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Motivating Example
We have a parametric model, M(t; θ), which predicts the values of
responses y1 and y2 at time t.

We observe the fol-
lowing data . . .
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Motivating Example
We have a parametric model, M(t; θ), which predicts the values of
responses y1 and y2 at time t.

. . . and find an esti-
mate of the model
parameters, θ̂.
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Motivating Example
We have a parametric model, M(t; θ), which predicts the values of
responses y1 and y2 at time t.

But what if we’d
observed slightly
different data?
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Motivating Example
We have a parametric model, M(t; θ), which predicts the values of
responses y1 and y2 at time t.

For example . . .
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Motivating Example
We have a parametric model, M(t; θ), which predicts the values of
responses y1 and y2 at time t.

Would we have ob-
tained a similar θ̂?
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The Bootstrap

The Bootstrap: A statistical resampling technique used to assess
properties of quantities or statistics inferred from a data set.

Overview

Main requirement: An approximating distribution from which samples may
be drawn.

1 Ideally, we would repeat the experiment.
2 Nonparametric bootstrap: Draw samples with replacement from

original data set.

Time course data typically have few replicates, so hard to apply.

3 Parametric bootstrap: Fit a parametric probability model to the
original data.

How can we fit such a probability model to our time course data?
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Gaussian process regression (GPR)
Regression model:

y(t) = f (t) + ε, ε ∼ N (0, σ2
ε ).

How do we choose f ?
GPR: place a Gaussian process prior over f :

Gaussian process prior

For any finite collection of times, s1, . . . , sn, the function outputs
f (s1), . . . , f (sn) are jointly distributed according to a multivariate
Gaussian:

∀n ∈ N and si ∈ R≥0, [f (s1), . . . , f (sn)]> ∼ N (m,S).

mi = m(si ) – mean function.

Sij = k(si , sj) – covariance function.

Prior beliefs regarding properties of f expressed through m and k .

We write f (t) ∼ GP(m, k).
4 / 14



Gaussian process regression (GPR)
Regression model:

y(t) = f (t) + ε, ε ∼ N (0, σ2
ε ).

How do we choose f ?
GPR: place a Gaussian process prior over f :

Gaussian process prior

For any finite collection of times, s1, . . . , sn, the function outputs
f (s1), . . . , f (sn) are jointly distributed according to a multivariate
Gaussian:

∀n ∈ N and si ∈ R≥0, [f (s1), . . . , f (sn)]> ∼ N (m,S).

mi = m(si ) – mean function.

Sij = k(si , sj) – covariance function.

Prior beliefs regarding properties of f expressed through m and k .

We write f (t) ∼ GP(m, k).
4 / 14



Gaussian process regression (GPR). . . continued

We have the following:

Observed data: y1, . . . , yp.
Times: t1, . . . , tp.

We may update our GP prior in light of the observed data

Gaussian process posterior

1 According to our GP prior, [f (s1), . . . , f (sn), f (t1), . . . f (tp)]> are
jointly distributed according to a multivariate Gaussian.

2 Also, y(t) = f (t) + ε, where ε ∼ N (0, σ2
ε ).

3 It follows that [f (s1), . . . , f (sn)]>|y1, . . . , yp are jointly distributed
according to a multivariate Gaussian.

4 We hence have a Gaussian process posterior, f (t) ∼ GP(mpost , kpost).
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GPR Bootstrapping

1 From previously, f (t) ∼ GP(mpost , kpost).

2 So, the posterior distribution of

[f (t1), . . . , f (tp)]> is ∼ N (µ,Σ).

3 As y(t) = f (t) + ε, the posterior distribution of

[y(t1), . . . , y(tp)]> is N (µ,Σ + σ2
ε I ).

We hence have a parametric probability model for our time course data.

We may use this to obtain bootstrap samples.

(see Kirk and Stumpf, 2009, GPR bootstrapping, Bioinformatics.)
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GPR bootstrapping

First fit a GP regressor to the data to obtain a GP posterior.

Draw bootstrap samples from resulting multivariate Gaussian.

Infer quantity of interest for all data sets & assess variability.
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GPR bootstrapping

First fit a GP regressor to the data to obtain a GP posterior.

Draw bootstrap samples from resulting multivariate Gaussian.
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Example: JAK2-STAT5 Signalling Pathway

Figure: Adapted from Znamenkiy, 2006.
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Example: A signalling pathway

JAK-STAT signalling pathway — The Model (Swameye et al, 2003)

Parametric ODE model:

dv1

dt
= −r1v1D + 2r4v4

dv2

dt
= r1v1D − v2

2

dv3

dt
= −r3v3 + 0.5v2

2

dv4

dt
= r3v3 − r4v4.

y1 = r5(v2 + 2v3) y2 = r6(v1 + v2 + 2v3).

v1 — conc. unphosphorylated STAT5 in cytoplasm.

v2 — conc. phosphorylated monomeric STAT5 in cytoplasm.

v3 — conc. phosphorylated dimeric STAT5 in cytoplasm.

v4 — conc. STAT5 in nucleus.

D — time-varying, experimentally determined quantity.

ri ’s — unknown parameters.
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Original Data

Parameter estimates from original (“DATA1 Hall”) data set:
v1(0) = 0.996, r1 = 2.43, r3 = 0.256, r4 = 0.303, r5 = 1.27, r6 = 0.944
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Example: A signalling pathway
Results of estimating parameters from GPR bootstrapped data:
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Second Parameter Set
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Conclusions

GPR can be used to bootstrap time-course data.

JAK2-STAT5 model: identified 2nd set of plausible parameter
estimates.

Otherwise, parameter estimates relatively stable.

Also considered gene networks: very sensitive!

. . . due to very high levels of noise in the data.
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