Detecting Evolutionary Inter-Gene Heterogeneity in Borrelia burgdorferi

ELISA LOZA
Department of Mathematical Sciences
University of Bath

Contents

1. What is a phylogenetic analysis?

Contents

1. What is a phylogenetic analysis?
2. Conventional (homogeneous) model for likelihood-based phylogenetic inference.

Contents

1. What is a phylogenetic analysis?
2. Conventional (homogeneous) model for likelihood-based phylogenetic inference.
3. Downsides of the homogeneous model.

Contents

1. What is a phylogenetic analysis?
2. Conventional (homogeneous) model for likelihood-based phylogenetic inference.
3. Downsides of the homogeneous model.
4. An improved model that accounts for heterogeneity.

Contents

1. What is a phylogenetic analysis?
2. Conventional (homogeneous) model for likelihood-based phylogenetic inference.
3. Downsides of the homogeneous model.
4. An improved model that accounts for heterogeneity.
5. Applications to Borrelia burgdorferi data.

Phylogenetic likelihood methods

- Phylogenetics is the reconstruction and analysis of trees and other parameters to describe and understand the evolution of organisms.

Phylogenetic likelihood methods

- Phylogenetics is the reconstruction and analysis of trees and other parameters to describe and understand the evolution of organisms.
- Likelihood-based phylogenetic analyses start by observing the aligned DNA sequences of s organisms:

> TCAAGCTATACCCGAT...
> TATACCAGCTATAGCT...
> CAAAGCTATACCCGAT...
> CAAAGCTATACCCGAT...

The homogeneous model

T C AAGCTATACCCGAT...GC T
TA TACCAGCTATAGCT...GC A
C A AAGCTATACCCGAT...CAA
C A AAGCTATACCCGAT...CC T

- The homogeneous model for independent observations $y_{1}=(T, T, C, C)^{\prime}, y_{2}=(C, A, A, A)^{\prime}$, $\ldots, y_{n}=(T, A, A, T)^{\prime}$, is:
$y_{i} \sim f(\cdot \mid X, \mathbf{t}, \mathrm{Q})$ independently for $i=1,2, \ldots, n$

Model parameters

$$
\mathrm{y}_{i} \sim \mathrm{f}(\cdot \mid X, \mathbf{t}, \mathrm{Q}) \text { independently for } i=1,2, \ldots, n
$$

Model parameters

$$
y_{i} \sim \mathrm{f}(\cdot \mid X, \mathbf{t}, \mathrm{Q}) \text { independently for } i=1,2, \ldots, n
$$

- A bifurcating tree with s leaves,

Model parameters

$$
\mathrm{y}_{i} \sim \mathrm{f}(\cdot \mid X, \mathbf{t}, \mathrm{Q}) \text { independently for } i=1,2, \ldots, n
$$

- A bifurcating tree with s leaves,

- A set of positive real-valued branch lengths,

$$
\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{5}\right)
$$

Model parameters

$$
y_{i} \sim \mathrm{f}(\cdot \mid X, \mathbf{t}, \mathrm{Q}) \text { independently for } i=1,2, \ldots, n
$$

- A bifurcating tree with s leaves,

- A set of positive real-valued branch lengths,

$$
\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{5}\right)
$$

- A rate matrix Q specifying a Markov process of character substitution along

	$\mathbf{r}_{\mathrm{GC}} \boldsymbol{\pi}_{\mathrm{C}}$	$\mathbf{r}_{\mathrm{RG}} \boldsymbol{\pi}_{\mathrm{G}}$	$\mathbf{r}_{\mathrm{GT}} \boldsymbol{\pi}_{\mathrm{T}}$
$\mathbf{r}_{\mathrm{AC}} \boldsymbol{\pi}_{\mathrm{R}}$		$\mathbf{r}_{\mathrm{CG}} \boldsymbol{\pi}_{\mathrm{G}}$	$\mathbf{r}_{\mathrm{CT}} \boldsymbol{\pi}_{\mathrm{T}}$
$\mathbf{r}_{\mathrm{GG}} \boldsymbol{\pi}_{\mathrm{A}}$	$\mathbf{r}_{\mathrm{CG}} \boldsymbol{\pi}_{\mathrm{C}}$		$\mathbf{r}_{\mathrm{GT}} \boldsymbol{\pi}_{\mathrm{T}}$
$\mathbf{r}_{\mathrm{GT}} \boldsymbol{\pi}_{\mathrm{R}}$	$\mathbf{r}_{\mathrm{CT}} \boldsymbol{\pi}_{\mathrm{C}}$	$\mathbf{r}_{\mathrm{GT}} \boldsymbol{\pi}_{\mathrm{G}}$	

