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Temporal Logics and Model-checking Introductory Example

Model-Checking

The Model-checking Problem: A system Sys and a specification
Spec , decide whether Sys satisfies Spec .

Example: Mutual exclusion protocol

Process 1: repeat

00: non-critical section 1

01: wait unless turn = 0

10: critical section 1

11: turn := 1

Process 2: repeat

00: non-critical section 2

01: wait unless turn = 1

10: critical section 2

11: turn := 0
A state is a bit vector

(line no. of process 1,line no. of process 2, value of turn)

Start from (00000).

Spec = “a state (1010b) is never reached”, and “always when a
state (01bcd) is reached, then later a state (10b’c’d’) is reached”
(and similarly for Process 2, i.e. states (bc01d) and (b’c’10d’))
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Temporal Logics and Model-checking Introductory Example

The Formal Approach

Models of systems are Kripke Structures

Specifications languages are Temporal Logics
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Temporal Logics and Model-checking Kripke Structures

Kripke Structures

Assume given Prop = p1, . . . , pn a set of atomic propositions (properties).

A Kripke Structure over Prop is S = (S ,R , λ)
◮ S is a set of states (worlds)
◮ R ⊆ S × S is a transition relation
◮ λ : S → 2Prop associates those pi which are assumed true in s. Write
λ(s) as a bit vector (b1, . . . , bn) with bi = 1 iff pi ∈ λ(s)

A rooted Kripke Structure is a pair (S, s) where s is a distinguished
state, called the initial state.
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Temporal Logics and Model-checking Kripke Structures

Mutual Exclusion Protocol

Use p1, p2 for “being in wait instruction before critical section of
Process 1, or Process 2 respectively”

Use p3, p4 for “being in critical section of Process 1, or Process 2
respectively”

Example of label function λ(01101) = {p1, p4} (encoded by (1001))

The relation R is as defined by the transitions of the protocol.

S. Pinchinat (IRISA) Automata, Logics, and Infinite Games Master2 RI 2007 6 / 79



Temporal Logics and Model-checking Kripke Structures

A Toy System

Over two propositions p1, p2

(

1
1

)
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1
0

)

(
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1
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0
0

)
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Temporal Logics and Model-checking Kripke Structures

Paths and Words

Let S = (S ,R , λ) be Kripke Structure over Prop

A path through (S, s) is a sequence s0, s1, s2, . . . where s0 = s and
(si , si+1) ∈ R for i ≥ 0

Its corresponding word (∈ (Bl n)ω) is λ(s0), λ(s1), λ(s2), . . ..

α =

(

1
1

)(

1
0

)(

0
1

)(

1
0

)(

0
0

)(

0
0

)

. . . in
(

1
1

)

(

1
0

)

(

0
1

)

(

0
0

)

If α = α(0)α(1) . . . ∈ (Bl n)ω,
1 αi stands for α(i)α(i + 1) . . . So α = α0.
2 (α(i))j is the jth component of α(i)
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Temporal Logics and Model-checking Behavioral Properties - The logics LTL and CTL∗

Linear Time Logic for Properties of Words

[Eme90] We use modalities

G denotes “Always”
F denotes “Eventually”
X denotes “Next”
U denotes “Until”

The syntax of the logic LTL is:

ϕ1, ϕ2(∋ LTL) ::= p |ϕ1 ∨ ϕ2 | ¬ϕ1 |Xϕ1 |ϕ1 Uϕ2

wher p ∈ Prop. Other Boolean connectives true, false, ϕ1 ∧ ϕ2,
ϕ1 ⇒ ϕ2, and ϕ1 ⇔ ϕ2 are defined via the usual abbreviations.
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Temporal Logics and Model-checking Behavioral Properties - The logics LTL and CTL∗

Semantics of LTL

Define αi |= ϕ by induction over ϕ (where α is a word):

αi |= pj iff (α(i))j = 1

αi |= ϕ1 ∨ ϕ2 iff ...

αi |= ¬ϕ1 iff

αi |= Xϕ1 iff αi+1 |= ϕ1

αi |= ϕ1 Uϕ2 iff for some j ≥ i , αj |= ϕ2, and
for all k = i , . . . , j − 1, αk |= ϕ1

Let







Fϕ
def
= trueUϕ, hence αi |= Fϕ iff αj |= ϕ for some j ≥ i .

Gϕ
def
= ¬F¬ϕ, hence αi |= Gϕ1 iff αj |= ϕ1 for every j ≥ i .
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Temporal Logics and Model-checking Behavioral Properties - The logics LTL and CTL∗

Examples

Formulas over p1 and p2:

1 α |= GFp1 iff “in α, infinitely often 1 appears in the first component”.

2 α |= XX (p2 ⇒ Fp1) iff “if the second component of α(2) is 1, so
will be the first component of α(j) for some j ≥ 2”.

