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Motivating Example

We have a parametric model, M(t;6), which predicts the values of

responses y; and y» at time t.

We observe the fol-
lowing data ...
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Motivating Example

We have a parametric model, M(t;6), which predicts the values of

responses y; and y» at time t.
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Motivating Example
We have a parametric model, M(t;6), which predicts the values of
responses y; and y, at time t.
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But what if we'd
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Motivating Example
We have a parametric model, M(t;6), which predicts the values of
responses y; and y, at time t.
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For example . ..
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Motivating Example
We have a parametric model, M(t;6), which predicts the values of
responses y; and y, at time t.

151

Would we have ob-
tained a similar 67
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The Bootstrap

The Bootstrap: A statistical resampling technique used to assess
properties of quantities or statistics inferred from a data set.

Overview

Main requirement: An from which samples may
be drawn.

O Ideally, we would repeat the experiment.

@ Nonparametric bootstrap: Draw samples with replacement from
original data set.

© Parametric bootstrap: Fit a parametric probability model to the
original data.
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The Bootstrap

The Bootstrap: A statistical resampling technique used to assess
properties of quantities or statistics inferred from a data set.

Overview

Main requirement: An approximating distribution from which samples may
be drawn.
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The Bootstrap

The Bootstrap: A statistical resampling technique used to assess
properties of quantities or statistics inferred from a data set.

Overview

Main requirement: An approximating distribution from which samples may
be drawn.

@ Nonparametric bootstrap: Draw samples with replacement from
original data set.

e Time course data typically have few replicates, so hard to apply.
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The Bootstrap

The Bootstrap: A statistical resampling technique used to assess
properties of quantities or statistics inferred from a data set.

Overview

Main requirement: An approximating distribution from which samples may
be drawn.

© Parametric bootstrap: Fit a parametric probability model to the
original data.

e How can we fit such a probability model to our time course data?
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Gaussian process regression (GPR)
Regression model:

y(t) = f(t) +e, e ~ N(0,02).

How do we choose f?
GPR: place a Gaussian process prior over f:

Gaussian process prior

e For any finite collection of times, s, ..., s,, the function outputs
f(s1),...,f(sp) are jointly distributed according to a multivariate
Gaussian:

VneNand s; € Rsg, [f(s1),...,f(sn)] ~N(m,S).

@ m; = m(s;) — mean function.

@ Sjj = k(sj, sj) — covariance function.

@ Prior beliefs regarding properties of f expressed through m and k.

We write f(t) ~ GP(m, k).
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Gaussian process regression (GPR)
Regression model:

y(t) = f(t) +e, e ~ N(0,02).

How do we choose 77?7
GPR: place a Gaussian process prior over f:

Gaussian process prior

@ For any finite collection of times, si,...,s,, the function outputs
f(s1),...,f(sp) are jointly distributed according to a multivariate
Gaussian:

VneNand s; € Rsg, [f(s1),...,f(sn)] ~N(m,S).

e m; = m(s;) — mean function.

@ Sjj = k(si, sj) — covariance function.

@ Prior beliefs regarding properties of f expressed through m and k.

We write f(t) ~ GP(m, k).
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Gaussian process regression (GPR). .. continued

We have the following:

Observed data:  yi,...,Yp.
Times: ti, ..., tp.
We may update our GP prior in light of the observed data

Gaussian process posterior
© According to our GP prior, [f(s1), ..., f(sn), f(t1),... F(tp)] are
jointly distributed according to a multivariate Gaussmn.
Q Also, y(t) = f(t) + ¢, where e ~ N(0,2).

O It follows that [f(s1),. .., f(s4)] " |y1,---,yp are jointly distributed
according to a multivariate Gaussian.

@ We hence have a Gaussian process posterior, f(t) ~ GP(Mpost, Kpost)-
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GPR Bootstrapping

© From previously, f(t) ~ gP(mposta kpost)-
@ So, the posterior distribution of
[F(t1), .., F(tp)] " is ~ N (1, ).

@ As y(t) = f(t) + ¢, the posterior distribution of

[y(tl)v <o 7y(tp)]T is N(M, >+ O’?/)

We hence have a parametric probability model for our time course data.

We may use this to obtain bootstrap samples.

(see Kirk and Stumpf, 2009, GPR bootstrapping, Bioinformatics.)
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GPR bootstrapping

o First fit a GP regressor to the data to obtain a GP posterior.

@ Draw bootstrap samples from resulting multivariate Gaussian.

@ Infer quantity of interest for all data sets & assess variability.
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GPR bootstrapping

o First fit a GP regressor to the data to obtain a GP posterior.

@ Draw bootstrap samples from resulting multivariate Gaussian.

@ Infer quantity of interest for all data sets & assess variability.
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GPR bootstrapping

o First fit a GP regressor to the data to obtain a GP posterior.

@ Draw bootstrap samples from resulting multivariate Gaussian.
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GPR bootstrapping

o First fit a GP regressor to the data to obtain a GP posterior.

@ Draw bootstrap samples from resulting multivariate Gaussian.

@ Infer quantity of interest for all data sets & assess variability.
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GPR bootstrapping

o First fit a GP regressor to the data to obtain a GP posterior.

@ Draw bootstrap samples from resulting multivariate Gaussian.

@ Infer quantity of interest for all data sets & assess variability.
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Example: JAK2-STATS5 Signalling Pathway

M
| J o e

cell
Epo binds Activated STAT5s may

now bind to STAT5s
to the Epo JAKZs EpoR, and are dimerise &

phosphorylated relocate to

QAR

Cytoplasm

Receptor phosphorylate
(EpoR) / EpoR by JAK2s J nucleus

Figure: Adapted from Znamenkiy, 2006.
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Example: A signalling pathway

JAK-STAT signalling pathway — The Model (Swameye et al, 2003)

@ Parametric ODE model:

dvq dvo

E:—r1v1D+2r4V4 Ezrlle—Vg
d d
% = —rv;+ O.5v22 % = 13Vv3 — r3va.
y1 = rs5(va +2v3) yo = re(vi + vo + 2v3).

vi — conc. unphosphorylated STAT5 in cytoplasm.

vo — conc. phosphorylated monomeric STAT5 in cytoplasm.
v3 — conc. phosphorylated dimeric STAT5 in cytoplasm.

v4 — conc. STATS in nucleus.

D — time-varying, experimentally determined quantity.

ri's — unknown parameters.
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Original Data

Parameter estimates from original (“DATA1_Hall") data set:
vi(0) = 0.996, rn = 2.43, r3 = 0.256, ry = 0.303, rs = 1.27, rs = 0.944
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Example: A signalling pathway

Results of estimating parameters from GPR bootstrapped data:
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Second Parameter Set

O Original data
— Original fit
—— 2nd parameter set
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Conclusions

GPR can be used to bootstrap time-course data.

JAK2-STAT5 model: identified 2nd set of plausible parameter
estimates.

Otherwise, parameter estimates relatively stable.

Also considered gene networks: very sensitive!
e ...due to very high levels of noise in the data.
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