DNA data may be not homogeneous

DNA data may be not homogeneous

r

DNA data may be not homogeneous

x

DNA data may be not homogeneous

r

Borrelia burgdorferi

- Borrelia burgdorferi is one of the bacterial species responsible for Lyme disease.

Borrelia burgdorferi

- Borrelia burgdorferi is one of the bacterial species responsible for Lyme disease.
- To fully understand the disease, it is crucial to unveil the evolutionary properties of its genetic variants (strains).

Borrelia burgdorferi

- Borrelia burgdorferi is one of the bacterial species responsible for Lyme disease.
- To fully understand the disease, it is crucial to unveil the evolutionary properties of its genetic variants (strains).
- Phylogenetic analysis is an essential tool.

Identification of B. burgdorferi strains

Identification of B. burgdorferi strains

Identification of B. burgdorferi strains

Are the loci congruent in evolution, such that valid

inferences can be made under a homogeneous phylogenetic model?

The Q + \dagger mixture model

- Finite mixture models provide a natural way to model heterogeneous data.

$$
\mathrm{f}(\cdot \mid X, \mathrm{t}, \mathbf{Q})
$$

The Q + \dagger mixture model

- Finite mixture models provide a natural way to model heterogeneous data.

$$
\mathrm{f}(\cdot \mid X, \mathrm{t}, \mathrm{Q})+\mathrm{f}(\cdot \mid X, \mathrm{t}, \mathrm{Q})
$$

The $Q+\dagger$ mixture model

- Finite mixture models provide a natural way to model heterogeneous data.

$$
\mathrm{f}(\cdot \mid X, \mathrm{t}, \mathrm{Q})+\mathrm{f}(\cdot \mid X, \mathrm{t}, \mathrm{Q})+\ldots+\mathrm{f}(\cdot \mid X, \mathrm{t}, \mathrm{Q})
$$

The Q + † mixture model

- Finite mixture models provide a natural way to model heterogeneous data.

$$
\begin{array}{r}
w f(\cdot \mid X, \mathrm{t}, Q)+\mathrm{w} f(\cdot \mid X, \mathrm{t}, Q)+\ldots+\mathrm{w} \mathrm{f}(\cdot \mid X, \mathrm{t}, \mathrm{Q}) \\
\mathrm{for} \mathbf{w}+\mathrm{w}+\ldots+\mathrm{w}=1
\end{array}
$$

The Q + † mixture model

- Finite mixture models provide a natural way to model heterogeneous data.

$$
\begin{array}{r}
y_{i} \sim w f(\cdot \mid X, t, Q)+w f(\cdot \mid X, t, Q)+\ldots+w f(\cdot \mid X, t, Q) \\
\qquad \text { for } w+w+\ldots+w=1 \\
\text { and ind. for } i=1,2, \ldots, n
\end{array}
$$

