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Motivation

@ One of the key problems in systems biology is inferring rate
parameters of stochastic kinetic biochemical network models
o If we know:

@ The description of the system
@ The initial conditions
© The rate parameters

then we can model the system (stochastically or
deterministically)

@ Test our understanding of the system/modelling assumptions

@ How do we infer these rate parameters initially?
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Auto regulatory gene network

Throughout this talk we will use an auto regulatory gene network
as an example

(]

This network has 6 species Z = (rg,ri,8,i,G, 1)
@ rg and r; are mRNA

@ g and i are genes

@ G and | are proteins

°

Where [ regulates the production of itself and G by binding to
genes i and g
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Updating missing data

@ We can write our model as a list of reactions:

Ri: I+i-1-i Ro: |-i-21+i
Ry: I4+g—=1-g Ri: |- g%1+g
Rs : Iil—i—r, R : I’,'iﬂ’,'—i-/
Ri: g-Lg+rg Re: rg—>rg+G
Rg: r,-i> Rloi rgi(b
Rii: 1250 Riz: G290

@ We assume mass action kinetics
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@ From the chemical master equation we can find a set of
ODE's for the moments (see Gillespie, 2009)

@ ODE's for the moments usually depend on higher order
moments, e.g. for two species Xi, Xo

pi1 = (Mz,o - M%,O)CI - (/~L1,1 - Nl,ONO,l)CI — p21€1+ -

where (i m = E(X{X]")
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Updating missing data

@ From the chemical master equation we can find a set of
ODE's for the moments (see Gillespie, 2009)

@ ODE's for the moments usually depend on higher order
moments, e.g. for two species Xi, Xo

pi1 = (Mz,o - M%,O)CI - (/~L1,1 - Nl,ONO,l)CI — p21€1+ -

where (i m = E(X{X]")

@ By assuming an underlying distribution we can write higher
order moments in terms of lower order moments e.g.
3 = 3pops — 2443

@ Giving a closed set of ODE's

@ We have assumed a underlying Gaussian distribution
throughout this talk, other distributions could be used e.g.
Poisson, Log-Normal
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Updating missing data

o Let x(t;) be the i*" discrete time observation of the process
@ We propose

x(ti)|x(ti—1) ~ N(u, X),

where 1 and X are calculated from the moment closure
approximation of the process
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Updating missing data

o Let x(t;) be the i*" discrete time observation of the process

@ We propose
x(t;)[x(ti-1) ~ N(p, X),

where 1 and X are calculated from the moment closure
approximation of the process

@ Appealing to the Markov property we can approximate the
likelihood of the rate parameters (©) for a given realisation
x={x(t;)):iel,...,N},

N
L(Ofx) = [T PIx(t)Ix(ti-1)]
i=1

@ We use a Metropolis-Hastings sampler to explore the
parameter space (random walk with innovations
wj ~ N(0,02))
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Updating missing data

Given discrete time observations
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Figure: A stochastic realisation from the auto-regulatory gene network.
With observations on each species; rg(cyan), ri(red), g(blue), i(green),
G(pink) and I(black). Z(0) = (8,2, 3,2,65000, 6)
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Updating missing data

This may be a bit hopeful so we consider Dy = {r,, ri, g, i}
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Figure: A stochastic realisation from the auto-regulatory gene network.
With observations on each species; rg(cyan), ri(red), g(blue) and

i(green).
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Updating missing data

This may still be a bit hopeful so we consider D> = {rg,r;}
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Figure: A stochastic realisation from the auto-regulatory gene network.
With observations on each species; rg(cyan) and ri(red).
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Bridge updating

@ How to update the unobserved species?

@ We want to be able to update our missing data conditioned
on all the data we can

@ We do this using a block updating scheme (following Durham
& Gallant (2002))
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@ Suppose we have data Z(t) = (X(t), Y(t))T, where X(t) is
known

@ Our goal is to sample Y(ti;1) conditioned on Z(t;), Z(tm)
and X(ti;1), where t; < tjy1 < ty
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Updating missing data

@ Suppose we have data Z(t) = (X(t), Y(t))T, where X(t) is
known

@ Our goal is to sample Y(ti;1) conditioned on Z(t;), Z(tm)
and X(ti;1), where t; < tjy1 < ty

@ Such a sample can be approximated by a skeleton bridge
Y(tiy1) fori=j,j+1,...,M—2

@ Constructing such a bridge is non trivial so a Metropolis
Hastings step is used
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Updating missing data

@ We can construct a proposal distribution for Yi*1

. , , M—-i-1
q(Y’+1|X'+1,Z',ZM,0)~N{u*,M’ : Z*},
— 1

where,
pe=py + zyx(ZXX)_l(XH_l = ix)

Y =T — T (Ta) 1]

and,

R v e

@ We can sample g(+|-) for i = J,.

.., M — 2 to construct a
skeleton bridge

Peter Milner
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Results Conclusions and future work

@ We will now apply our block updating method to the two data
sets
© Di: We have 50 observations on X(t) = (rg, i, g,i) and
impute Y(t) = (G, /)
© D>: We have 50 observations on X(t) = (rg, r;) and impute
Y(t) =(g,i,G.1)
@ In each data set we have limited the number of genes (i) to 2
and the steady state value for G ~ 70000.

@ We would like to know:

© Which block size is best for updating the missing data
© How much we can find out about our rate parameters and
unobserved species
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Results Conclusions and future work

=1 M =
G[20] 344 | 571 | 1417
G[41] 382 | 623 | 1547
Mean (all) | 465 747 1656

Table: Effective sample sizes for different blocks (G )
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Results Conclusions and future work

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ (L

‘l\/lzl‘ ‘I\/l:8‘ ‘True‘Mean‘ sd
cl | 1305 1936 1830 0.08 | 0.052 | 0.043
c4 | 3125 3618 3624 0.9 0.96 | 0.50
Table: Effective sample sizes of the parameters c; and ¢y, for different

blocks.
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Data set D, - g, i, G and | unobserved

ACK plot for dntarz0]

M=1 M =38
G[20] a1l | 731 | 402
G[41] 413 | 759 | 445

Mean (all) | 460 912 495

Table: Effective sample sizes for different blocks updating G.
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Data set D> - g, i/, G and | unobserved
Results Conclusions and future work

ACE plot for c7.

‘M:l‘ ‘M:S‘ ‘True‘Mean‘ sd
3458 4410 3765 0.35 | 0.37 | 0.15
1266 1431 1146 0.05 | 0.15 | 0.24

Table: Effective sample sizes of c; and cy1 for different blocks.
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Conclusions and future work

@ The most efficient choice of block length is model specific, a
block length of 4-8 gave the best results in testing

o Conditioning on the observed data leads to more efficient
updating of the unobserved data

@ Develop a model for Bacillus subtilis sporulation and apply
our method
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