3 α |= F(p1 ∧ X (¬p2 U p1)) iff “α has two letters
(

1
⋆

)

such that in

between only letters
(

⋆
0

)

occur”.
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Temporal Logics and Model-checking Behavioral Properties - The logics LTL and CTL∗

Augmenting LTL: the logic CTL∗

We want to specify that every word of (S, s) satisfies an LTL specification
ϕ, or that there exists a word in the Kripke Structure such that something
holds. We use CTL∗ [EH83] which extends LTL with quantfications over
words:

ψ1, ψ2(∋ CTL∗) ::= Eψ | p |ψ1 ∨ ψ2 | ¬ψ1 |Xψ1 |ψ1 Uψ2

Semantics: for a word α, a position i , and a rooted Kripke Structure (S, s):

αi |= Eψ iff α′i |= ψ for some α′ in (S, s) st. α[0, . . . , i ] = α′[0, . . . , i ]

Let Aψ
def
= ¬E¬ψ

CTL∗ is more expressive than LTL: A [Glife ⇒ GEX death]
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Temporal Logics and Model-checking Behavioral Properties - The logics LTL and CTL∗

Interpretation over Trees
We unravel S = (S ,R , λ) from s as a tree t(S,s).
Paths of S are retrieved in the tree t(S,s) as branches.

s0

s0s1

s0s1s1
s0s1s2

s0s1s1s1

s0s1s2

s0s1s1s2

s0s2
s0 s1

s2

t(S,s0) S
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Temporal Logics and Model-checking Behavioral Properties - The logics LTL and CTL∗

Σ-Labeled Full Binary Trees

For simplicity we assume that states have exactly two successors ⇒ we
consider (only) binary trees

The full binary tree Tω is the set {0, 1}∗ of finite words over a two
element alphabet.

The root is the empty word ǫ

A node w ∈ {0, 1}∗ has left son w0 and right son w1.

A Σ-labeled full binary tree is a function t : {0, 1}∗ → Σ

Trees(Σ) is the set of Σ-labeled full binary trees.

If the formulas are over the set Prop of propositions, then take Σ = 2Prop

(or equivalently Bl n)
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Temporal Logics and Model-checking Behavioral Properties - The logics LTL and CTL∗

Example

ǫ

0 1

00 01 10 11

Tω

a

a b

a b a b

t
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Temporal Logics and Model-checking Fundamental Questions

Model-checking and Satisfiabilty

The Model-checking Problem: does a tree t satisfy the specification
Spec?

The Satisfiability Problem: Is there a tree model of the specification
Spec?

Model-checking = Program Verification
Satisfiability = Program Synthesis
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Temporal Logics and Model-checking Fundamental Questions

About the content of this course

Tree Automata: devices which recognize models of formulas:

Φ AΦ such that L(AΦ) = {t ∈ Trees(Σ) | t |= Φ}

The Model-checking Problem  The Membership Problem

The Satisfiability Problem  The Emptiness Problem

Games are fundamental to solve those

Mu-calculus is a unifying logical formalism
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Games Generalities

Games

Two-person games on directed graphs.

How they are played?

What is a strategy? What does it mean to say that a player wins the
game?

Determinacy, forgetful strategies, memoryless strategies
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Games Generalities

Arena

An arena (or a game graph) is

G = (V0,V1,E )

V0 Player 0 positions, and V1 Player 1 positions (partition of V )

E ⊆ V × V is the edged-relation

write σ ∈ {0, 1} to designate a player, and σ = 1 − σ

S. Pinchinat (IRISA) Automata, Logics, and Infinite Games Master2 RI 2007 19 / 79



Games Generalities

Plays

A token is placed on some initial vertex v ∈ V

When v is a σ-vertex, the Player σ moves the token from v to some
successor position v ′ ∈ vE .

This is repeated infinitely often or until a vertex v̄ without successor
is reached (v̄E = ∅)

Formally, a play in the arena G is either
◮ an infinite path π = v0v1v2 . . . ∈ V ω with vi+1 ∈ viE for all i ∈ ω, or
◮ a finite path π = v0v1v2 . . . vl ∈ V + with vi+1 ∈ viE for all i < l , but

vlE = ∅.
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Games Generalities

Games and Winning sets

Let be G an arena and Win ⊆ V ω be the winning condition

The pair G = (G ,Win) is called a game

Player 0 is declared the winner of a play π in the game G if
◮ π is finite and last(π) ∈ V1 and last(π)E = ∅, or
◮ π is infinite and π ∈ Win.

Player 1 wins π if Player 0 does not win π.

Initialized game (G, vI ).
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Games Parity Games

Parity Winning Conditions

We color vertices of the arena by χ : V → C where C is a finite set of
so-called colors; it extends to plays χ(π) = χ(v0)χ(v1)χ(v2) . . ..

C is a finite set of integers called priorities

Let Infχ(π) be the set of colors that occurs infinitely often in χ(π).

Win is the set of infinite paths π such that min(InfC (π)) is even.
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Games Parity Games

Parity Game Example

2

1 0

1 2

3

Player 0 Player 1
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Games Parity Games

Strategies

A strategy for Player σ is a function fσ: V ∗Vσ → V

A prefix play π = v0v1v2 . . . vl is conform with fσ if for every i with
0 ≤ i < l and vi ∈ Vσ the function fσ is defined and we have
vi+1 = fσ(v0 . . . vi ).

A play is conform with fσ if each of its prefix is conform with fσ.

fσ is a strategy for Player σ on U ⊆ V if it is defined for every prefix
of a play which is conform with it, starts in a vertex in U, and does
not end in a dead end of Player σ.

