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1 Introducing Fitch-Style Natural Deduction

In this course, we will look at several non-classical logics in the framework
of natural deduction. The idea behind natural deduction � and the reason
that it is called �natural��is that it is supposed to mirror the way in which
mathematicians construct proofs. We will look at two styles of natural deduction
proofs � Fitch-style proofs, and sequent-style proofs. This and the next two
lectures will be on Fitch-style proofs.
Although this is a course on non-classical logic, we are going to start with

classical propositional logic (PC), which is the logical system that is discussed
in most of the other courses in the summer school.
A natural deduction proof is a list of statements of logic written vertically.

Of course this is not a de�nition of the word �proof�. Not every vertical list is
a proof. Proofs can contain subproofs. Here is a simple proof that contains a
subproof:

1:
2:
3:
4:

��������
(A � B)������
A
(A � B)
B

hyp:
hyp:
1; reit
2; 3; � E

The �rst two lines are hypotheses. These are the premises of the proof. When
we write a hypothesis, we also write a line down the left side of the proof or
subproof which is begun by the hypothesis. This part������

A
A � B
B

is a subproof. Every proof or subproof starts with a hypothesis and ends when
the hypothesis is discharged. We will get to discharging hypotheses later.
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The �nal line is the conclusion of the proof �it is the statement that we are
trying to prove. The third column tells us what rules we are using. The rule
hyp (�hypothesis�) tells us that we can assume a hypothesis. When can we do
so? Anytime. But we will see that you do have to be careful when you assume
hypotheses in proofs. The rule � E (�implication elimination�) is used to infer
the �nal line from the �rst two. The rule reit (�reiteration�) tells us that we can
copy a line from a proof into any of its subproofs (note that we cannot copy
lines from subproofs to proofs).
This proof tells us that the argument

A � B
A

) B

is valid. When we assume a hypothesis in a proof, it is the same thing as giving
a premise in an argument. Thus, if we are trying to prove that an argument is
valid, we begin by assuming all of its premises as hypothesis in a proof. Then
we try to prove its conclusion.

2 Reiteration

Our �rst rule is one that you have already seen. This is the rule of reiteration.
Stated precisely it is:

If A occurs in a proof, it can be copied into any subproof of that proof

or into a subproof of a proof, and so on.

Note that the notions of proof and subproof are relative. Consider the following
proof:

1:
2:
3:
4:
5:
6:
7:
8:

����������������

A � B��������������

B � C����������
A
A � B
B
B � C
C

A � C

hyp:
hyp:
hyp:
1; reit:
3; 4; � E
2; reit:
5; 6; � E
2� 7; � I

The proof ��������������

B � C����������
A
A � B
B
B � C
C

A � C
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is a subproof of the whole proof and����������
A
A � B
B
B � C
C

is a subproof of both the previous proof and the whole proof.

3 Introduction and Elimination Rules

For each logical connective, there are two rules. (Actually, for negation we will
have four rules, but let�s leave that aside for now.) One of these rules tells us
how to add the connective, and is called an introduction rule. The other rule
tells us how to get rid of the connective and is called an elimination rule.

4 Implication

The �rst connective that we will treat is perhaps the most interesting �impli-
cation. Its elimination rule is one that you have already seen. Stated precisely,
it is:

If A � B and A occur in the same proof, you may infer B.

We use �� E�to mean �implication elimination�.
The introduction rule is a little more complicated. It tells us that, if we

assume A as a hypothesis and then are able to infer B, we may discharge the
hypothesis and infer that A � B. Here is an example:

1:
2:
3:
4:
5:
6:
7:
8:

����������������

A � B��������������

B � C����������
A
A � B
B
B � C
C

A � C

hyp:
hyp:
hyp:
1; reit
3; 4; � E
2; reit:
5; 6; � E
3� 7; � I

The subproof ����������
A
A � B
B
B � C
C

proves C from A. Note that we don�t have to do this proof �on its own�. You can
use material from the proof of which this is a subproof, using reiteration. After
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we have this proof, we can discharge the hypothesis A and conclude A � B.
This means that we have ended the subproof beginning with A and the line to
its left ends. We write �A � B�in the proof of which this is a subproof.

5 Conjunction

The easiest of the connectives to manipulate, and perhaps the least interesting,
is conjunction. The introduction and elimination rules are perfectly symmetrical
to one another. The introduction rule (^I) says

If A and B occur in the same proof, you may infer A ^B.

There are in fact two elimination rules (both called �̂ E�):

If A ^B occurs in a proof, you may infer A:

If A ^B occurs in a proof, you may infer B:

6 Disjunction

The introduction rules for disjunction (_I) are very straightforward. They are

If A occurs in a proof, you may infer A _B

and
If B occurs in a proof, you may infer A _B.

Here is a proof that uses disjunction introduction:

1:
2:
3:
4:
5:
6:

������������

(A _B) � C��������
A
A _B
(A _B) � C
C

A � C

hyp:
hyp:
2; _I
1; reit:
3; 4; � E
2� 5; � I

This proof shows that the argument

(A _B) � C
) A � C

is valid.
The rule of disjunction elimination (_E) is somewhat stranger. It says

If (A _B), A � C, and B � C all occur in a proof, then you may infer C:

This rule is sort of a �double implication elimination�, for it allows us to elimi-
nate two implications at one fell swoop.
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Here is a proof that uses disjunction elimination:

1:
2:
3:
4:
5:
6:
7:

��������������

A � C������������

����������
B � C
A _B
A � C
B � C
C

(A _B) � C

hyp:
hyp:
hyp:
1; reit:
2; reit:
4; 5; _E
2� 6; � I

This proves that the following argument is valid:

A � C
B � C

) (A _B) � C

7 Negation

There are two negation elimination rules. This is the �rst one:

(:E1) If A and :A occur in the same proof, you may infer any formula in that proof.

