Beyond Molecular Biology

Applying Gene Regulation Network Inference Methods in Ecology

Frank Dondelinger Ali Faisal Dirk Husmeier Colin Beale

Gene Regulation Networks

The Problem

- Large quantities of gene expression data (e.g. microarray data)
- How to infer the gene network?

Simple methods cannot distinguish between direct and indirect interactions

Need Machine Learning and Computational Statistics

Species Interaction Networks

Analogous Problem

- Large quantities of population data (e.g. from surveys)
- How to infer the species network?

The Data

In the real world:

- Population numbers gathered by ecologists
- Noisy, expensive to collect
- Usually estimates, or presence/absence values only

Simulation data:

- Same format, but based on a model
- Allows better evaluation of network reconstruction methods

Network Reconstruction Methods

Two sparse regression methods:

- Sparse Bayesian Regression (SBR)
- Least Absolute Shrinkage and Selection Operator (LASSO)

Bayesian network method:

Structure MCMC with Edge Reversal Move

Sparse Bayesian Regression

(Tipping and Faul 2003, Rogers and Girolami 2005)

Bayesian Linear Regression Model:

Independent Gaussian priors for each weight

$$P(\mathbf{w}|\boldsymbol{\alpha}) = \prod_{i} N(w_i|0, \alpha_i^{-1})$$

 $(P(w) \text{ sparse after integrating out } \alpha)$

- Optimise L2 log-likelihood of hyperparameters
 α indicating the strength of the priors.
- Obtains sparse solution: Most weights close to zero.

LASSO

(Tibshirani 1996, van Someren et al. 2006) Linear regression model (L1 Regularisation)

$$\mathbf{w} = argmin\{\sum_{i} (y_i - \sum_{j} w_j x_{ij})^2\} \text{ with the constraint that } \sum_{j} |w_j| \le t$$
Equivalent to adaptive ridge regression (Grandvalet 1998)

Figure 2: Estimation picture for the lasso (left) and ridge regression (right)

Advantages:

Reduce weights as much as possible (shrinkage)
Set some weights to zero (selection)

SBR vs LASSO

	SBR	LASSO
Setting Hyperparameters	ML Type II, Laplace Approximation	10-Fold Crossvalidation
Weight Prior	Using uniform hyperprior: $P(w_i) \propto \frac{1}{ w_i }$ (improper)	Laplace Prior: $P(w_i) \propto e^{- w_i }$
Regularisation	$-\log P(w_i) \propto \log w_i $ $\nabla -\log P(w_i) \propto \frac{1}{ w_i }$	$-\log P(w_i) \propto w_i $ $\nabla -\log P(w_i) \propto const$

Bayesian Networks

(Heckerman and Geiger 1994, Friedman et al. 2000)

Probabilistic graphical model where the joint probability decomposes as:

$$P(X_1...X_M) = \prod_i^M P(X_m | \Pi_m)$$

Want to learn the structure:

- Closed form for marginal likelihood under Gaussian assumption (BGe)
- Find posterior edge probabilities using MCMC

MCMC Structure Learning

(Madigan and York 1995)

Generate a Markov Chain of networks:

- At each step, add, delete or reverse an edge.

Sample from the chain to obtain post. edge probabilities

Problem: Edge reversals cause many rejections **Solution**: Use better edge reversal method that samples new parents for nodes connected by reversed edge (Grzegorczyk and Husmeier 2008)

Simulation Model

Simulates population development of different species over 2D area

Two parts: Interaction model (food web) and population model

Interaction Model: Niche model

(Williams and Martinez 2000)

 $n_i - niche position of species i$ $<math>c_i - centre of prey niche for$ species i $<math>r_i - range of prey niche for$ species i

Shown to give a good fit to actual food webs

Simulation Model

Population Model:

(Engen and Lande 2003)

$$\frac{dX_i}{dt} = r_i + \frac{\sigma_d}{\sqrt{N_i}} \frac{dA_i(t)}{dt} + \sigma_e \frac{dB_i(t)}{dt} - \gamma X_i - \Omega(\mathbf{X}) + \sigma_E \frac{dE(t)}{dt}$$

- $X_i \log pop.$ density of species i $r_i - growth rate$ $\sigma_d - demographic std. dev.$ $N_i - pop.$ density of species i
- A(t) demographic effect

 $\sigma_{e}^{}$ – environmental std. dev. (species specific) B_i(t) – environmental effet (species specific) γ – density dependence

 $\Omega(\mathbf{X})$ – species interactions

 $\sigma_{_{\rm F}}$ – environmental effect std. dev. (global)

E(t) – environmental effect (global)

Modified to allow for species interactions

Includes exponential 2D species dispersal

Real Data

European Bird Atlas Data:

- Absence/Presence data for bird species in Europe
- Data at ~4000 grid points
- Each grid point corresponds to 50x50km square

The EBCC Atlas of European Breeding Birds

Purple – Probable presence **Red** – Confirmed presence

Spatial Autocorrelation

In real data and simulation:

- Discovered spurious interactions between species sharing the same habitat
- In simulation, caused by growth rates:

Modeling Spatial Autocorrelation

In regression:

- Add autocorrelation variable α for current target species
- If considering *n* neighbours:

$$\alpha = \sum_{i}^{n} w_{i} x_{i}$$

During regression, autocorrelation effects are caught by the weights for α and leave other weights to catch species interaction effects.

Modeling Spatial Autocorrelation

In Bayesian networks:

An equivalent approach would double the number of nodes in structure inference: **Not desirable**

Alternative: Add hardwired autocorrelation nodes

Simulation Results

Two measures:

- True positive rate at false positive rate 5% (TPFP5)
- ROC curve plotting true positives vs false positives

No Autocorrelation vs Autocorrelation TPFP5

p < 0.05 for all 3 methods

Frank Dondelinger

Ecological Network Inference

Simulation Results

ROC Curves without Autocorrelation

ROC Curves with Autocorrelation

Simulation Results

Example Network

Real Network

LASSO

SBR

Real Data Results

Consensus Network (LASSO and Bayesian nets)

- Models autocorrelation
- Incorporates temperature and water presence
- Evidence for many interactions in literature

Conclusions

- Machine Learning approaches viable for network inference in ecology
- Problem of Spatial Autocorrelation
- LASSO surprisingly effective
- Bayesian nets offer possibilities for incorporating prior knowledge
- Latent variable model holds some promise.

Acknowledgements

Thanks to:

- My supervisor, Dr. Dirk Husmeier of BioSS.
- Ali Faisal, who applied the methods to the bird species data set.
- Dr. Colin Beale of the Macaulay Institute.
- Dr. Marco Grzergrczyk, formerly of BioSS, now at TU Dortmund, for providing Matlab implementations of the Bayesian Net software.
- Dr. Jon Yearley at the University of Lausanne, for supplying the implementation of the simulation model.

Any Questions?

The Autocorrelation Problem

Discovered spurious interactions between species sharing the same habitat:

Spatial Autocorrelation

Example:

Discrete Data

- Discretise population densities using binomial observation process.
- Some information loss
- Autocorrelation effect disappears

Real Data Results

Degree distribution:

- Found to be approximately exponential
- Some disagreement about what the default distribution in ecological networks should be

Latent Variables

Idea: Extend the Bayesian Network to include unobserved nodes

- Capture environmental effects
- Start with one latent variable and full connectivity
- Corresponds to mixture model

Allocation Sampler (Grzegorczyk et al. 2009)

Latent Variables

Simulation

Real Data