A strategy fσ is a winning strategy for Player σ on U if all plays which
are conform with fσ and start from a vertex in U are wins for Player σ.

Player σ wins a game G on U ⊆ V if he has a winning strategy on U.
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Games Parity Games

Winning Play for Player 0

2

1 0

1 2

3
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Games Parity Games

Winning Play for Player 1

2

1 0

1 2

3
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Games Parity Games

Winning Regions

The winning region for Player σ is the set Wσ(G) ⊆ V of all vertices
such that Player σ wins (G, v), i.e.Ṗlayer 0 wins G on {v}.

Hence, for any G, Player σ wins G on Wσ(G).
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Games Memoryless Determinacy of Parity Games

Determinacy of Parity Games

A game G = ((V ,E ),Win) is determined when the sets Wσ(G) and
Wσ(G) form a partition of V .

Theorem

Every parity game is determined.

A strategy fσ is positional (or memoryless) strategy whenever when
defined for πv and π′v , we have fσ(πv) = fσ(π′v).

Theorem

[EJ91, Mos91] In every parity game, both players win memoryless.

See [GTW02, Chaps. 6 and 7]
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Games Memoryless Determinacy of Parity Games

Games that are not Memoryless

In Muller games, a set F ⊆ 2C is given and Win = {π ∈ V ω|Infχ(π) ∈ F}
Here every color must occur infinitely often; Player 0 must remember
something (but the strategy is finite memory = forgetful strategy)

01 2
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Games Memoryless Determinacy of Parity Games

Forgetful Determinacy of Regular Games

Muller games (and any other regular games, Rabin, Streett, Rabin Chain,
Buchi, ... ) can be simulated by larger parity games. They are also
determined (also see determinacy result from [Mar75] for every game with
Borel type). As a corollary of previous results, we have the very general
following result for

Corollary

Regular games are forgetful determined.
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Games Solving Parity Games

Algorithmic Results

Theorem

Wins =
{(G, v) | G a finite parity game and v a winning position of Player 0}
is in NP ∩ co-NP

1 Guess a memoryless strategy f of Player 0

2 Check whether f is memoryless winning strategy

Step 2. can be carried out in polynomial time: Gf is a subgraph of G
where all edges (v , v”) where v” 6= f (v) have been eliminated. Given Gf ,
check existence of a vertex v ′ reachable from v such that 1) χ(v ′) is odd
and 2) v ′ lies on cycle in Gf containing only priorities greater than equal to
χ(v ′). Such v ′ does not exist iff Player 0 has a winning strategy. Hence,
Wins ∈ NP. By determinacy, deciding (G, v) /∈ Wins means to decide
whether v is a winning position for Player 1 (as above but 1’) χ(v ′) is
even), or use algorithm above on the dual game. Hence, Wins ∈ co-NP.
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Games Solving Parity Games

Algorithms for Computing Winning Regions

Read “Algorithms for Parity Games”, Chapter 7 of Automata, Logics, and
Infinite Games A Guide to Current Research. Series: Lecture Notes in
Computer Science , Vol. 2500 Grdel, Erich; Thomas, Wolfgang; Wilke,
Thomas (Eds.) 2002, XI, 385 p.
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Automata on Infinite Objects Generalities

Automata on Infinite Objects

We refer to [Tho90]

Connection with Logic LTL, CTL∗ - membership and emptiness -

Connection with Games

Automata on words, trees, and graphs.
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Automata on Infinite Objects Generalities

ω-automata

We refer to [GTW02, Chap. 1]

Inputs are infinite words.

Acceptance conditions: Buchi, Muller, Rabin and Streett, Parity

All coincide with ω-regular languages (L =
⋃

i KiR
ω
i )

LTL corresponds to star-free languages
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Automata on Infinite Objects Generalities

Automata on Infinite Trees

Acceptance conditions: Buchi, Muller, Rabin and Streett, Parity on
each branch of the input tree.

Buchi tree automata are weaker [Rab70].
[KSV96] L is recognizable by a nondeterministic Buchi word
automaton but not by a deterministic Buchi word automaton iff
trees(L) is recognizable by a Rabin tree automaton and not by a
Buchi tree automaton.

Here we restrict to labeled full binary trees and to parity acceptance
conditions, but the resultts generalize.

S. Pinchinat (IRISA) Automata, Logics, and Infinite Games Master2 RI 2007 35 / 79



Automata on Infinite Objects Non-deterministic Parity Tree Automata

Non-deterministic Parity Tree Automata

A (Σ-labeled full binary) tree t is input to an automaton.

In a current node in the tree, the automaton has to decide which
state to assume in each of the two successor nodes.

A = (Q,Σ, q0, δ, c) where
◮ Q(∋ q0) is a finite set of states (q0 the initial state)
◮ δ ⊆ Q × Σ × Q× is the transition relation
◮ c : Q → {0, . . . , k}, k ∈ IN is the coloring function which assigns the

index values (colors) to each states of A
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Automata on Infinite Objects Non-deterministic Parity Tree Automata

Runs

A run of A on an input tree t ∈ Trees(Σ) is a tree ρ ∈ Trees(Q)
satisfying

◮ ρ(ǫ) = q0, and
◮ for every node w ∈ {0, 1}∗ of t (and its sons w0 and w1), we have

(ρ(w0), ρ(w1)) ∈ δ(ρ(w), t(w))

A run ρ is accepting (successful) iff for every path π ∈ {0, 1}ω of the
tree ρ the parity acceptance condition is satisfied:

minInfc(ρ) is even

A tree t is accepted by A iff there exists an accepting run of A on t.