This merely says that we can infer any formula from a contradiction. As we
shall see, relevant logic rejects this rule and replaces it with a weaker rule.
Here is a proof that uses negation elimination (:E1):

1:
2:
3:
4:
5:

����������
A������
:A
A
C

:A � C

hyp:
hyp:
1; reit:
2; 3; :E1
2� 4; � I

The introduction rule should remind you of the implication introduction
rule. It says

(:I) If we have a proof of :A from the hypothesis A, then we can discharge this

hypothesis and infer :A.

Here is a proof in which we use negation introduction:

1:
2:
3:
4:
5:

����������
A������
:A
A
::A

::A

hyp:
hyp:
1; reit
2; 3; :E1
2� 4; :I
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8 Another Negation Elimination Rule

We said that there are two negation elimination rules, but we have only described
one so far. The second one is often called the rule of reductio ad absurdum, but
we will call it :E2:

(:E2) If we have a proof of A from the hypothesis :A, then we can discharge this
hypothesis and infer A.

We call this rule �negation elimination 2�because it eliminates a negation that
is used in a subproof. Here is a proof of ::A � A that uses this rule:

1:
2:
3:
4:
5:
6:

����������
::A������
:A
::A
A

A
::A � A

hyp
hyp
1; reit
2; 3; :E
2� 4;:E2
1� 5; � I

9 Validity

Recall the truth-table de�nition of a valid argument. An argument is valid if
and only if there is no row of a truth table in which all of its premises are
true and its conclusion is false. We have said that a argument for which there
is a corresponding proof in natural deduction. We won�t prove that this cor-
respondence really holds. This can be rather di¢ cult and we should leave it
to an upper-level course. Rather, we are going to look at another interesting
connection.
Consider a one premise argument, such as

A

) B � A:

I will let you prove that this is valid. What I want to consider instead is a closely
related formula, that is, (A � (B � A)). This formula is also valid in the sense
that it is true on every row of its truth table. In fact, if for any formulas A and
B, the argument

A

) B
is valid if and only if the formula

A � B

is also valid.
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What about arguments with more than one premise? Consider impli-
cation elimination (i.e. modus ponens):

A � B
A

) B
This is clearly valid. So is the formula

(A � B) � (A � B):

In general, an argument of the form

A1
...
An

) B

is valid if an only if the formula

A1 � (::: � (An � B) : : :)

is also valid.
This connection holds true in natural deduction as well. In order to under-

stand what that means, we need to understand what it is for a formula to be
proved valid in our natural deduction system.

10 Validity of formulas in Natural Deduction

Everything will fall into place when we understand what it is for a formula to
be valid in natural deduction. Then we will be able to prove the correspondence
between valid formulas and valid arguments.
Consider the following proof of the validity of modus ponens in natural

deduction:
1:
2:
3:
4:
5:

����������
A � B������
A
A � B
B

A � B

hyp:
hyp:
1; reit
2; 3; � E
2� 4; � I

We can do one more step here:

1:
2:
3:
4:
5:
6:

����������
A � B������
A
A � B
B

A � B
(A � B) � (A � B)

hyp:
hyp:
1; reit
2; 3; � E
2� 4; � I
1� 5; � I
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You might think that there are easier ways to do this proof, and there are, but
that�s not the point. The point is that we can discharge even the �rst hypothesis.
Then we get a proof that has no undischarged hypotheses. And what we prove
is a valid formula, or a theorem of the logic.
If we can show that

A1
...
An

) B

is a valid argument, then we can also construct a natural deduction proof like:��������������

A1

� � �

�������
An
...
B

An � B
...

A1 � (: : : (An � B):::)

11 Exercises

Try to prove these valid:

1:
A � (A � B)
) A � B

2:
A

) (A � B) � B

3:

A � B
A � C

) A � (B ^ C)

4:
A

) B � (A ^B)

5:
A � B

) :B � :A
6:(A � (B � C)) � ((A � B) � (A � C))

7:((A _B) � C) � (A � C)
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1 Intuitionist Logic: From Truth to Proof

The classical logician�s view of validity is that an inference is valid if and only if
its premises cannot all be true in the same circumstance in which its conclusion
is false. This view is often called the truth preservation theory of validity. Thus,
the notion of truth is central to classical logic. One of the �rst classical logicians,
Gottlob Frege, says:

Just as �beautiful�points the way for aesthetics and �good�for ethics,
so do words like �true� for logic. All sciences have truth as their
goal; but logic is concerned with it in a quite di¤erent way: logic
has much the same relation to truth as physics has to weight or
heat. To discover truths is the task of all sciences; it falls to logic
to discern the laws of truth. (Frege, �Thoughts� (1918) translated
by P.T. Geach and R.H. Stootho¤ in Frege, Logical Investigations,
Oxford: Blackwell, 1977)

Intuitionist logic began as a way of formalizing intuitionist mathematics.
Intuitionist mathematics was a form of mathematical practice that began in the
early years of the 20th Century as a reaction to classical mathematics. Classical
logic began (in the work of Frege, Bertrand Russell, and others) as a way of
understanding the inferences made in classical mathematics. If we are to use
the classical notion of validity to codify mathematical inference, then there must
be a usable concept of mathematical truth. At the turn of the 20th Century,
there were a few such notions available, but the one that concerns us here is the
Platonist concept of mathematical truth. According to Platonism (a view held
by Frege and the set theorist Georg Cantor among others), there are entities
called �mathematical objects�. A number is a mathematical object, so is a set,
so is a function, and so on. Where are these mathematical objects? They are,
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according to Platonism, nowhere in space or time �they have their own �realm�.
Platonism has the virtue of giving a straightforward and rather standard theory
of truth. A mathematical statement is true if and only if the things it talks
about actually have the properties attributed to it by the statement. E.g., the
statement �2+2=4�is true if and only if applying the function of addition to the
pair < 2; 2 > has the value 4.
Platonism, however, clearly also has important di¢ culties. First, it seems

