Moment closure and block updating for parameter inference in stochastic biological models

Peter Milner

Supervised by Dr Colin Gillespie and Prof. Darren Wilkinson

Newcastle University

- Motivation
 - Auto regulatory gene network
- 2 Method
 - Moment closure
 - Approximate Likelihood
 - Updating missing data
- Results
 - Data set D_1 G and I unobserved
 - Data set D_2 g, i, G and I unobserved
 - Conclusions and future work

Motivation

- One of the key problems in systems biology is inferring rate parameters of stochastic kinetic biochemical network models
- If we know:
 - The description of the system
 - The initial conditions
 - The rate parameters

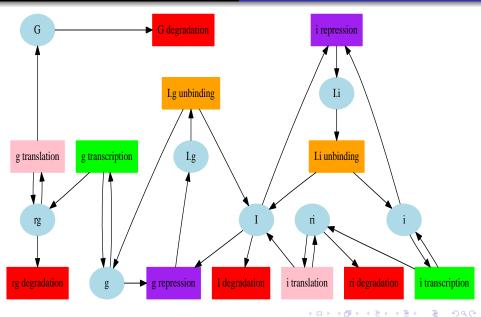
then we can model the system (stochastically or deterministically)

- Test our understanding of the system/modelling assumptions
- How do we infer these rate parameters initially?

Auto regulatory gene network

Throughout this talk we will use an auto regulatory gene network as an example

- This network has 6 species $Z = (r_g, r_i, g, i, G, I)$
- r_g and r_i are mRNA
- g and i are genes
- G and I are proteins
- Where I regulates the production of itself and G by binding to genes i and g



• We can write our model as a list of reactions:

$$R_{1}: I+i \xrightarrow{c_{1}} I \cdot i \qquad R_{2}: I \cdot i \xrightarrow{c_{2}} I+i$$

$$R_{3}: I+g \xrightarrow{c_{3}} I \cdot g \qquad R_{4}: I \cdot g \xrightarrow{c_{4}} I+g$$

$$R_{5}: i \xrightarrow{c_{5}} i+r_{i} \qquad R_{6}: r_{i} \xrightarrow{c_{6}} r_{i}+I$$

$$R_{7}: g \xrightarrow{c_{7}} g+r_{g} \qquad R_{8}: r_{g} \xrightarrow{c_{8}} r_{g}+G$$

$$R_{9}: r_{i} \xrightarrow{c_{9}} \emptyset \qquad R_{10}: r_{g} \xrightarrow{c_{10}} \emptyset$$

$$R_{11}: I \xrightarrow{c_{11}} \emptyset \qquad R_{12}: G \xrightarrow{c_{12}} \emptyset$$

We assume mass action kinetics

- From the chemical master equation we can find a set of ODE's for the moments (see Gillespie, 2009)
- ODE's for the moments usually depend on higher order moments, e.g. for two species X_1 , X_2

$$\dot{\mu}_{1,1} = (\mu_{2,0} - \mu_{1,0}^2)c_1 - (\mu_{1,1} - \mu_{1,0}\mu_{0,1})c_1 - \frac{\mu_{2,1}}{\mu_{2,1}}c_1 + \cdots$$

where
$$\mu_{n,m} = E(X_1^n X_2^m)$$

- By assuming an underlying distribution we can write higher order moments in terms of lower order moments e.g. $\mu_3 = 3\mu_2\mu_1 2\mu_1^3$
- Giving a closed set of ODE's
- We have assumed a underlying Gaussian distribution throughout this talk, other distributions could be used e.g. Poisson, Log-Normal

- From the chemical master equation we can find a set of ODE's for the moments (see Gillespie, 2009)
- ODE's for the moments usually depend on higher order moments, e.g. for two species X_1 , X_2

$$\dot{\mu}_{1,1} = (\mu_{2,0} - \mu_{1,0}^2)c_1 - (\mu_{1,1} - \mu_{1,0}\mu_{0,1})c_1 - \frac{\mu_{2,1}}{\mu_{2,1}}c_1 + \cdots$$

where
$$\mu_{n,m} = E(X_1^n X_2^m)$$

- By assuming an underlying distribution we can write higher order moments in terms of lower order moments e.g. $\mu_3 = 3\mu_2\mu_1 2\mu_1^3$
- Giving a closed set of ODE's
- We have assumed a underlying Gaussian distribution throughout this talk, other distributions could be used e.g. Poisson, Log-Normal