The tree language recognized by A is L(A) = {t | t is accepted by A}
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Automata on Infinite Objects Non-deterministic Parity Tree Automata

Example 1

Let L0 be the set of trees whose every path has an a (Fa in LTL)

Consider the automaton with states qa,⊤, transitions

δ(qa, a) = {(⊤,⊤)}
δ(qa, b) = {(qa, qa)}
δ(⊤, a) = {(⊤,⊤)}
δ(⊤, b) = {(⊤,⊤)}

with c(qa) = 1 and c(⊤) = 0
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Automata on Infinite Objects Non-deterministic Parity Tree Automata

Example Run

a

a b

a b a b

t q

q q

q q ⊤ ⊤

⊤ ⊤ ⊤ ⊤ ⊤ ⊤

ρ
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Automata on Infinite Objects Non-deterministic Parity Tree Automata

Other Acceptance Conditions

Buchi is specified by a set F ⊂ Q

Acc = {ρ | Inf (ρ) ∩ F 6= ∅}

Muller is specified by a set F ⊆ P(Q),

Acc = {ρ | Inf (ρ) ∈ F}

Rabin is specified by a set {(R1,G1), . . . , (Rk ,Gk)} where Ri ,Gj ⊆ Q,

Acc = {ρ | ∀i , Inf (ρ) ∩ Ri = ∅ and Inf (ρ) ∩ Gi 6= ∅}

Streett is specified by a set {(R1,G1), . . . , (Rk ,Gk)} where
Ri ,Gj ⊆ Q,

Acc = {ρ | ∀i , Inf (ρ) ∩ Ri = ∅ or Inf (ρ) ∩ Gi 6= ∅}

For the relationship between these conditions see [GTW02].
In the following, when the definition and results apply to any acceptance
conditions presented so far (including parity condition), we simply denote
by Acc this condition.
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Automata on Infinite Objects Non-deterministic Parity Tree Automata

Example 2

Let L∞a ⊆ Trees({a, b}) be the set of trees having a path with
infinitely many a’s

Consider the automaton with states qa, qb,⊤ and transitions (∗
stands for either a or b)

δ(q∗, a) = {(qa,⊤), (⊤, qa)}
δ(q∗, b) = {(qb,⊤), (⊤, qb)}
δ(⊤, ∗) = {(⊤,⊤)}

and coloring c(qb) = 1 and c(qa) = c(⊤) = 0 (this a Buchi
condition, only 0 and 1 colors)
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Automata on Infinite Objects Non-deterministic Parity Tree Automata

Example 2 (Cont.)

δ(q∗, a) = {(qa,⊤), (⊤, qa)}, δ(q∗, b) = {(qb,⊤), (⊤, qb)}, δ(⊤, ∗) = {(⊤,⊤)}

From state ⊤, A accepts any tree.

Any run from qa consists of a single path labeled with states qa, qb

(whereas the rest of the run tree is labeled with ⊤). There are
infinitely many states qa on this path iff there are infinitely many
vertices labeled by a.
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Automata on Infinite Objects Non-deterministic Parity Tree Automata

Regular Tree Languages and Properties

A tree language L ⊆ Trees(Σ) is regular iff there exists a parity
(Muller, Rabin, Streett) tree automaton which recognizes L.

The complement of L∞a (finitely many a’s on each branch) is not
recognizable by any Buchi tree automaton

Tree automata are closed under sum, projection, and
complementation.

◮ Tree automata cannot be determinized: L∃
a ⊆ Trees({a, b}), the

language of trees ahaving one node labedled by a, is not recognizable
by a deterministic tree automata (with any of the considered
acceptance conditions).

◮ The proof for complementation uses the determinization result for word
automata. Difficult proof [GTW02, Chap. 8]). [Rab70]
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Automata on Infinite Objects Alternating Tree Automata

Alternating Tree Automata

Design an automaton for the language
{t ∈ Trees({a, b, c}) | t |= AFa ∧ AFb ∧ AFc}

Quite difficult to design with a non-deterministic tree automaton
(combinatorics between the occurrences of a and b and c) but easy
to write as

δ(q, ∗) = (qa, ǫ) ∧ (qb, ǫ) ∧ (qc , ǫ)

where qa (resp. qb, qc) is the initial states of the automaton for AFa
(resp. AFb, AFc).

The automaton splits into three “copies” checking in parallel AFa,
AFb, and AFc .
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Automata on Infinite Objects Alternating Tree Automata

Alternation

Recall δ(q, a) = {(q1, q2), (q2, q4)} means from state q and node w
in the input tree (with t(w) = a): (1) non-deterministically choose
between the two “disjuncts” [q1, q2] and [q2, q4], and (2) proceed
accordingly to the left and right sons of w in t.

