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Modelling

Represent a biochemical network with a set of (pseudo-)biochemical
reactions:

k species and r reactions with a typical reaction

Ri : ui1Y1 + . . . + uik Yk
ci−−→ vi1Y1 + . . . + vik Yk

Stochastic rate constant: ci

Hazard / instantaneous rate: hi(Y , ci) where Y = (Y1, . . . , Yk )′ is the
current state of the system and

hi(Y , ci) = ci

k∏
j=1

(
Yj

uij

)
= cigi(Y )
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Modelling cont’d

Some remarks:
This setup describes a Markov jump process (MJP)
The effect of reaction Ri is to change the value of each Yj by
vij − uij

It can be shown that the time to the next reaction is

t ∼ Exp {h0(Y , c)} where h0(Y , c) =
k∑

i=1

hi(Y , ci)

and the reaction is of type i with probability hi(Y , ci)/h0(Y , ci)

Hence, the process is easily simulated (and this technique is
known as the Gillespie algorithm)
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Inference for the Exact Model
Aim: infer the ci given time-course biochemical data. Following Boys
et al. (2008) and Wilkinson (2006):

Suppose we observe the entire process Y over [0, T ]

The i th unit interval contains ni reactions with times and types
(tij , kij), j = 1, 2, . . . , ni

Hence, the likelihood for c is

π(Y|c) =


T−1∏
i=0

ni∏
j=1

hkij

{
Y (ti,j−1), ckij

}exp

{
−
∫ T

0
h0 {Y (t), c} dt

}

So, if ci ∼ Gamma(ai , bi) a priori then

ci |Y ∼ Gamma

(
ai + ri , bi +

∫ T

0
gi {Y (t)} dt

)
where ri is the no. of type i reactions in (0, T ]
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Inference for the Exact Model cont’d

Problem: it is not feasible to observe all reaction times and types
Assume data are observed on a regular grid with

Y0:T =
{

Y (t) = (Y1(t), Y2(t), . . . , Yk (t))′ : t = 0, 1, 2, . . . , T
}

Idea: use a Gibbs sampler to alternate bewteen draws of
1 times and types of reactions in (0, T ] conditional on c and the

observations,
2 each ci conditional on the augmented data

Note that step 1 can be performed for each interval (i , i + 1] in turn,
due to the factorisation of π(Y|Y0:T , c)
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Difficulties

These techniques do not scale well to problems of realistic size
and complexity...
True process is discrete and stochastic — stochasticity is vital —
what about discreteness?
Treating molecule numbers as continuous and performing exact
inference for the resulting approximate model appears to be
promising..
From the literature:

Approximations via moment closure (Gillespie & Golightly (2009),
Pete Milner’s talk etc)
A diffusion approximation (Golightly & Wilkinson (2009), Ruttor et
al. (2009), Heron et al. (2007), etc)
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Diffusion Approximation
Consider an infinitesimal time interval (t , t + dt ]. Let

dR(t) = the r -vector of the number of reaction events in (t , t + dt ]
S = the k × r net effect matrix so that

dY (t) = S dR(t), the amount the system state should be updated by

The i th element of dR(t) is Poisson(hi(Y (t), ci)dt) and so

E {dR(t)} = h(Y (t), c) dt , Var {dR(t)} = diag {h(Y (t), c)}dt

where h(Y (t), c) = (h1(Y (t), c1), . . . , hr (Y (t), cr ))
′

Plainly,

dR(t) = h(Y (t), c) dt + diag
{√

h(Y (t), c)
}

dW (t)

⇒ dY (t) = S h(Y (t), c) dt +
√

S diag {h(Y (t), c)}S′ dW (t)

since dY (t) = S dR(t)
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Diffusion Approximation – Inference

Work with the Euler discretisation

∆Y (t) = S h(Y (t), c)∆t +
p

S diag {h(Y (t), c)}S′ ∆W (t)

∆W (t) ∼ N(0, I∆t)

Hence, transition densities are approximated as Gaussian with

Y (t+∆t)|Y (t), c ∼ N (Y (t) + S h(Y (t), c) ∆t , S diag {h(Y (t), c)}S′∆t)

So, if data are observed on a fine grid, t0 < t1 < . . . < tn,

π(c| ·) ∝ π(c)×
n∏

i=1

π (Y (ti)|Y (ti−1), c)

= prior× likelihood under the Euler scheme
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Difficulties

Typically inter-observation times are too large to be used as a
time-step in the Euler approximation
One solution is to augment low frequency data with latent
observations to allow the Euler approximation to become
accurate
MCMC can then be used to sample the joint posterior of latent
observations and parameters (see Golightly & Wilkinson
(2005,2008))
For low copy number scenarios, ignoring inherent discreteness
seems unacceptable...
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Toy Prokaryotic Auto-Regulation:

Andrew Golightly — LICSB 2009 Hybrid Inference for Stochastic Kinetic Models



Introduction
Hybrid Inference

Application
Conclusions

Motivation
Hybrid Simulation
Particle Filtering

Hybrid Inference – Motivation

Toy Prokaryotic Auto-Regulation:

R1 : DNA + P2 −→ DNA ·P2 Repression
R2 : DNA ·P2 −→ DNA + P2

R3 : DNA −→ DNA + RNA Transcription
R4 : RNA −→ RNA + P Translation
R5 : 2P −→ P2 Dimerisation
R6 : P2 −→ 2P
R7 : RNA −→ ∅ Degradation
R8 : P −→ ∅