- Let $\mathbf{x}(t_i)$ be the i^{th} discrete time observation of the process
- We propose

$$\mathbf{x}(t_i)|\mathbf{x}(t_{i-1}) \sim N(\mu, \mathbf{\Sigma}),$$

where μ and Σ are calculated from the moment closure approximation of the process

• Appealing to the Markov property we can approximate the likelihood of the rate parameters (Θ) for a given realisation $\mathbf{x} = \{\mathbf{x}(t_i) : i \in 1, ..., N\},$

$$L(\Theta|\mathbf{x}) = \prod_{i=1}^{N} P[\mathbf{x}(t_i)|\mathbf{x}(t_{i-1})]$$

• We use a Metropolis-Hastings sampler to explore the parameter space (random walk with innovations $w_i \sim N(0, \sigma^2)$)

- Let $\mathbf{x}(t_i)$ be the i^{th} discrete time observation of the process
- We propose

$$\mathbf{x}(t_i)|\mathbf{x}(t_{i-1}) \sim N(\mu, \mathbf{\Sigma}),$$

where μ and Σ are calculated from the moment closure approximation of the process

• Appealing to the Markov property we can approximate the likelihood of the rate parameters (Θ) for a given realisation $\mathbf{x} = \{\mathbf{x}(t_i) : i \in 1, ..., N\},$

$$L(\Theta|\mathbf{x}) = \prod_{i=1}^{N} P[\mathbf{x}(t_i)|\mathbf{x}(t_{i-1})]$$

• We use a Metropolis-Hastings sampler to explore the parameter space (random walk with innovations $w_i \sim N(0, \sigma^2)$)

Given discrete time observations

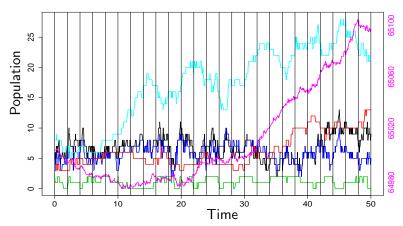
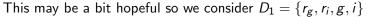


Figure: A stochastic realisation from the auto-regulatory gene network. With observations on each species; $r_g(cyan)$, $r_i(red)$, g(blue), i(green), G(pink) and I(black). Z(0) = (8, 2, 3, 2, 65000, 6)



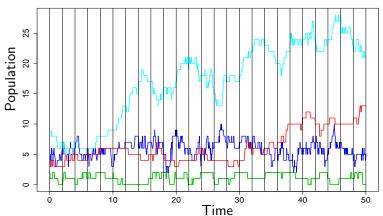


Figure: A stochastic realisation from the auto-regulatory gene network. With observations on each species; $r_g(cyan)$, $r_i(red)$, g(blue) and i(green).

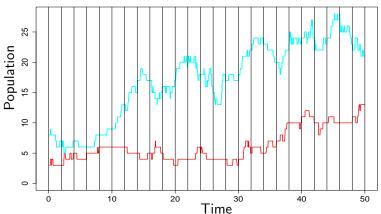


Figure: A stochastic realisation from the auto-regulatory gene network. With observations on each species; $r_g(cyan)$ and $r_i(red)$.

Bridge updating

- How to update the unobserved species?
- We want to be able to update our missing data conditioned on all the data we can
- We do this using a block updating scheme (following Durham & Gallant (2002))

- Suppose we have data $Z(t) = (X(t), Y(t))^T$, where X(t) is known
- Our goal is to sample $Y(t_{i+1})$ conditioned on $Z(t_j)$, $Z(t_M)$ and $X(t_{i+1})$, where $t_j < t_{i+1} < t_M$
- Such a sample can be approximated by a skeleton bridge $Y(t_{i+1})$ for $i = j, j+1, \ldots, M-2$
- Constructing such a bridge is non trivial so a Metropolis Hastings step is used