philosophically ad hoc to postulate a special realm of objects just to explain
how certain sentences can be true. Second, if these objects are nowhere in space
or time, then we cannot perceive them. If we cannot perceive them, how do can
we know things about them. Surely there is mathematical knowledge, and this
fact needs to be explained.
Intuitionism is a reaction against Platonism. We won�t go over the original

form of intuitionism, because although extremely interesting it is a complicated
mix of 19th Century philosophy and mysticism. Rather, we will look at a more
modern form due to Stephen Kleene and Michael Dummett.
According to this modern form of intuitionism, what is true in mathematics

is what can be constructibly proven. The idea is that a mathematical statement
is true if and only there is a step by step method that will prove it. In e¤ect,
what is true is what can (ideally) be proven by a computer. In this move from
Platonist truth to constructive proof, we see an attempt to deal with the two
problems we have stated above. First, the notion of proof is clearly central to
mathematical practice �it is not ad hoc to make it central to a philosophy of
mathematics. Second, the intuitionist view that takes truth to be what can be
proven explains how we can know mathematical truths. Our proofs show that
they are truth. The Platonist has to explain why we take proofs in classical
logic to show that certain statements about Platonic objects are true. For the
intuitionist, mathematical truth is just provability, so no further explanation is
needed.
For the intuitionist, talk of mathematical objects is rather misleading. For

them, there really isn�t anything that we should call the natural numbers, but
instead there is counting. What intuitionists study, then, are mathematical
processes, such as counting (in arithmetic), collecting things (in intuitionist set
theory, sometimes called the �theory of species�), and so on. We will follow the
intuitionists�practice of talking about mathematical objects, but note that this
is really shorthand for talk of processes.
In classical mathematics, we talk about in�nite sets. In fact, we talk about

larger and larger in�nite sets: the natural numbers, the real numbers, the set
of functions over the real numbers, and so on. If we talk about the process of
collecting things, rather than a complete collection itself, we get a rather di¤er-
ent notion of in�nity. Philosophers distinguish between a never-ending process
(sometimes called a �potential in�nity�) and a completed in�nity. Classical
mathematics deals with completed in�nities, whereas intuitionists accept only
never-ending processes. Given that they reject the notion that there are com-
pleted in�nities, intuitionists cannot accept the notion that there are di¤erent
sizes of in�nity. This leads also to problems regarding the real numbers (we
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usually think of irrational numbers in terms of in�nitely long strings of digits),
and the intuitionist theory of the reals is as a result extremely complicated, as
is there treatment of calculus.

2 The BHK Interpretation of IL

The notion of truth, as we have seen, is central to the understanding of classical
logic. The interpretation of the connectives of classical logic (conjunction, im-
plication, ...) and the quanti�ers is usually given in terms of truth conditions.
Suppose that we have a language with a �nite number of predicates. A model
for this language is based on a domain of individuals. We begin the construction
of a model for our language by stating the extensions of each of these predicates.
For example, suppose Ox means �x is an odd number�, then the extension of O
is the set f1; 3; 5; :::g. The extension of an n-place relation symbol is a set of
n-place sequences. It might be that we cannot explicitly state the extensions of
all the predicates, but we will leave that problem aside. We also assume a class
of value assignments, which are functions v that takes each term (constant or
variable) to an individual in the domain of our model.
After the extensions of the predicates are determined, we state a schema

that gives us the truth condition for atomic formulas. Where P is an n-place
predicate,

8xA is true according to v
if and only if

A is true according to all x-variants of v.

Pt1:::tn is true according to v

if and only if

< v(t1); :::; v(tn) > is in the extension of P .

Here are the schemas for the connectives. Where a formula is false (according
to a value assignment) if and only if it fails to be true,

A ^B is true according to v

if and only if

A is true according to v and B is true according to v.

A _B is true according to v

if and only if

A is true according to v or B is true according to v.

A � B is true according to v

if and only if

A is false according to v or B is true according to v.
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:A is true according to v
if and only if

A is false according to v .

8xA is true according to v
if and only if

A is true according to all x-variants of v.

9xA is true according to v
if and only if

A is true according to some x-variant of v.

An x-variant of v is a function that has the same value for each constant and
variable as does v except perhaps x.
From a philosophical point of view, the main advantage of this semantics

is that it is compositional. According to the standard view of meaning (called
truth conditional semantics), we understand a sentence when we understand
the conditions under which it is true. This construction of models for classical
logic shows us that if we understand the meaning of the atomic formulas of the
language, then we can use these schemas to determine the truth conditions of
any formula of our language. This tells us how we can understand new sentences
of a language that we have never heard before.
Intuitionist logic does not take truth to be central. Rather, as we have seen,

proof plays a very similar role. To be a real alternative to classical logic, in-
tuitionists need to provide us with a compositional interpretation based on the
notion of proof. They have done so. Such an interpretation is the Brouwer-
Heyting-Kolmogorov (BHK) interpretation, named after Jan Brouwer (the fa-
ther of intuitionist mathematics), Arend Heyting (the person who �rst formu-
lated intuitionist logic in its current form), and Andrey Kolmogorov (the great
Russian mathematician).
This presentation of the BHK interpretation is taken (with minor alterations)

from Iemho¤ 2008.