5 species DNA, DNA ·P2, RNA, P, P2 and 8 reactions with rate constants
c = (c1, . . . , c8)

′

Note that DNA and DNA ·P2 are deterministically related
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Hybrid Inference – Motivation

Synthetic data simulated via the Gillespie algorithm:
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Hybrid Inference – Motivation

Comments:
Numbers of DNA and DNA ·P2 are in {0, 1, 2, 3, 4, 5}
Reactions that change numbers of DNA and DNA ·P2 must occur
fairly infrequently

Therefore:
Treat numbers of DNA and DNA ·P2 as discrete – label these as
slow
Treat numbers of RNA, P and P2 as continuous – label these as
fast
Label any reaction that changes the state of the slow species as
slow and the remaining ones as fast

How can we perform inference within this framework?
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Hybrid Simulation

See for example, Salis & Kaznessis (2005):
1 Initialise the system, set t := 0
2 Calculate the fast reaction hazards, numerically integrate the SDE for

the fast reactions over (t , t + ∆t ], giving a sample path for the fast
species over (t , t + ∆t ]

3 Using the slow reaction hazards, decide whether or not a slow reaction
has happened in (t , t + ∆t ]

4 If no slow reaction has occurred, set t := t + ∆t and update the fast
species to their proposed values at t

5 If one slow reaction has occurred, identify the time t1 and type, set t = t1
and update the system to t1

6 If more than one slow reaction has occurred, reduce ∆t and goto step 2
7 If t < Tmax , return to step 2

Andrew Golightly — LICSB 2009 Hybrid Inference for Stochastic Kinetic Models



Introduction
Hybrid Inference

Application
Conclusions

Motivation
Hybrid Simulation
Particle Filtering

Hybrid Simulation cont’d

Remarks:
The method is faster than Gillespie’s exact method, since we use
a time-discretisation for the fast species and we control the size
of the time-step!
Other hybrid simulation techniques are possible:

Discrete/ODE methods (see Kiehl, Mattheyses & Simmons (2004))
The maximal timestep method (see Puchalka & Kierzek (2004))
combines exact updating procedures for slow species with
τ -leaping for the rest

We can use the simulator inside an MCMC algorithm to make
inference for c...
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Performance of the Hybrid Simulator
Toy autoreg system – distributions of DNA, DNA ·P2, RNA, P, P2 at time 30
using 1000 simulations, red = hybrid with ∆t = 0.5 and an Euler time step of
0.1, black = Gillespie. Computational cost scales as 1.2 : 1 in favour of the
hybrid scheme
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Bayesian Filtering

Suppose we have noisy observations X0:(i−1) = {X (t) : t = 0, 1, . . . , i − 1}
where

X (t) = Y (t) + ε, ε ∼ N(0, Σ)

Goal: generate a sample from π [c, Y (i)|X0:i ] given a new datum X (i)

π [c, Y (i)|X0:i ] ∝
Z

π [c, Y (i − 1)|X0:i−1] π
ˆ
Y(i−1,i]|c

˜
π [Y (i)|X (i)] dY[i−1,i)

where Y(i−1,i] = {Y (t) : t ∈ (i − 1, i]} is the latent path in [i − 1, i]

Idea: if we can sample π [c, Y (i − 1)|X0:i−1] then we can use MCMC to
sample the target π [c, Y (i)|X0:i ]
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A Particle Approach

MCMC scheme:
Propose (c∗, Y (i − 1)∗)′ ∼ π [ · |X0:i−1]

Draw Y ∗
(i−1,i] ∼ π [ · |c] using the hybrid simulator

Accept/reject with probability

min
{

1 ,
π [Y (i)∗|X (i)]
π [Y (i)|X (i)]

}
Comments:

Since the hybrid simulator is used as a proposal process, we
don’t need to evaluate its associated likelihood
Since π [c, Y (i − 1)|X0:i−1] does not have analytic form (typically)
we approximate this density with a cloud of points or particles,
hence the term particle filter
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Toy Application Revisited

Prokaryotic Auto-Regulation:

R1 : DNA + P2 −→ DNA ·P2 Repression
R2 : DNA ·P2 −→ DNA + P2

R3 : DNA −→ DNA + RNA Transcription
R4 : RNA −→ RNA + P Translation
R5 : 2P −→ P2 Dimerisation
R6 : P2 −→ 2P
R7 : RNA −→ ∅ Degradation
R8 : P −→ ∅

50 observations simulated on [0, 49] via the Gillespie algorithm
Add a realisation of a standard Gaussian random variable to each
observation
Rate constants are c = (0.01, 0.8, 0.6, 0.2, 0.2, 0.9, 0.2, 0.2)′, take
Uniform U(−5, 1) priors for log(ci)

Run the particle filter to recover these
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Results – 20,000 particles
Marginal posterior densities for each log(ci), priors are indicated by the
dotted line
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Results – 20,000 particles
Flitered means (black), upper and lower 2.5% quantiles (blue) for Y (t). True
values are indicated by the red line
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Summary

Inferring rate constants that govern discrete stochastic kinetic
models is computationally challenging
It appears promising to consider an approximation of the model
and perform exact inference using the approximate model
A hybrid forwards simulator (or indeed any forwards simulator)
can be used as a proposal process inside a particle filter
Assessing the performance of the inference scheme, making
comparisons with existing methods and extensions to partial
observation remains of interest
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