- Suppose we have data $Z(t) = (X(t), Y(t))^T$, where X(t) is known
- Our goal is to sample $Y(t_{i+1})$ conditioned on $Z(t_j)$, $Z(t_M)$ and $X(t_{i+1})$, where $t_j < t_{i+1} < t_M$
- Such a sample can be approximated by a skeleton bridge $Y(t_{i+1})$ for $i = j, j+1, \ldots, M-2$
- Constructing such a bridge is non trivial so a Metropolis Hastings step is used

• We can construct a proposal distribution for Y^{i+1}

$$q(Y^{i+1}|X^{i+1},Z^i,Z^M,\theta) \sim N\left\{\mu^*,\frac{M-i-1}{M-i}\Sigma^*\right\},$$

where,

$$\mu^* = \mu_y + \Sigma_{yx}(\Sigma_{xx})^{-1}(X^{i+1} - \mu_x)$$

$$\Sigma^* = [\Sigma_{yy} - \Sigma_{yx}(\Sigma_{xx})^{-1}\Sigma_{xy}]$$

and,

$$\mu_{x} = X^{i} + \frac{X^{M} - X^{i}}{M - i}, \quad \mu_{y} = Y^{i} + \frac{Y^{M} - Y^{i}}{M - i}$$

• We can sample $q(\cdot|\cdot)$ for $i=j,\ldots,M-2$ to construct a skeleton bridge

- We will now apply our block updating method to the two data sets
 - ① D_1 : We have 50 observations on $X(t) = (r_g, r_i, g, i)$ and impute Y(t) = (G, I)
 - ② D_2 : We have 50 observations on $X(t) = (r_g, r_i)$ and impute Y(t) = (g, i, G, I)
- In each data set we have limited the number of genes (i) to 2 and the steady state value for $G \approx 70000$.
- We would like to know:
 - Which block size is best for updating the missing data
 - Who we can find out about our rate parameters and unobserved species

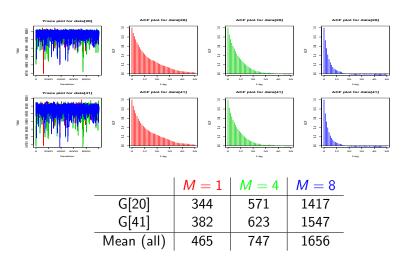


Table: Effective sample sizes for different blocks (G)

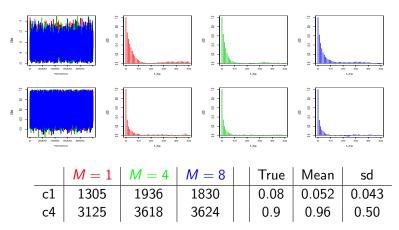


Table: Effective sample sizes of the parameters c_1 and c_4 , for different blocks.

Data set D_2 - g, i, G and I unobserved

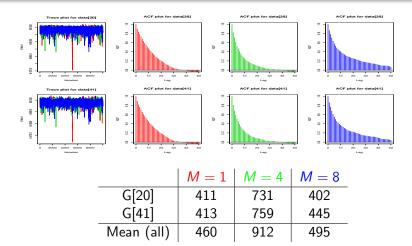


Table: Effective sample sizes for different blocks updating G.

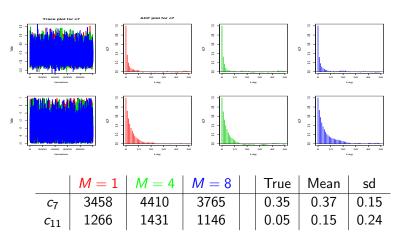


Table: Effective sample sizes of c_7 and c_{11} for different blocks.

Conclusions and future work

- The most efficient choice of block length is model specific, a block length of 4-8 gave the best results in testing
- Conditioning on the observed data leads to more efficient updating of the unobserved data
- Develop a model for Bacillus subtilis sporulation and apply our method

References

- Durham, G. B. & Gallant, R. A. (2002), Numerical techniques for maximum likelihood estimation of continuous time diffusion processes. *Journal of Business and Economic Statistics* 20, 279-316.
- Gillespie, C. S. (2009), Moment closure approximations for mass-action models. *IET Systems Biology* 3, 52-58.
- Wilkinson, D. J. (2006). Stochastic Modelling for Systems Biology. Chapman & Hall/CRC