A proof of A ^B is a proof of both A and B

A proof of A _B is a proof of either A or B

A proof of A � B
is a proof that any proof of A can be transformed into a proof of B

A proof of :A
is a proof that any proof of A can be transformed into a proof of a contradiction.
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A proof of 8xA(x) is a proof
that given any object i of the domain we can construct a proof of A(i)

A proof of 9xA(x) is a proof
that A(i) for some object i in the domain

Note that there is no general procedure given for proving atomic formulas. Our
knowledge of such proofs is determined by the contents of the atomic formulas
themselves. But we still have a method for understanding complex statements
on the basis of our understanding of simple ones, just as in the semantics for
classical logic.
The treatment of the quanti�ers has very interesting consequences for in-

tuitionist mathematics. Consider a continuous function that has at least one
value below 0 and at least one value above 0, e.g., y = x3

­4 ­2 2 4

­100

100

x

y

In this case we can see that the value of x for which y = 0 is itself 0, but
consider the more general statement �for any function f , if there is an x for
which f(x) � 0 and an x0 for which f(x0) > 0 then there is some x00 such
that f(x00) = 0�. According to the BHK interpretation, to prove this expression
we need to show that there is a proof that, given any function f there is a
way of �nding (i.e. computing) a number x00 at which f(x00) = 0�. In other
words, we need a general method of �nding the zeroing value for any function.
Unfortunately, there is no such general method and so this (the intermediate
value theorem) is not a theorem of intuitionist logic.
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3 The Falsum and Negation

The treatment of negation in intuitionist logic is particularly interesting for us
here. According to intuitionist logic, all contradictions are equivalent to one
another. This is true in classical logic, but (as we shall see) not in relevant
logic. It is standard in formulations of intuitionist logic to add a propositional
constant f (sometimes ?) that represents any contradiction. This constant is
called the �falsum�. Its proof condition is simple: there is no proof of f . Using
f , we can de�ne negation:

:A =df A � f:

If we de�ne negation, we remove it from the primitive vocabulary of the lan-
guage.
One of the central truths of ancient logic, which Aristotle called the eternal

truths, is the law of excluded middle, i.e.

A _ :A:

The rewriting this with the falsum, we get

A _ (A � f):

This schema is read, according to the BHK interpretation as �for any formula
A, we can either prove A or �nd a proof that a proof of A can be transformed
into a proof of a contradiction�. Clearly, we cannot prove this statement. Thus,
the law of excluded middle is not a theorem of intuitionist logic.
Note that we cannot show that :(A _ :A) in intuitionist logic. For every

classical contradiction is also an intuitionist contradiction. But what we can
show is that : ` A _ :A, where the turnstile means �is provable in intuitionist
logic�.
There are other familiar theorems of classical logic that fail in intuitionist

logic. Perhaps the most famous is double negation elimination, viz.,

::A � A:

Convince yourself that this can�t be proven by reading it using the BHK inter-
pretation. On the other hand, the principle of double negation introduction is
provable:

A � ::A:

This principle is just an instance of A � ((A � B) � B), which is also provable.

4 Natural Deduction for Intuitionist Logic

For the present let us include in our language both the falsum and negation as
primitive. The natural deduction system for intuitionist logic is exactly like the
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classical system except for the negation rules and the rule for f . The negation
introduction rule is

If there is a proof of f from the hypothesis that A,

then we can discharge the hypothesis and infer :A:

The negation elimination rule is the following:

From A and :A, we may infer f:

There is no introduction rule for f . The elimination rule for f is similar to the
negation elimination rule in classical logic:

From f we may infer B.

That is, from a contradiction we may infer any formula.
In intuitionist logic ::A is a theorem if A is a theorem of classical logic.

Here are proofs of ::(A _ :A) and ::(::A � A):

1:
2:
3:
4:
5:
6:
7:
8:

����������������

:(A _ :A)��������
A
A _ :A
:(A _ :A)
f

:A
A _ :A
f

hyp
hyp
2; _I
1; reit
3; 4; :E
2� 5; :I
6; _I
1; 7; :E

9: ::(A _ :A) 1� 8; :I

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:

��������������������������

:(::A � A)��������������������

::A������������

A���� ::AA
::A � A
:(::A � A)
f

:A
f
A

::A � A
f

hyp
hyp
hyp
hyp
3; reit
4� 5; � I
1; reit
6; 7; :E
3� 8; :I
2; 9; :E
10; fE
2� 11; � I
1; 12; :E

14: ::(::A � A) 1� 13; :I

5 Further Reading

� E.W. Beth, The Foundations of Mathematics, Amsterdam: North Hol-
land, 1959
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� Chapter 9 of Stuart Brock and Edwin Mares, Realism and Anti-Realism,
Stocks�eld: Acumen, 2007 is about the philosophy of mathematics and
discusses intuitionism.

� Michael Dummett, Elements of Intuitionism, Oxford: Oxford University
Press, 1977

� Arend Heyting, Intuitionism: An Introduction, Amsterdam: North Hol-
land, 1972

� Rosalie Iemho¤ �Intuitionism in the Philosophy of Mathematics� in the
Stanford Encyclopedia, http://plato.stanford.edu/entries/intuitionism/ ,
2008
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1 Implication

Here we will look at a natural deduction system for the relevant logic, R. �R�
stands for �relevant implication�. The key notion for understanding this natural
deduction system is that of a real use of an hypothesis. In order to make sure
that an hypothesis is really used in an inference, we label each hypothesis with
a number and then we put a subscript on each line of the proof that indicates
which hypotheses were used to infer that line. For example:

1:
2:
3:
4:

��������
A! Bf1g������
Af2g
A! Bf1g
Bf1;2g

hyp:
hyp:
1; reit
3; 4;! E

Here the rule for ! E is: From A ! B� and A� we can infer B�[� . � [ � is
the set of numbers that belong to either � or � (it collects all of the numbers
in the two sets together).
This proof shows that we can validly and relevantly infer B from A ! B

and A. The hypotheses that A ! B and A are really used to infer B. We
can see this because the hypotheses numbers for these premises show up in the
subscript for the conclusion B.
Now let�s look at another inference. This time we will infer from the single

premise A the conclusion that (A! B)! B.