We extend the non-deterministic tree automaton with a notion of
universal moves (similar to alternating Turing machines extend
non-deterministic Turing machines).

q

[q1, q2] [q2, q4]

q1 q2 q4

ǫ

0
0

ǫ

1
1
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Automata on Infinite Objects Alternating Tree Automata

Alternating Tree Automata extend Non-deterministic Tree

Automata

In the transitions relation, we allow positive Boolean combinations of
terms (q, d), d ∈ {0, 1, ǫ}:

◮ For non-deterministic automata, we had
δ(q, a) = (q1, 0) ∧ (q2, 1) ∨ (q2, 0) ∧ (q4, 1)

◮ Now we can write things like
δ(q, a) = (q1, 0) ∧ (q′

1, 0) ∧ (q2, 1) ∨ (q2, 0) ∧ (q4, 1) ∧ (q5, ǫ)

Notice that different “copies” of he automaton can proceed along the
same subtree, e.g. A, q1 and A, q′

1 on the left subtree of nodes
labeled by a.
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Automata on Infinite Objects Alternating Tree Automata

Example

δ(q, a) = (q1, 0) ∧ (q′
1, 0) ∧ (q2, 1) ∨ (q2, 0) ∧

(q4, 1)

q

[q1, q2] [q2, q4]

q1 q2 q4

ǫ

0
0

ǫ

1
1

q′1

0

q′
4

1
ǫ
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Automata on Infinite Objects Alternating Tree Automata

We use parity games to define the semantics of ATA

Parity games provide a straightforward construction to complement
ATA (parity accpetance). Determinacy of games gives the correction
of this construction.

We use parity games to show the decidability of the membership
problem (for emptiness see [GTW02, Chap. 9]).

We will see that ATA have a logical counter part: the Mu-calculus, an
extension of modal logic with fix-points.
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Automata on Infinite Objects Alternating Tree Automata

Formal Definition of ATA
An alternating tree automaton is A = (Q,Q∃,Q∀,Σ, q0, δ,Acc)

{Q∃,Q∀} is a partition of Q
δ : Q × Σ → P(Q × {0, 1, ǫ}) is a function and ǫ-transitions are
allowed.

We can write δ(q, a) = (q′, ǫ) ∧ (q1, 0) ∧ (q2, 0) ∧ (q3, 1) ∨ ...

We could give the seman-
tics in terms of runs, as be-
fore, but the runs are tree
with possibly a degree > 2

q

q′ q1 q2 q3

w

w0 w1

w

w0 w1

w0 w1w0
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Automata on Infinite Objects Alternating Tree Automata

Semantics of Alternation Tree Automata

Runs and Acceptance of the automaton are formalized in terms of
two-player games.

Given a tree t ∈ Trees(Σ), we define the acceptance game G(A, t) by:

V0 = {0, 1}∗ × Q∃

V1 = {0, 1}∗ × Q∀

From each position (w , q) and (q′, d) ∈ δ(q, t(w)),
there is an edged to (wd , q′)

The acceptance condition Acc consists of the sequences
(w0, q0)(w1, q1) . . . such that the sequence q0q1 . . . is in Acc

A accepts a tree t iff Player 0 has a winning strategy in G(A, t)
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Automata on Infinite Objects Alternating Tree Automata

Alternation Tree Automata over Kripke Structures

Follow the same lines

Consider a rooted Kripke Structure (S, s0) (which unfolds as a tree)

Define G(A, (S, s0)) as for trees, but notice that if S is finite so is
G(A, (S, s0))

A accepts (S, s0) iff Player 0 has a winning strategy in G(A, (S, s0))
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Automata on Infinite Objects Alternating Tree Automata

Properties of Alternating Tree Automata

Closed under disjunction and conjunction

Closed under negation (complementation), see proof next slide

Unfortunately, it is difficult to show that alternating automata are
closed under projection. Muller and Schupp showed that

Theorem

(Simulation Theorem) [MS95]
Any alternating tree automaton is equivalent to a non-deterministic tree
automaton (with an exponential blow up in the number of states).
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Automata on Infinite Objects Alternating Tree Automata

Complementation of Alternating Parity Tree Automata

Lemma

For every alternating parity tree automaton A there is a dual parity tree
automaton Ā such that L(Ā) = Trees(Σ) \ L(A). Moreover, regarding
size, |Ā| = |A|

Proof A = (Q,Q∃,Q∀,Σ, q0, δ,Acc) Ā = (Q,Q∀,Q∃,Σ, q0, δ, c̄)
where c̄(q) = c(q) + 1 for every q ∈ Q. Now, compare G(A, t) and
G(Ā, t):

Same graph but positions of Player 0 become positions of Player 1,
and vice versa.

For every infinite play π, π is winning for Player 0 in G(A, t) iff π is
winning for Player 1 in G(Ā, t).
Hence Player 0 has a winning strategy in G(A, t) iff Player 1 has a
winning strategy in G(Ā, t) (same strategy).

