Role of gene mutations predicted from a computational model of the cochlea of the inner ear

Pavel Mistrík

Learning in Computational Systems Biology

Molecular Bases of Hearing Impairment

Large Scale Computational Model of Ionic Flow
Equivalent Electrical Circuit

Effects of Mutations on Sound Sensitivity
Mutations in Connexin Genes

Mechanical Vibrations are Converted to Neural Activity

Complex Sounds are Decomposes into Tones

1st April 2009 3 / 24

Mechanical Vibrations are Converted to Neural Activity

Complex Sounds are Decomposes into Tones

Genes Underlying Deafness

Gene	Gene product	Forms of human deafness
MYO7A, 15, 6, 3A, 1A	Myosin VIIA, XV, VI, IIIA, IA (motors)	DFNB2±retinopathya (Usher 1B), DFNA11
ACTG1	γ -Actin (cytoskeletal protein)	DFNA20 (DFNA26)
USH1C	Harmonin (PDZ domain-containing protein)	DFNB18±retinopathya (Usher 1C)
WHRN	Whirlin (PDZ domain-containing protein)	DFNB31
CDH23	Cadherin-23 (cell-adhesion protein)	DFNB12 \pm retinopathya (Usher 1D)
PCDH15	Protocadherin-15 (cell-adhesion protein)	DFNB23±retinopathya (Usher 1F)
STRC	Stereocilin	DFNB16
SLC26A5	Prestin (anion transporter)	DFNB61
ESPN	Espin (actin-bundling protein)	DFNB36, DFNAib
KCNQ4	KCNQ4 (K ⁺ channel subunit)	DFNA2
TMC1	TMC1 (transmembr. channel-like protein)	DFNB7 (DFNB11), DFNA36
OTOF	Otoferlin (putative vesicle traffic protein)	DFNB9
POU4F3	POU4F3 (transcription factor)	DFNA15
GJB2, 6, 3	Connexin-26, 30, 31 (gap junction protein)	DFNB1, DFNA3±keratodermiaa, DFNAib
SLC26A4	Pendrin (I ⁻ -CI ⁻ transporter)	DFNB4±thyroid goitera (Pendred)
CRYM	μ -Cristallin (thyroid hormone-binding p)	DFNAib
OTOA	Otoancorin (cell-surface protein)	DFNB22
SLC12A7	KCC4 (K-CI cotransporter)	DFNA6
BSND	Barttin (β -subunit of CIC-K channels)	DFNA3
CLDN14	Claudin-14 (tight-junction protein)	DFNB29
COCH	Cochlin (extracellular matrix component)	DFNA9
TMPRSS3	TMPRSS3 (transmembr. serine protease)	DFNB8 (DFNB10)
MYH9, MYH14	Myosin IIA, IIC (motor protein)	DFNA17±giant plateletsa; DFNA4
EYA4	EYA4 (transcriptional coactivator)	DFNA10
POU3F4	POU3F4 (transcription factor)	DFN3
COL11A2	Collagen XI (α 2-chain)	DFNA13±osteochondro-dysplasia
TECTA	α -Tectorin (extracellular matrix)	DFNA8 (DFNA12), DFNB21

э

• • • • • • • • • • • •

Potassium is Recycled in the Cochlea

K⁺ Flow Drives the Electromotility of Outer Hair Cells (OHC)

Recycling pathways:

- Intercellular through Gap Junctions in organ of Corti
- 2 Extracellular through Nuel's space

Potassium is Recycled in the Cochlea

K⁺ Flow Drives the Electromotility of Outer Hair Cells (OHC)

Recycling pathways:

- Intercellular through Gap Junctions in organ of Corti
- 2 Extracellular through Nuel's space

Molecular Bases of Hearing Impairment

Large Scale Computational Model of Ionic Flow Equivalent Electrical Circuit

Effects of Mutations on Sound Sensitivity
Mutations in Connexin Genes

Molecular Recycling Pathways as Electrical Circuits

MET Ch. Mechano-transducer channel Prestin OHC electromotor KCNQ4 K⁺ channel KCC4 K⁺ - Cl⁻ co-transporter Cx26/30 Connexin 26, 30

- 3 >

Molecular Recycling Pathways as Electrical Circuits

< 🗇 > < 🖻

3D Model of Current Flow in the Cochlea

300 Cross-Sections Coupled Longitudinally by Resistive Links

1st April 2009 9 / 24

Mathematical Description of *Current Flow*

Time Course Described by Ordinary Differential Equations (Matrices: 3300 × 3300)

$$\begin{bmatrix} C_{11} & 0 \\ & \ddots & 0 \\ & & C_{nn} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{dV_1}{dt} \\ \vdots \\ \frac{dV_n}{dt} \\ 0 \end{bmatrix} + \begin{bmatrix} \frac{1}{R_{11}} & 0 \\ & \ddots & 0 \\ & \frac{1}{R_{nn}} & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} V_1 \\ \vdots \\ V_n \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ U^1 \end{bmatrix}$$

Circuit elements	
	C _{ii} membrane capacitances
	1/R _{ii} membrane conductances
	U ^{<i>i</i>} electrochemical batteries

1st April 2009 10 / 24

Dependence of Receptor Potential on Stimulus

Modified Nodal Analysis Used to Solve for Voltage

$$\mathbf{C}\frac{d\mathbf{V}}{dt} = -\mathbf{G}\mathbf{V} + \mathbf{U}$$

Presuming:

Tone ($\omega/2\pi$) generates perturbation \mathbf{g}_0 from steady-state \mathbf{G}_0

 $\mathbf{G} = \mathbf{G_0} + \mathbf{g_0} e^{i(\omega t + \theta)}$

Solution of form: steady-state V_0 + receptor potential ΔV

$$V = V_0 + \Delta V e^{j\omega t}$$

Then, **receptor potential** generated by frequency $f = \omega/2\pi$:

$$\Delta \mathbf{V} = (j\omega \mathbf{C} - \mathbf{G}_0)^{-1} \mathbf{g}_0 V_0 e^{j\theta}$$

Dependence of Receptor Potential on Stimulus

Modified Nodal Analysis Used to Solve for Voltage

$$\mathbf{C}\frac{d\mathbf{V}}{dt} = -\mathbf{G}\mathbf{V} + \mathbf{U}$$

Presuming:

1 Tone $(\omega/2\pi)$ generates perturbation \mathbf{g}_0 from steady-state \mathbf{G}_0

$$\mathbf{G} = \mathbf{G_0} + \mathbf{g_0} e^{j(\omega t + \theta)}$$

2 Solution of form: steady-state V_0 + receptor potential ΔV

$$V = V_0 + \Delta V e^{j\omega t}$$

Then, **receptor potential** generated by frequency $f = \omega/2\pi$:

$$\Delta \mathbf{V} = (j\omega \mathbf{C} - \mathbf{G}_0)^{-1} \mathbf{g}_0 V_0 e^{j\theta}$$

Dependence of Receptor Potential on Stimulus

Modified Nodal Analysis Used to Solve for Voltage

$$\mathbf{C}\frac{d\mathbf{V}}{dt} = -\mathbf{G}\mathbf{V} + \mathbf{U}$$

Presuming:

Tone ($\omega/2\pi$) generates perturbation \mathbf{g}_0 from steady-state \mathbf{G}_0

 $\mathbf{G} = \mathbf{G_0} + \mathbf{g_0} e^{i(\omega t + \theta)}$

Solution of form: steady-state V_0 + receptor potential ΔV

$V = V_0 + \Delta V e^{j\omega t}$

Then, **receptor potential** generated by frequency $f = \omega/2\pi$:

$$\Delta \mathbf{V} = (j\omega \mathbf{C} - \mathbf{G_0})^{-1} \mathbf{g_0} V_0 \mathbf{e}^{j\theta}$$

A (10) A (10) A (10)

Signals in the Model

Mammano F. & Nobili R. 1993 J Acoust Soc Am 93:3320-32

Signals in the Model

Model Output Frequency Dependence of the OHC Receptor Potential ΔV_{OHC}

1st April 2009 14 / 24

Model Output Frequency Dependence of the OHC Receptor Potential ΔV_{OHC}

Model Output Frequency Dependence of the OHC Receptor Potential ΔV_{OHC}

• • • • • • • • • • •

Molecular Bases of Hearing Impairment

Large Scale Computational Model of Ionic Flow
Equivalent Electrical Circuit

Effects of Mutations on Sound Sensitivity
Mutations in Connexin Genes

Mutations in Connexin 26 with Residual Conductance

Gap Junctions are Built From *Connexin* (*Cx*) Molecules

A b

(4) (5) (4) (5)

Mutations in Connexin 26 with Residual Conductance

Gap Junctions are Built From *Connexin* (*Cx*) Molecules

Mutant	g _{<i>GJ</i>} (%)
V37I	<1
M34T	11
W77R	1
F83L	71
V84L	110
L90P	<1
S113R	<1
M163V	1

Bruzzone, R. et al. *FEBS L*. 2003 **553**:79-88 Beltramello, M. et al. *Nature Cell Biol*. 2005 **7**:63-69 Bicego, M et al. *Hum. Mol Genet*. 2006 **15**:2569-2587

< ロ > < 同 > < 回 > < 回 >

1st April 2009 16 / 24

Reduced Intercellular Connectivity in Organ of Corti

< E

Effect of Mutation M34T in Connexin 26 Gene

Mutation R75W Reduces Nuel's Space

Smaller Extracellular Conductivity

A (10) A (10)

Kudo, T. et al. Hum Mol. Genet. 2003 12:995-1004

э

Reduced Intercellular and Extracellular Connectivity

Both Organ of Corti and Nuel's Space are Affected

< E

< 🗇 🕨 < 🖃 🕨

Effect of Mutation R75W in Connexin 26 Gene

Smaller Amplitude Means Reduced OHC Electromotility

1st April 2009 21 / 24

Effect of Cx26 Mutations on OHC Receptor Potential

Sound Amplification Can Be Seriously Reduced

• Cx26-related deafness can be due to reduced OHC amplification

• May explain deafness of individuals carrying the **35delG** mutation (Engel-Yeger, B. *Hear Res.* 2002 **163**:93-100).

• Cx26-related deafness can be due to reduced OHC amplification

• May explain deafness of individuals carrying the 35delG mutation (Engel-Yeger, B. *Hear Res.* 2002 **163**:93-100).

Jonathan Ashmore

Fabio Mammano

University of Padua