1:
2:
3:
4:
5:

����������
Af1g������
A! Bf2g
Af1g
Bf1;2g

(A! B)! Bf1g

hyp:
hyp:
1; reit:
2; 3;! E
2� 4;! I
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What happened to the number 2 in the subscript to line 5? Surely the second
hypothesis was really used in its derivation. When a hypothesis is discharged,
its number is removed from the subscript of the line that is produced by the rule
of implication introduction. This is the di¤erence between a hypothesis and a
premise in an inference. A premise is an hypothesis that never gets discharged.
The rule for implication introduction is: From a proof that B� from the

hypothesis Afkg (where k is a number), we can infer B��fkg, where k really is
in �. (�� fkg is just the set � with k removed from it.)
A valid formula in this system is just one that can be proven with the subscipt

; (the empty set). Consider the following proof:

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:

������������������

A! Bf1g��������������

B ! Cf2g����������
Af3g
A! Bf1g
Bf1;3g
B ! Cf2g
Cf1;2;3g

A! Cf1;2g
(B ! C)! (A! C)f1g

(A! B)! ((B ! C)! (A! C));

hyp
hyp
hyp
1; reit
3; 4; ! E
2; reit
5; 6; ! E
3� 7; ! I
2� 8; ! I
1� 9; ! I

(Write the justi�cations in yourself. I didn�t have room on the page!) Here we
have proven that (A! B)! ((B ! C)! (A! C)) is valid. It is said to be a
theorem of the logic R.

2 From Truth to Proof to Information

I have my own line on how to understand the models for relevant logic, so I will
give that you that here. Consider for a moment again the natural deduction
system for R. A hypothesis in this system isn�t really just a formula, but a
formula subscripted with a number, say, Af1g. Let�s now think about what this
means.
The idea behind the theory that I am going to present comes from situation

semantics, which was developed by Jon Barwise and John Perry in the 1980s.
On their view, there are not just possible worlds, but also situations. A situation
is a part of a world. For example, consider the room that you are in right now.
There is certain information available to you in that room. If it is our lecture
room, then the information is available to you about whether the projector is
on or o¤ and about what the lecturer is saying right now. But there is other
information not available to you that is available to people in other situations, for
example, someone in Singapore will have the information available to her about
whether or not it is raining there, but won�t have the information about whether
the projector in our lecture room is on. So, in a single possible world, there are
many di¤erent situations, each containing di¤erent information. We say that
each situation contains partial information, because it does not (necessarily) tell
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us about the whole world. (On some views about situation semantics, we can
consider the whole universe also to be one big situation, but on other views this
is not the case. We will get back to that topic later.)
We can situations in this sense to think about relevant logic. Consider again

the hypothesis Af1g. If this is hypothesized in a proof, what it means is �suppose
that there is a situation (call it s1) in a world which contains the information
that A�. Now, suppose that we make further hypotheses in the same proof, for
example, Bf2g. We are now saying �suppose that there is also a situation (call
it s2) in the same world which contains the information that B�.
Consider the following proof:

1:
2:
3:
4:
5:
6:

����������
Af1g������
A! Bf2g
Af1g
Bf1;2g

(A! B)! Bf1g
A! ((A! B)! B);

hyp
hyp
1; reit
2; 3; ! E
2� 4; ! I
1� 5; ! I

Let�s forget about the last line for a moment. The �rst line says �suppose that
there is a situation s1 in a world in which A�. The second line says �suppose
there is a situation s2 in the same world in which A! B�. The third line just
reiterates the �rst line, but the fourth line is interesting. It says that there is
a situation s0 in the same world in which B, and we know that there is this
situation because we have derived that it is so by really using the information
in s1 and s2.
The �fth line tells of course that we know (from the discharged subproof in

steps 2-4) that in s1 there is the information that (A! B)! B.
Now we turn to the �nal line of the proof. What does �A ! ((A ! B) !

B);�mean? As we know, it means that this formula is valid. But what does
�valid�mean here? It means that A! ((A! B)! B) is true in every normal
situation. A normal situation (on my view) is just a situation that captures
all and only the information that is in a possible world. Or, rather, a normal
situation is just a possible world (that is, a complete possible universe). Thus,
a formula is valid if and only if it is true in every possible world.

3 Conjunction

Now we will add conjunction. Here�s a proof using conjunction:

1:
2:
3:
4:
5:

��������
(A! B) ^Af1g
A! Bf1g
Af1g
Bf1g

((A! B) ^A)! B;

hyp:
1; ^E
1; ^E
2; 3;! E
1� 4;! I

The conjunction elimination rule (^E) is: From A ^ B� we can infer A� and
B�.
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The conjunction introduction rule is just the reverse. It says that from A�
and B� we can infer A^B�. Note that in order to do a conjunction introduction,
the two formulas that you want to conjoin have to have the exact same numbers
in their subscript. Here is a proof using conjunction introduction:

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:

������������������

(A! B) ^ (A! C)f1g��������������

Af2)
(A! B) ^ (A! C)f1g
A! Bf1g
A! Cf1g
Bf1;2g
Cf1;2g
B ^ Cf1;2g

A! (B ^ C)f1;2g
((A! B) ^ (A! C))! (A! (B ^ C));

hyp:
hyp:
1; reit:
3; ^E
3; ^E
2; 4;! E
2; 5;! E
6; 7;^I
2� 8;! I
1� 9;! I

4 Disjunction

The disjunction rules are a lot like the rules for classical logic, except that you
have to be careful about how you use subscripts. The disjunction introduction
rule (_I) is easy:

From A� in a proof, you may infer A _B� and/or B _A�.

Here the rule is just the same as it was for PC except that you have to carry
along the same subscript to A _B (or B _A) that was on A.
As before, the disjunction elimination rule (_E) is a lot more di¢ cult. The

easiest way to state it for relevant logic is the following:

From A _B� and A! C� and B ! C� , you may infer C�[� .

