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Gene Regulation Networks
The Problem

– Large quantities of gene expression data (e.g. 
microarray data)

– How to infer the gene network?
Simple methods cannot distinguish between 
direct and indirect interactions

Need Machine Learning and Computational Statistics
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Species Interaction Networks
Analogous Problem

– Large quantities of population data (e.g. from 
surveys)

– How to infer the species network?
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Systems Biology   vs.       Ecology

Genes Species

Expression Levels Population Densities

Gene Regulation Species Interactions

Different Conditions Different Environments



 

The Data
In the real world:

– Population numbers gathered by ecologists
– Noisy, expensive to collect
– Usually estimates, or presence/absence values only

Simulation data:
– Same format, but based on a model
– Allows better evaluation of network reconstruction 

methods
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Network Reconstruction Methods

Two sparse regression methods:
– Sparse Bayesian Regression (SBR)
– Least Absolute Shrinkage and Selection Operator 

(LASSO)

Bayesian network method:
Structure MCMC with Edge Reversal Move
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Sparse Bayesian Regression
(Tipping and Faul 2003, Rogers and Girolami 2005)

Bayesian Linear Regression Model:
● Independent Gaussian priors for each weight

(P(w) sparse after integrating out α)

● Optimise L2 log-likelihood of hyperparameters 
α indicating the strength of the priors.

● Obtains sparse solution: Most weights close to 
zero.
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LASSO
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(Tibshirani 1996, van Someren et al. 2006)

Linear regression model (L1 Regularisation)

Advantages:

● Reduce weights as much 
as possible (shrinkage)
● Set some weights to zero 
(selection)

Equivalent to adaptive ridge regression (Grandvalet 1998)

(Figure from Tibshirani 1996)



 

SBR vs LASSO
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LASSO

10-Fold Crossvalidation

Laplace Prior:

SBR

ML Type II, Laplace 
Approximation

Using uniform hyperprior:

(improper)

Setting 
Hyperparameters

Weight Prior

Regularisation

P w i ∝
1

∣w i∣
P w i ∝e−∣w i∣

∇−logP wi ∝ const∇−logP wi ∝
1

∣w i∣

−logP wi ∝ log∣w i∣ −logP wi ∝ ∣wi∣



 

Bayesian Networks
(Heckerman and Geiger 1994, Friedman et al. 2000) 

Probabilistic graphical model where the joint 
probability decomposes as:

Want to learn the structure:
● Closed form for marginal likelihood under 

Gaussian assumption (BGe)
● Find posterior edge probabilities using MCMC
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MCMC Structure Learning
(Madigan and York 1995)

Generate a Markov Chain of networks:
– At each step, add, delete or reverse an edge.

Sample from the chain to obtain post. edge 
probabilities

Problem: Edge reversals cause many rejections
Solution: Use better edge reversal method that 
samples new parents for nodes connected by 
reversed edge (Grzegorczyk and Husmeier 2008)
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Simulation Model
Simulates population development of different 

species over 2D area
Two parts: Interaction model (food web) and 

population model
Interaction Model: Niche model 
(Williams and Martinez 2000)

Shown to give a good fit to actual food webs
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n
i
 – niche position of species i

c
i
 – centre of prey niche for 

species i
r

i
 – range of prey niche for 

species i



 

Simulation Model
Population Model:
(Engen and Lande 2003)

 

Modified to allow for species interactions
Includes exponential 2D species dispersal
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X
i
 – log pop. density of species i

r
i
 – growth rate

σ
d
 – demographic std. dev.

N
i
 – pop. density of species i

A
i
(t) – demographic effect

σ
e
 – environmental std. dev. (species specific)

B
i
(t) – environmental effet (species specific)

γ – density dependence
Ω(X) – species interactions
σ

E
 – environmental effect std. dev. (global)

E(t) – environmental effect (global)



 

Real Data
European Bird Atlas Data:

– Absence/Presence data for bird species in Europe
– Data at ~4000 grid points
– Each grid point corresponds to 50x50km square
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Spatial Autocorrelation
In real data and simulation:

– Discovered spurious interactions between 
species sharing the same habitat

In simulation, caused by growth rates:
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Modeling Spatial Autocorrelation

In regression:
– Add autocorrelation variable α for current target 

species
If considering n neighbours:

During regression, autocorrelation effects are 
caught by the weights for α and leave other 
weights to catch species interaction effects.
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=∑i

n
w i x i



 

Modeling Spatial Autocorrelation

In Bayesian networks:
An equivalent approach 
would double the number of 
nodes in structure inference: 
Not desirable

Alternative: Add hard-
wired autocorrelation 
nodes
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Simulation Results

Two measures:
– True positive 

rate at false 
positive rate 5% 
(TPFP5)

– ROC curve 
plotting true 
positives vs 
false positives 
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No Autocorrelation vs Autocorrelation
TPFP5

p < 0.05 for all 3 methods
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Simulation Results
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ROC Curves 
without Autocorrelation

ROC Curves 
with Autocorrelation
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Simulation Results
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Example Network

Real Network Bayesian Net

LASSO SBR



 

Real Data Results
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Consensus 
Network (LASSO 
and Bayesian 
nets)
● Models 
autocorrelation
● Incorporates 
temperature and 
water presence
● Evidence for many 
interactions in 
literature

Data for figure obtained by Ali Faisal 



 

Conclusions

● Machine Learning approaches viable for 
network inference in ecology

● Problem of Spatial Autocorrelation
● LASSO surprisingly effective
● Bayesian nets offer possibilities for in-

corporating prior knowledge
● Latent variable model holds some promise.
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?
Any Questions?



 

The Autocorrelation Problem
Discovered spurious interactions between species 
sharing the same habitat:

Spatial Autocorrelation
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Example:



 

Discrete Data
● Discretise population densities using binomial 

observation process.
● Some information loss
● Autocorrelation effect disappears
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Real Data Results
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Degree distribution:
● Found to be approximately exponential
● Some disagreement about what the default distribution in ecological networks 
should be



 

Latent Variables

Idea: Extend the Bayesian 
Network to include unobserved 
nodes
● Capture environmental 

effects
● Start with one latent variable 

and full connectivity
● Corresponds to mixture 

model
Allocation Sampler (Grzegorczyk et 
al. 2009)
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Latent Variables
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Simulation Real Data
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Figure created by Ali Faisal 
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