O(2) — (27|, < L||2" — 2”||; for all 2/ 2" €
X XY, then

0(L/e) > Complle) > - (L/o

provided X =Y =B,
and n > L/e
The lover bound remains valid when ¢’s are further restricted to
be bilinear: ¢(z,y) = o’z + 2! Ay + bly.
C. Smooth minimization case: If, in addition to smoothness from
B, ¢’s are restricted to be independent of y, then

I

provided X = B,, and
n> (L/e)?

The lower bound remains valid when ¢’s are further restricted
to be convex quadratic forms of z: ¢(z,y) = 2! Az — 2012, A = 0.

Note: The outlined complexity bounds are dimension-independent!

33

& The outlined IBCT results and their extensions/modifications pro-
vide us with

Bad news: In large-scale case, gradient type algorithms, same as all
black-box-oriented methods, possess slow — sublinear — rate of conver-
gence.

= With gradient type methods, one cannot hope to get high accuracy
solutions, provided that n is large.
However,

In numerous applications, all we need are medium-accuracy solutions

= What is of primary importance in large-scale optimization, is whether
the rate of convergence does or does not deteriorate as the dimension
grows, and not whether this rate is high or slow.

Good news: In the case of problems with “favourable geometry”, the
complexity is dimension-independent (or nearly so)
More good news: The (nearly) dimension-independent complexity is
yielded by computationally cheap gradient-type methods.

= When solving large-scale problems, gradient methods are natural
candidates...

34

& Some History:
& The very first gradient-type method for solving m}}n f(x) with non-

smooth convex f — Subgradient Descent

Ty = argmin || [z — o f' (@) — z[|3
reX

originates from N. Shor (’63) and B. Polyak (’65) and over years was
intensively modified, primarily via utilizing past information (bundle
methods).

& SD is intrinsically adjusted to problems with Euclidean geome-
try. A substantial generalization of SD, the Mirror Descent method
[Nem.& Yudin’77, Ben-Tal,Margalit,Nem.’01, Teboulle&Beck’03] allows
to adjust the scheme to nonsmooth minimization and saddle point
problems on

e simplexes

Apy={zeR":2>0,sx; <1}

e spectahedrons Z

Yp={xeS":x=0,Tr(r) <1},
etc.

35

& Until recently, common wisdom said that

e The only way to exploit problem’s structure in nonlinear convex
minimization is offered by IPMs (and thus is too computationally de-
manding in the extremely large-scale case);

e Computationally cheap gradient type methods are black-box ori-
ented and thus must obey the IBCT limits of performance. Conse-
quently, when solving a large-scale convex program

min f(z), (%)

reX
accuracy after ¢t steps cannot be better than
& O(t7'/?) for a nonsmooth Lipschitz continuous f (really slow...)
O O(t?) for Chl-smooth f (alas, smoothness is a rare commodity...)

#® A breakthrough in understanding the situation is due to Yu. Nes-

terov (’03) who observed that if f is of nice analytic structure, it usually

can be represented as f(x) = max¢(z,y) with Chlsmooth ¢, and therefore
y

the resulting saddle point problem can be solved by simple methods
at the rate O(t).

Note: Accelerating convergence from the “common wisdom” O(t~'/?)
to O(t!) indeed makes a difference!

36

mip | £(2) = maps o(,)| ()

reX yey

& Nesterov’s O(t !)-method combines a large-scale optimal algorithm
for minimizing smooth convex functions with smooth approximation of
f, based on saddle point representation and adjusted from step to step.

We are about to present an alternative O(t~!)-method — Mirror Prox
— which works directly with (.59).
& Setup for MP is given by Z = X xY, a norm ||-|| on the space E where
Z lives and a C! strongly convex distance-generating function w(-) : Z — R.
We associate with the setup data the parameters

O = max [w(u) —wv) — (W), u —v)]

local distance w,(u)
o = max{c: wy(u) > Sllu —v|* Yu,v € Z}

and the prox mappings
P.(€) = argmin {{€, 2) +w,(2)}.

#® “Implementability Assumption”: Z and w(-) are simple and fit each
other, so that prox mappings are easy to compute.