This might not look a lot like the rule for PC, but it is a lot like it. For it tells
us that a proof of the following form is valid:

A _B��������
Afjg
...
C�[fjg

A! C��������
B
...
C�[fkg

B ! C�
C�[�

Note that the subscript on A ! C and B ! C has to be the same to use this
rule.
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Here is a proof that uses disjunction elimination:

1:
2:
3:
4:
5:
6:
7:
8:

��������������

(A! C) ^ (B ! C)f1g����������
A _Bf2g
(A! C) ^ (B ! C)f1g
A! Cf1g
B ! Cf1g
Cf1;2g

(A _B)! Cf1g
((A! C) ^ (B ! C))! ((A _B)! C);

hyp
hyp
1; reit
3; ^E
3; ^E
2; 4; 5; _E
2� 6; ! I
1� 7; ! I

5 Distribution

One thing that is rather odd about the natural deduction system for relevant
logic is that it does not give us a clean proof of the distribution of conjunction
over disjunction. The proof in PC looks like this:

1:
2:
3:
4:
5:
6:
7:

8:
9:
10:
11:
12:
13:

��������������������������

A ^ (B _ C)
A
B _ C��������
B
A
A ^B
(A ^B) _ (A ^ C)��������
C
A
A ^ C
(A ^B) _ (A ^ C)

(A ^B) _ (A ^ C)
(A ^ (B _ C)) � ((A ^B) _ (A ^ C))

hyp
1; ^E
1; ^E
hyp
2; reit
4; 5; ^I
6; _I

hyp
2; reit
8; 9; ^I
10; _I
3; 4� 7; 8� 11; _E
1� 12; ! I

The problem with this proof, from a relevant point of view, is that once we add
subscripts we can�t do the conjunction introduction line 6 (or again at line 10):

1:
2:
3:
4:
5:
6:
...

���������������

A ^ (B _ C)f1g
Af1g
B _ Cf1g���������
Bf2g
Af1g
A ^Bf???g
...

hyp
1; ^E
1; ^E
hyp
2; reit
4; 5; ^I
...

We require that the subscripts at lines 4 and 5 to be the same to do the con-
junction introduction in line 6. But they aren�t and there is no other way in the
natural deduction system with the rules we have so far to get around this.
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So what we do is add distribution as its own rule:

(Dist) From A ^ (B _ C)� you may infer (A ^B) _ (A ^ C)�:

This is a bit ugly. It would be nice to be able to derive distribution from other
(�deeper�) features of conjunction and disjunction. [There is a slightly modi�ed
natural deduction system due to Ross Brady that does allow for the derivation
of distribution, but we will not examine it here.]

6 Negation

Like intuitionist logic, to treat negation in relevant logic we add a falsum, f .
Here f means �a contradiction occurs�. Unlike intuitionist logic, relevant logic
does not treat every contradiction as equivalent. Rather, the falsum can be
understood as the (in�nite) disjunction of all of the contradictions. In alge-
braic terms, it is the least upper bound of all the contradictions. The key is
the introduction of a new constant, f . This is a proposition which means �a
contradiction occurs�. Thus, the formula �A ! f�means �A implies that there
is a contradiction. We take A! f to mean the same thing as :A. Thus, to say
that it is not the case that A is to say the same thing as A implies that there is
a contradiction.
Thus, we start with the following rule of negation introduction:

(:I) From a proof of f from the hypothesis that A,

you may discharge the hypothesis and infer :A

Or, in more graphically: �������
Afkg
...
f�

:A��fkg
where k really is in �. We also have the following version of negation elimination:

(:E1) From A� and :A� you may infer f�[� .

Note that in relevant logic we cannot infer just anything from a contradiction.
But we are allowed to infer f from a contradiction, since f means that there is
a contradiction.
We need one more rule. This is a rule that ensures that we can eliminate

double negations. This rule looks a little like one that we met in the natural
deduction system for PC:

(:E2) From a proof of f� on the hypothesis that :Afkg,
you may discharge the hypothesis and infer A��fkg

where k really is in �.
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Here is a proof of ::A! A:

1:
2:
3:
4:
5:
6:

����������
::Af1g������
:Af2g
::Af1g
ff1;2g

Af1g
::A! A;

hyp
hyp
1; reit
2; 3; :E1
2� 4; :E2
1� 5; ! I

Here is a proof of A! ::A:

1:
2:
3:
4:
5:
6:

����������
Af1g������
:Af2g
Af1g
ff1;2g

::Af1g
A! ::A

hyp
hyp
1; reit
2; 3; :E
2� 4; :I
1� 5; ! I

And here is a proof of (A! B)! (:B ! :A):

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:

������������������

A! Bf1g��������������

:Bf2g����������
Af3g
A! Bf1g
Bf1;3g
:Bf2g
ff1;2;3g

:Af1;2g
:B ! :Af1g

(A! B)! (:B ! :A);

hyp
hyp
hyp
1; reit
3; 4; ! E
2; reit
5; 6; :E1
3� 7; :I
2� 8; ! I
1� 9; ! I

7 Exercises

Try to prove the following:

1: (A! (B ! C))! ((A! B)! (A! C))

2: (A! (A! B))! (A! B)

3: (A! :A)! :A

4: (A! :B)! (B ! :A)

5: (:A! B)! (:B ! A)
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1 Sequent-Style Natural Deduction Systems

Until now we have been studying Fitch-style natural deduction systems. In
Fitch-style systems, the di¤erences between some logical systems, like intuition-
ist and classical logic, are treated as di¤erences between the rules governing the
connectives. Thus, in the framework of Fitch-style natural deduction it would
seem that these logics confer di¤erent meanings on the same connectives. In
particular, it would seem that the di¤erence between classical and intuitionist
logic is that they give di¤erent meanings to negation.
In sequent-style systems � either Gentzen�s sequent calculus or Greg Re-

stall�s sequent-style natural deduction systems (which we are studying here),
the di¤erence between logical systems is not in their treatment of the connec-
tives. Rather, it is in the way that they treat the notion of proof itself. A
sequent is a string