A branch-length mixture model

$$
y_{i} \sim w f(\cdot \mid X, t, \mathbf{Q})+w f(\cdot \mid X, t, \mathbf{Q})+\ldots+w f(\cdot \mid X, t, \mathbf{Q})
$$

$$
\text { for } w+w+\ldots+w=1
$$

$$
\text { and ind. for } i=1,2, \ldots, n
$$

A branch-length mixture model

$$
y_{i} \sim w f(\cdot \mid X, t, \mathbf{Q})+w f(\cdot \mid X, t, \mathbf{Q})+\ldots+w f(\cdot \mid X, t, \mathbf{Q})
$$

$$
\text { for } w+w+\ldots+w=1
$$

$$
\text { and ind. for } i=1,2, \ldots, n
$$

A branch-length mixture model

$$
y_{i} \sim w f(\cdot \mid X, t, \mathbf{Q})+w f(\cdot \mid X, t, \mathbf{Q})+\ldots+w f(\cdot \mid X, t, \mathbf{Q})
$$

$$
\text { for } w+w+\ldots+w=1
$$

$$
\text { and ind. for } i=1,2, \ldots, n
$$

A branch-length mixture model

$$
y_{i} \sim w f(\cdot \mid X, t, \mathbf{Q})+w f(\cdot \mid X, t, \mathbf{Q})+\ldots+w f(\cdot \mid X, t, \mathbf{Q})
$$

$$
\text { for } w+w+\ldots+w=1
$$

$$
\text { and ind. for } i=1,2, \ldots, n
$$

A branch-length mixture model

$$
y_{i} \sim w f(\cdot \mid X, t, \mathbf{Q})+w f(\cdot \mid X, t, \mathbf{Q})+\ldots+w f(\cdot \mid X, t, \mathbf{Q})
$$

$$
\text { for } w+w+\ldots+w=1
$$

$$
\text { and ind. for } i=1,2, \ldots, n
$$

The $Q+\dagger$ mixture model

$$
y_{i} \sim w f(\cdot \mid X, t, Q)+w f(\cdot \mid X, t, Q)+\ldots+w f(\cdot \mid X, t, Q)
$$

$$
\text { for } w+w+\ldots+w=1
$$

$$
\text { and ind. for } i=1,2, \ldots, n
$$

The $Q+\dagger$ mixture model

- A label ${ }_{i}$ identifies the specific process from which the i-th site is generated.

The $Q+\dagger$ mixture model

- A label ${ }_{i}$ identifies the specific process from which the i-th site is generated.
$p\left(\right.$ label $\left._{i}=\square\right)=\varpi$
independently for $i=1,2, \ldots, n$

The $Q+\dagger$ mixture model

- A label ${ }_{i}$ identifies the specific process from which the i-th site is generated.
$p\left(\right.$ label $\left._{i}=\square\right)=\boldsymbol{\omega}$
independently for $i=1,2, \ldots, n$

The $Q+\dagger$ mixture model

- A label ${ }_{i}$ identifies the specific process from which the i-th site is generated.
$p\left(\right.$ label $\left._{i}=■\right)=\omega$
independently for $i=1,2, \ldots, n$

The $Q+\dagger$ mixture model

- A label ${ }_{i}$ identifies the specific process from which the i-th site is generated.
$p\left(\right.$ label $\left._{i}=\square\right)=(0) \quad$ for $\square=\square, \square, \ldots, \square$
independently for $i=1,2, \ldots, n$

The $Q+\dagger$ mixture model

- Once the label ${ }_{i}$ for site i is known,

$$
y_{i} \mid \square \sim f\left(\cdot \mid \nmid, \quad Q_{i} \quad\right. \text {) }
$$

independently for $i=1,2, \ldots, n$

The $Q+\dagger$ mixture model

- Once the label ${ }_{i}$ for site i is known,

$$
y_{i} \mid ■ \sim f(\cdot \mid \nmid, t \quad Q)
$$

independently for $i=1,2, \ldots, n$

The $Q+\dagger$ mixture model

- Once the label ${ }_{i}$ for site i is known,

$$
y_{i} \mid ■ \sim f(-\mid X, t, Q)
$$

independently for $i=1,2, \ldots, n$

The $Q+\dagger$ mixture model: an example

- Consider a DNA alignment:

The $Q+\dagger$ mixture model: an example

- Consider a DNA alignment:
- Sites are modelled by:

$$
y_{i} \sim w f(\cdot \mid x, t, Q)+w f(\cdot \mid x, t, Q)
$$

The $Q+\dagger$ mixture model: an example

- Consider a DNA alignment:

The $Q+\dagger$ mixture model: an example

- Consider a DNA alignment:

The $Q+\dagger$ mixture model: an example

- Consider a DNA alignment:

The $Q+\dagger$ mixture model: an example

- Consider a DNA alignment:

The $Q+\dagger$ mixture model: an example

- Consider a DNA alignment:

The $Q+\dagger$ mixture model: an example

- Consider a DNA alignment:

The $Q+\dagger$ mixture model: an example

- Consider a DNA alignment:

The Q + \dagger mixture model: an example

$$
\begin{array}{llllllll}
1 & 2 & 3 & \ldots & m & m+1 & \ldots & n
\end{array}
$$

independently for $i=1,2, \ldots, m$

The Q + \dagger mixture model: an example

$$
\begin{array}{llllllll}
1 & 2 & 3 & \ldots & m & m+1 & \ldots & n
\end{array}
$$

$$
y_{i} \mid ■ \sim f(\cdot \mid \Varangle, t, Q)
$$

independently for $i=m+1, \ldots, n$

Analysis of B. burgdorferi: the 'housekeeping genes' alignment

Analysis of B. burgdorferi: the 'housekeeping genes' alignment

Analysis of B. burgdorferi: the 'housekeeping genes' alignment

Analysis of B. burgdorferi: the 'housekeeping genes' alignment

Analysis of B. burgdorferi: the 'housekeeping genes' alignment

Analysis of B. burgdorferi: the 'housekeeping genes' alignment

Analysis of B. burgdorferi: the 'housekeeping genes' alignment

Analysis of B. burgdorferi: the 'housekeeping genes' alignment

Site classification probabilities

Analysis of B. burgdorferi: the 'housekeeping genes' alignment

Posterior densities of stationary frequencies

Analysis of B. burgdorferi: the 'housekeeping genes' alignment

Posterior densities of substitution rates

Analysis of B. burgdorferi: the 'housekeeping genes' alignment

Posterior densities of branch lengths

Analysis of B. burgdorferi: the 'housekeeping g.|ospC' alignment

Analysis of B. burgdorferi: the 'housekeeping g.|ospC' alignment

Analysis of B. burgdorferi: the 'housekeeping g.|ospC' alignment

Analysis of B. burgdorferi: the 'housekeeping g.|ospC' alignment

Analysis of B. burgdorferi: the 'housekeeping g.|ospC' alignment

Analysis of B. burgdorferi: the 'housekeeping g.|ospC' alignment

Site classification probabilities

Analysis of B. burgdorferi: the 'housekeeping g. |ospC' alignment

Posterior densities of stationary frequencies

Analysis of B. burgdorferi: the 'housekeeping g. |ospC' alignment

Posterior densities of substitution rates

Analysis of B. burgdorferi: the 'housekeeping g. |ospC' alignment

Posterior densities of branch lengths

Conclusions

- A more realistic phylogenetic model that accommodates heterogeneity.

Conclusions

- A more realistic phylogenetic model that accommodates heterogeneity.
- The Q+t mixture model automatically recovers the evolutionary identity of a site.

Conclusions

- A more realistic phylogenetic model that accommodates heterogeneity.
- The Q+t mixture model automatically recovers the evolutionary identity of a site.
- It is a suitable indicator of evolutionary homogeneity or heterogeneity among large-scale concatenations of genes.

Conclusions

- It is relevant testing for homogeneity as a concatenation of genes will produce valid inferences only when there is evolutionary congruence.

Conclusions

- It is relevant testing for homogeneity as a concatenation of genes will produce valid inferences only when there is evolutionary congruence.
- B. burgdorferi data is just one application of many other possibilities.

Acknowledgements

- Merrilee Hurn, Mathematical Sciences
- Tony Robinson, Mathematical Sciences
- Gabi Margos, Biology and Biochemistry
- Klaus Kurtenbach, Biology and Biochemistry