So, t ∈ L(A) iff t /∈ L(Ā)
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Automata on Infinite Objects Decision Problems

Decision Problems

the Membership Problem: given an ATA A and a tree t, does
t ∈ L(A)? (see next slide)

the Emptiness Problem: given A, is L(A) = ∅?
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Automata on Infinite Objects Decision Problems

the Membership Problem

A = (Q,Q∃,Q∀,Σ, q0, δ, c), k colors, and t ∈ Trees(Σ), does t ∈ L(A)?

t is regular, as the unravelling of some finite Kripke Structure (S, s0).

Build the finite parity game G(A, (S, s0)) and solve it (decidable).

The size of G(A, (S, s0)): |Q| × |S | positions and k priorities

Complexity in NP ∩ co-NP (as for parity games)
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Automata on Infinite Objects Decision Problems

the Emptiness Problem

A = (Q,Q∃,Q∀,Σ, q0, δ, c), is L(A) = ∅?

First method: Simulation Theorem, and use an algorithm to solve the
emptiness of non-deterministic tree automata.x

Second method: Based on Parity Games on Times (see [GTW02,
Chap. 9]).

Complexity of the Emptiness Problem: EXPTIME-complete

We now look at the Emptiness of Non-deterministic Tree Automaton
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Automata on Infinite Objects Emptiness of Non-deterministic Tree Automaton

Input-free Automata

An input-free (IF) automaton is A′ = (Q, δ, qI ,Acc) where
δ ⊆ Q × Q × Q

We may remove Acc .

Runs are defined as usual; they are trees.

Determnistic ⇒ unique tree, and it is regular
t is regular iff {tu | u ∈ {0, 1}∗} is finite
where tu(v) = t(uv)
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Automata on Infinite Objects Emptiness of Non-deterministic Tree Automaton

Regular Tree generated by deterministic finite-state

Automata with an input function
A = (Q, {0, 1},∆, qI , f ) a finite automaton
f : Q → Σ′ an input function
It generates the tree such that t(w) = f (∆(qI ,w))

qI

qb

qd

1

11

0

0

0

I

d b

d b b d

t
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Automata on Infinite Objects Emptiness of Non-deterministic Tree Automaton

and Deterministic Finite Automata on {0, 1} and

Deterministic IF Automata (without Acc)

Let A = (Q, {0, 1},∆, qI , f : Q → Σ′)

Define B = (Q × Σ′, δ, (qI , f (qI ))) by
∀q ∈ Q,

((q, f (q)), (∆(q, 0), f (∆(q, 0))), (∆(q, 1), f (∆(q, 1))) ∈ δ

B is deterministic and a run of B generates in the second component
of its states the trees that A generates.
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Automata on Infinite Objects Emptiness of Non-deterministic Tree Automaton

Example

B has states {(qI , I ), (qb, b), (qd , d)} and transitions
((qI , I ), (qd , d), (qd , d)), ((qd , d), (qd , d), (qd , d)),
((qd , d), (qd , d), (qd , d)). (qI , I ) is intial

(qI , I )

(qd , d) (qb, b)

(qd , d) (qb, b) (qb, b) (qd , d)

ρ I

d b

d b b d

t
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Automata on Infinite Objects Emptiness of Non-deterministic Tree Automaton

Lemma

For each parity automaton A there exists an IF automaton A′ such that
L(A) 6= ∅ iff A′ admits a successful run.

Proof.

A = (Q,Σ, q0, δ, c) and define A′ = (Q × Σ, {qI} × Σ, δ′, c ′).
A′ will guess non-deterministically the second component of its states (ie
the labeling of a model).
Formally,

for each (q, a, q′, q”) ∈ δ, we generate ((q, a), (q′, x), (q”, y)) ∈ δ′, if
(q′, x , p, p′), (q”, y , r , r ′) ∈ δ for some p, p′, q, q′ ∈ Q

c ′(q, a) = c(q)

Esay to see that lemma holds for this construction.
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Automata on Infinite Objects Emptiness of Non-deterministic Tree Automaton

From IF Automata to Parity Games

A an IF automaton  a parity game GA

Positions V0 = Q and V1 = δ

Moves for all (q, q′, q′′) ∈ δ
◮ (q, (q, q′, q”)) ∈ E
◮ ((q, q′, q”), q′), ((q, q′, q”), q”) ∈ E

Priorities χ(q) = c(q) = χ((q, q′, q”))

Lemma

(Winning) Strategies of Player 0 and (successful) runs of A correspond.

Notice that GA has a finite number of positions.
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Automata on Infinite Objects Emptiness of Non-deterministic Tree Automaton

Example of GA

qdqa

qI

qbqd

qI

qIqa

qa

qaqd

qa

qdqb

qb

qbqd

qd

qI

qa

qd

qb
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Automata on Infinite Objects Emptiness of Non-deterministic Tree Automaton

Decidability of Emptiness for Nondeterministic Tree

Automata

Theorem

For parity tree automata it is decidable whether their recognized language
is empty or not.

Proof.

A A′ an IF automaton  GA′ , and combined previous results.
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Automata on Infinite Objects Emptiness of Non-deterministic Tree Automaton

Finite Model Property

Corollary

If the language of a parity tree automaton is not empty then it contains a
regular tree.

Proof.