X ` Y
where X and Y are structures of formulas. We will see a rigorous de�nition
of �structure� soon. The structure to the left of the turnstile is a structure
of premises and the structure to the right is a structure of conclusions. If
this sequent is provable in a particular system, then it can be said that the
conclusions Y follow from the premises X in that system. In Gentzen�s sequent
calculus for intuitionist logic (which he called LJ) admissible sequents have at
most a single formula as the premise structure (it may also be empty). In
the sequent calculus for classical logic (LK), structures with arbitrary numbers
of formulas are allowed as conclusions. Apart from that, the primitive rules
governing the connectives are the same for both systems. Thus, it can be said
that the two systems di¤erent, not in the meanings of the connectives, but in
the inferences that they take to be admissible.
In this lecture, we examine Restall�s natural deduction systems. Today we

will look in particular at the systems for the relevant logic R and intuitionist
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logic. And we will be able to compare and contrast them with regard to the
di¤erent structural rules that they allow.
The disadvantage of Restall�s sequent-style systems is that their treatment

of negation is rather complicated. I will avoid this by considering negation (and
f) -free systems.

2 Structural Rules and Meaning Rules

The set of structures is the smallest set such that:

� Every formula A is a structure;

� The symbol 0 is a structure;

� If X and Y are structures, so is (X;Y ):

A sequent is a string
X ` A

where X is a structure and A is a formula.
Structural rules allow us to manipulate the premise structure. For example,

one rule (not admissible in every system), tells us that if we have a substructure
X;Y in a premise structure Z, then we can have the same structure Y ;X.
We then say that in systems that admit this rule that the following is a valid
inference:

Z(X;Y ) ` A
Z(Y ;X) ` A

We can use this rule, for example, in deriving the sequent A ` (A! B)! B:

A! B ` A! B A ` A
!E

A! B;A ` B
A;A! B ` B CI

A ` (A! B)! B
!I

The rule that allows us to permute premises is called CI. Any sequent of the
form A ` A is an axiom of the system (and so can be a starting point for a
proof). We will explain the rules of implication introduction and elimination
soon.
The introduction and elimination rules for the connectives are calledmeaning

rules, since they are supposed to govern the meanings of the connectives.

3 Meaning Rules

Restall�s systems are natural deduction systems (and not Gentzen sequent sys-
tems) because each connective has an introduction and elimination rule, just as
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they do in Fitch-style systems. Here we will only treat implication, conjunction,
and disjunction. Negation is rather more di¢ cult.
The implication introduction rule is the following:

X;A ` B
X ` A! B

! I

This tells us that if A is the �nal premise (last undischarged hypothesis), we can
push it through the turnstile (discharge it) to make an implication. Clearly, this
mirrors the implication introduction rule of the Fitch-style system rather closely.
Similarly, the implication elimination rule is rather like that of the Fitch-style
system in that they both are closely modelled on modus ponens.

X ` A Y ` A! B

X;Y ` B ! E

Like the ! E rule of the Fitch-style system for R, this rule tells us that the
conclusion B was derived from the combination of the premises that gave us A
and A! B.
The conjunction rules are rather simple and are also very similar to the rules

for the Fitch-style system:

X ` A X ` B
X ` A ^B ^ I

X ` A ^B
X ` A

X ` A ^B
X ` B ^ E

Like the Fitch-style system, we cannot use conjunction introduction unless both
conjuncts are derived from the same hypotheses.
The disjunction introduction rules are very familiar looking as well:

X ` A
X ` A _B

X ` B
X ` A _B _ I

The disjunction elimination rule may not look familiar, but it is very reasonable:

Y (A) ` C Y (B) ` C X ` A _B
Y (X) ` C _ E

This tells us that if we can get C from using either A or B in a given context
and we can obtain A _ B from X, then we can replace A or B in that context
with X and still obtain C.

4 The Structural Rules

There are three structural rules that will include in all our systems. The �rst is
the cut rule, viz.,

X ` A Y (A) ` B
Y (X) ` B cut
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The cut rule is not like the other structural rules, since it is about combin-
ing premise structures, whereas the others are about modifying single premise
structures. The cut rule is useful, and we will use it, but we could do without
taking it as primitive, since it can be derived using the meaning rules:

X ` A
X ` A _A _I

Y (A) ` B Y (A) ` B
_E

Y (X) ` B

This proof requires the use of the disjunction rules. Sometimes, however, it is
useful to talk about fragments of our logics that do not contain disjunction.
Then we appeal to the cut rule as a primitive. For example, in a logic that
contains only conjunction the following rule can be derived:

X(A) ` C
X(A ^B) ` C

Here�s an easy proof:

A ^B ` A ^B ^E
A ^B ` A X(A) ` C

cut
X(A ^B) ` C

The other structural rules that we will include are called �left push�and �left
pop�. These have to do with the zero-place structural connective 0. As we shall
see, 0 is important for the understanding of a theorem in these systems. The
left push and pop rules tell us that 0 is a �left identity�in the algebraic sense:

(left push) X (= 0;X

(left pop) 0;X (= X:
Here is a list of the other structural rules taken verbatim from Restall (2000)

p 26:

Name Label Rule
Associativity B X;(Y;Z) (= (X;Y);Z
Twisted Associativity B0 X;(Y;Z) (= (Y;X);Z
Converse Associativity BC (X;Y);Z (= X;(Y;Z)
Strong Commutativity C (X;Y);Z (= (X;Z);Y
Weak Commutativity CI X;Y (= Y;X
Strong Contraction W (X;Y);Y (= X;Y
Weak Contraction WI X;X (= X
Mingle M X (= X;X
Weakening K X (= X;Y
Commuted Weakening K0 X (= Y;X

The reason why the arrow used to state the rule is backwards is that in con-
structing sequent style proofs we always start from the bottom, from what we
want to prove. Proofs are much easier to construct in that way.
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The basic system, without any structural rules (apart from cut, which can be
eliminated) is called B (for the �basic system�). It was originally discovered by
Richard Routley and Robert Meyer when they were constructing model theoretic
semantics for relevant logics. We will return to the topic of B and other weak
relevant logics in our �nal lecture tomorrow.