37

ﬁy > CD(:E,) = x,xa’jw (S)
max {g(y) = min é(x.y) | y { a ’y)]

& The basic Mirror Prox algorithm is
-1 7 Wy .= Pzt—1<%®(2t—1>) = 2= Pzt—1(%q}<wt>>
t t
s'= (' y') = (2 /VT) > YrWwr
() T=[t/2]) T=[t/2]

where v > (0 are stepsizes.

Theorem: Let ®(-) be Holder continuous with exponent ¢ € [0, 1] and
constant L:

|P(2) — D)« < L||z — 2|7 V2,2 € Z.

Then the stepsize policy 7; = 0.7L7' () ? a2 ensures that

e(sh) = [f(xt) — min f] + {m};xg — g(yt)] <O(1)L (@)50 .

at

38

e Setup: (w(),Z2=XxY/|-|) = (©,a)

e Problem: g%%? I;’lea% o(x,y)
/
e Assumption: |[&(z) — O(2)[[. < Lljz — 2|7, &= {— g }
y
I3

e(s') < O(1)L (@)150

at

& Nonsmooth case o0 = 0: ¢ is Lipschitz continuous with constant L

w.r.t. ||-|| = O(t~/?)-rate of convergence

® Smooth case ¢ = 1: gradient of ¢ is Lipschitz continuous with con-
stant L w.r.t. ||-|: = O(t !)-rate of convergence

& Adjusting (w(-),|| - ||), one can optimize the efficiency estimate, thus

adjusting the method to the geometry of problem in question.

39

& Good setups for MP are known when X and Y are direct products
of (simple subsets) of

e Euclidean balls {x € R" : ||z|]» < R},

e boxes {x € R": ||z]| < R},

e “matrix boxes” {r € S": —RI <z =X RI},
e simplexes {z ¢ R": 0 < z,>x; < R},

e spectahedrons {x € S" : (é x, Tr(z) < R}.

® The resulting efficiency estimate for MP is nearly or fully dimension-
independent, provided there are no box-type factors in X,Y

40

& Example: SVM

& Problem: Given n points z' € R? partitioned into two sets B (“blue”) and R
(“red”), find affine form

alz+5=0
which separates best of all the blue and the red points.
& Model:
min{ £ (1= yi(a”= + B, : lalh < p} (4
e We have
fla.p) = £l —yila’ 2" + B)], = £ max [l —yi(a’ 2+ B)
= Jmex, INT1+ Aa] — BNy} Ay = —yyz;]
Y
F(a) Emﬁinf(oz,ﬁ) :riléaﬁ{)\T[lJerz], A={XN:0<)\ <1, \My=0}

e Thus, (*) reduces to the saddle point problem
min F(«a), F(a)= max M1+ Aq).

el <p

& With MP, an e-solution “costs” O(1)” nlndn;axj 1412 multiplications of
given vectors by A, A’.

41

min {,.Zl 1=yl 2+ 3)], : lalh < p} (*)
0

minyo <, F@), Fla) =maxyen A" [1 4 Ad] (%)

A=|-yzt, .., —ynz”}T nxd A={NeR":0<A<1,yl\=0}

& Numerical illustration:

& Training set: n = 15,000 randomly generated sparse vectors
(7,506 blue and 7,494 red) in d = 5, 000-dimensional space

= 3,142,764 nonzeros in 15000 x 5000 matrix A (density 0.04)

#® Generation ensures that the blue and the red vectors admit
sparse “near-separator” o!z + (3, which misclassifies ~ 6% of vec-
tors.

® (*) can be posed as an LP program with 25,001 variables and
25,001 inequality constraints and can be solved by IP methods.
(**) can be solved by Mirror Prox.

42

& With p = 3.0, the results are as follows:

CPU | # of matrix-vector | relative error classification error
time| multiplications in objective |training set testing set
Mirror Prox solutions:

62’ 114 3.4e-3 9.5% 8.9%
125’ 230 1.3e-3 9.5% 10.1%
188’ 346 5.0e-4 9.5% 9.7%
251’ 462 2.7e-4 9.5% 9.7%
314’ 578 1.8e-4 9.5% 9.4%
506’ 916 1.8e-4 9.5% 10.0%
568’ 1028 5.4e-5 9.5% 9.8%

Interior Point solution:
1782’ — 2.e-12 9.5% 10.0%

Note: “True” separator has 71 nonzeros, MP and IP separators have
60 nonzeros.

43