Take A and its corresponding IF automatan A′. Assume a successful run
of A′ and a memoryless strategy f for Player 0 in GA′ from some position
(qI , a).
The subgraph GA′

f
induces a deteministic IF automaton A” (without

Aacc): extract the transitions out of GAf
from positions in V1. A” is a

subautomaton of A′.
A” generates a regular tree t in the second component of its states. Now,
t ∈ L(A) because A′ behaves like A.

S. Pinchinat (IRISA) Automata, Logics, and Infinite Games Master2 RI 2007 65 / 79



Automata on Infinite Objects Emptiness of Non-deterministic Tree Automaton

Complexity Issues

Corollary

The Emptiness Problem for parity non-deterministic tree automata is in
NP ∩ co-NP.

Proof.

The size of GA′ is polynomial in the size of A
(see [GTW02, p. 150, Chap. 8])

Important remark: the Universality problem is EXPTIME-complete
(already for finite trees).
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The Mu-calculus

The Mu-calculus
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The Mu-calculus Definitions

Syntax

Alphabet Σ and Propositions Prop = {Pa}a∈Σ

Variables Var = {Z ,Z ′, . . . }

Formulas

β, β′ ∈ Lµ ::= Pa |Z | ¬β |β ∧ β′ | 〈0〉β | 〈1〉β |µZ .β

where Z ∈ Var .

Well-formed formulas: for every formula µZ .β, Z appears only under
the scope of an even number of ¬ symbols in β.

β is a sentence if all variables in β are bounded by a µ operator.

Write β′ ≤ β when β′ is a subformula of β.
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The Mu-calculus Definitions

Semantics

Assume given a tree t ∈ Trees(Σ) and a valuation val : Var → 2{0,1}∗

of the variables.

For every N ⊆ {0, 1}∗, we write val [N/Z ] for val ′ defined as val
except that val ′(Z ) = N

We define [[ β ]]tval ⊆ {0, 1}∗ by:

[[ Z ]]tval = val(Z )
[[ Pa ]]tval = t−1(a)
[[ β ∧ β′ ]]tval = [[ β ]]tval ∩ [[ β′ ]]tval
[[ 〈0〉β ]]tval = {w ∈ {0, 1}∗ |w0 ∈ [[ β ]]tval}
[[ 〈1〉β ]]tval = {w ∈ {0, 1}∗ |w1 ∈ [[ β ]]tval}
[[ µZ .β ]]tval =

⋂

{S ′ ⊆ S | [[ β ]]t
val [S ′/Z ] ⊆ S ′}
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The Mu-calculus Definitions

About Fix-points

µZ .β denotes the least fix-point of

τ : 2{0,1}∗ → 2{0,1}∗

τ(N) = [[ β ]]t
val [N/Z ]

By the assumption on “positive” occurrences of Z in β, τ is
monotonic: N ′ ⊆ N implies τ(N ′) ⊆ τ(N) (prove it).
Henceforth, since (2{0,1}∗ , ∅, {0, 1}∗ ,⊆) is a complete lattice, by
[Tar55], the least fix-point (and the greatest fix-point) exists.

Let νZ .β
def
= ¬µZ .¬β[¬Z/Z ]. It is a greatest fix-point.
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The Mu-calculus Definitions

Tarski-Knaster Theorem

Theorem

(Tarski-Knaster) Assume a set D. Let τ : 2D → 2D be monotonic, then
µz .τ(z) = ∩{z | τ(z) = z} = ∩{z | τ(z) ⊆ z}
νz .τ(z) = ∪{z | τ(z) = z} = ∪{z | τ(z) ⊇ z}
µz .τ(z) = ∪iτ

i(∅), where i ranges over all ordinals of cardinality at most
the state space D; when D is finite, µz .τ(z) is the union of the following
ascending chain ∅ ⊆ τ(∅) ⊆ τ2(∅)...
νz .τ(z) = ∩iτ

i(D), where i ranges over all ordinals of cardinality at most
the state space D; when D is finite, νz .τ(z) is the intersection of the
following descending chain D ⊇ τ(D) ⊇ τ2(D)...

Therefore, if t is regular, i.e. representing the unravelling of a finite rooted
KS (S, s), the fix-points can be effectively computed.
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The Mu-calculus Definitions

“Trivial” formulas:
µZ .Z , νZ .Z , µZ .P , νZ .P , µZ .〈0〉Z ∨ 〈1〉Z , νZ .〈0〉Z ∧ 〈1〉Z .

Intuitively, µ (resp. ν) correspond to finite (resp. infinite)
computations.

◮ µZ .Pb ∨ (〈0〉Z ∨ 〈1〉Z ) ∧ Pa is equivalent to the CTL formula E a U b.
◮ νZ .Pa ∧ (〈0〉Z ∧ 〈1〉Z ) is equivalent to AG a.

(prove it)

We can push negation inside a formula (notice that ¬〈d〉β = 〈d〉¬β,
for d ∈ {0, 1})to get a formula in positive normal form.

Write t |= β whenever ǫ ∈ [[ β ]]tval .

Define L(β)
def
= {t ∈ Trees(Σ) | t |= β}
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The Mu-calculus Definitions

Alternation Depth

Let β ∈ Lµ be in postive normal form. We define ad(β), the alternation
depth of β inductively by:

ad(Pa) = ad(¬Pa) = 0

ad(β ∧ β′) = ad(β ∨ β′) = max{ad(β), ad(β′)}

ad(〈d〉β) = ad(β), for d ∈ {0, 1}

ad(µZ .β) = max({0, ad(β)} ∪ {ad(νZ ′.β′) + 1 | νZ ′.β′ ≤ β,Z ∈
free(νZ ′.β′)})

ad(νZ .β) = max({0, ad(β)} ∪ {ad(µZ ′.β′) + 1 | νZ ′.β′ ≤ β,Z ∈
free(µZ ′.β′)})

For example, ad(νZ .µZ ′.(Z ∧ Pa) ∨ 〈0〉Z ′) = 1 (“infinitely often a along
the branch 0ω”).
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The Mu-calculus From the Mu-calculus to Alternating Parity Tree Automata

From the Mu-calculus to Alternating Tree Automata

Given a sentence β ∈ Lµ (in positive normal form), we construct in
polynomial time an ATA Aβ such that

L(β) = L(Aβ)

Hence the model-checking and the satisfiability problems for the
Mu-calculus reduce to the membership and emptiness problems for ATA.

S. Pinchinat (IRISA) Automata, Logics, and Infinite Games Master2 RI 2007 74 / 79



The Mu-calculus From the Mu-calculus to Alternating Parity Tree Automata

Defintion of Aβ

Aβ
def
= (Q,Σ, q0, δ, c) where

Q = {α |α ≤ β} ∪ {⊤,⊥} and qI = β

Q∃ is composed of all subformulas of the form α ∨ α′, Q∀ contains
the rest.

δ : Q × Σ → P(Q × {0, 1, ǫ}) is defined by induction over α ∈ Q:
◮ δ(Pa, a) = {(⊤, ǫ)} and δ(Pa, b) = {(⊥, ǫ)} for all b 6= a
◮ δ(¬Pa, a) = {(⊥, ǫ)} and δ(¬Pa, b) = {(⊤, ǫ)} for all b 6= a
◮ δ(Z , a) = {βZ , ǫ)}
◮ δ(α ∧ α′) = {(α, ǫ), (α′, ǫ)} and the same for δ(α ∨ α′)
◮ δ(〈d〉α) = (α, d), for d ∈ {0, 1}
◮ δ(θZ .α) = (α, ǫ), for θ ∈ {µ, ν}

The coloring function c is defined by (let M = ad(β))
◮ c(α) = 2 ∗ (M − ad(α)) if α is a ν-formula
◮ c(α) = 2 ∗ (M − ad(α)) + 1 if α is a µ-formula
◮ c(α) = M if α is not a fix-point formula.

For the correctness of the construction see [GTW02, Chap. 10].
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The Mu-calculus From the Mu-calculus to Alternating Parity Tree Automata

Example for νZ .µZ ′
.(Z ∧ Pa) ∨ 〈0〉Z ′

νZ .µZ ′.(Z ∧ Pa) ∨ 〈0〉Z ′

µZ ′.(Z ∧ Pa) ∨ 〈0〉Z ′

(Z ∧ Pa) ∨ 〈0〉Z ′

Z ∧ Pa 〈0〉Z ′

Z Pa Z ′

0

0(= 2 ∗ (1 − 1))

1(= 2 ∗ (1 − 1) + 1)

1

1

1 1

1

⊤ ⊥
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The Mu-calculus From Alternating Tree Automata to the Mu-calculus

From Alternating Tree Automata to the Mu-calculus

The translation from Alternating Parity Tree Automata to the Mu-calculus
uses vectorial Mu-calulus, see [AN01].
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The Mu-calculus From Alternating Tree Automata to the Mu-calculus

Summary

The Mu-calculus and Alternating Parity Tree Automata have the
same expressive power.

Complexity results:
◮ The satisfiability problem for the Mu-calculus is EXPTIME-complete

([SE89, EJ88]).
◮ The model-checking for the Mu-calculus is NP ∩ co-NP; it is open

whether it is in P.

The Mu-calculus subsumes every temporal logics.
◮ CTL translates into the alternation free fragment of the Mu-calculus.

It has a polynomial time model-checking procedure (retrieve why
according to previous results).

◮ CTL∗ can be translated into the Mu-calculus [Dam94], but there is an
exponential blow-up.
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The Mu-calculus From Alternating Tree Automata to the Mu-calculus

Mu-calculus and Parity Games

We have seen a reduction from the Model-checking Problem of the
Mu-calculus to Parity Games (via Automata), but there is a reduction in
the reverse direction.

A parity game G,V0,V1,E ) with a priority function
χ : V → {0, . . . , k − 1} (k priorities) can be seen as a Kripke Structure
(V ,E , λ) where λ maps states onto the set of propositions
{V0,V1,P0, . . . ,Pk} where Pi = {v |χ(v) = i}.
The formula

Wink
def
= νZ0.µZ1. . . . θZk−1

k−1
∨

j=0

((V0 ∧ Pj ∧ (〈.〉Zj ) ∨ (V1 ∧ Pj ∧ ([.]Zj ))

(where θ = ν if k is odd, and θ = µ if k is even) defines the winning
region of Player 0 in any parity game with priorities 0, . . . , k − 1.
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