5 Relevant Logic (with and without Distribu-
tion)

We obtain a logic very close to R with the rules B, B0, C, and W (together with
cut, and left push and pop). But in this logic we cannot derive the distribution
rule, i.e.,

A ^ (B _ C) ` (A ^B) _ (A ^ C)

As we shall prove in section 6 below, the Fitch-style and Restall-style systems
for R without distribution make exactly the same inferences valid.
But how can we make valid distribution? In the Fitch-style system, we just

added it as a primitive rule. Here another method will be used, due (indepen-
dently) to Gregor Mints and J.M. Dunn. The trick is to add an extra structural
connective ; and to have it governed by di¤erent rules than ; obeys. So, let us
add ; together with the formation rule, if X and Y are structures, then so is
X;Y , the following structural rules (this table is taken verbatim from Restall
(2000) p 36):

Name Label Rule
Associativity eB X; (Y;Z) (= (X;Y ); Z
Commutativity eCI X;Y (= Y;X
Contraction eWI X;X (= X
Weakening eK X (= X;Y

We can now derive distribution as follows. First we do the following derivations:

B ` B
B; A ^ (B _ C) ` BeK

A ^ (B _ C) ` A ^ (B _ C)
^E

A ^ (B _ C) ` A
B;A ^ (B _ C) ` A eK

^I
B;A ^ (B _ C) ` A ^B

B;A ^ (B _ C) ` (A ^B) _ (A ^ C)_I

and

C ` C
C; A ^ (B _ C) ` CeK

A ^ (B _ C) ` A ^ (B _ C)
^E

A ^ (B _ C) ` A
B;A ^ (B _ C) ` A eK

^I
B;A ^ (B _ C) ` A ^ C

B;A ^ (B _ C) ` (A ^B) _ (A ^ C)_I
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But we also can easily derive

A ^ (B _ C) ` B _ C

So, by disjunction elimination we obtain

A ^ (B _ C); A ^ (B _ C) ` (A ^B) _ (A ^ C)

and, by contraction, we get

A ^ (B _ C) ` (A ^B) _ (A ^ C)

which is what we want.

6 An Equivalence Proof

Lemma 1 If there is a valid Fitch-style proof in the system for R without dis-
tribution of the form ���������

A1fig

: : :

�������
Anfkg

...
Cfi;:::;kg

then a sequent A1; :::; An ` C is provable in the sequent system for R without
distribution and if there is a Fitch-style proof of C; then 0 ` C is provable.

Proof. We take a valid Fitch-style proof and construct a deduction of the
corresponding sequent. for each line of the Fitch-style proof, B�, we construct
the sequent �� ` B, where �� is the multiset [Aj ; :::; Al], and each Ap (for p 2 �) is
the corresponding hypothesis in the Fitch-style proof and �; = 0. Then we show,
by induction on the length of the Fitch-style proof, that �� ` B is provable.
Case 1. � = fjg and Bfjg is a hypothesis. Then we have for �� ` B, B ` B,

which is an axiom and so is certainly provable.
Inductive hypothesis: for all previous steps, the sequents �� ` D are provable.
Case 2a. B� results from previous steps by conjunction introduction. Thus,

B = E ^ F for some formulas E and F and E� and F� are proven on previous
lines of the Fitch-style proof. By the inductive hypothesis, �� ` E and �� ` F
are provable. So, by the rule of conjunction introduction, �� ` E^F is provable,
hence �� ` B is provable.
Case 2b. B� results from a previous step by conjunction elimination. Easy.
Case 3a and 3b. B� results from a previous step by disjunction introduc-

tion. B� results from previous steps by disjunction elimination. Try on your
own.
Case 4a. B� results from previous steps by implication introduction. Then,

B = E ! F . Since B� results from implication introduction, we have, in the
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Fitch-style proof, �������
Efjg
...

F�[fjg
E ! F�

By the inductive hypothesis, � [ fjg ` F is provable in the sequent system.
This is the same as �� t [j] ` F . But [j] = [E], so we have �� t [E] ` F . By
implication introduction for the sequent system, then, we also have

�� ` E ! F

which is what we want.
Case 4b. B� results from previous steps by implication elimination. Thus,

there are previous steps in the Fitch-style proof, E ! B� and E
 such that
� [ 
 = �. Then, by the inductive hypothesis, �� ` E ! B and �
 ` E are
provable. By the rule of implication elimination, we can thus prove

��; �
 ` B

But, because of the associativity and commutativity of ; for R, this is the same
as

� [ 
 ` B;

which is what we want, since � [ 
 = �.
We now prove the converse.

Lemma 2 If the sequent A1; :::; An ` C is provable, there is a valid Fitch-style
proof of the form ���������

A1fig

: : :

�������
Anfkg

...
Cfi;:::;kg

Proof. Here is a sketch of how this proof works (the fully worked out proof
is extremely long). We prove this lemma by an induction on the length of the
derivation of A1; :::; An ` C.
Case 1. Suppose that A1; :::; An ` C is an axiom, i.e. is C ` C. Then we

have a proof in the Fitch-style system, i.e.���� CfigCfig

hyp
reit

Inductive Hypothesis: All of the previous sequents in the derivation ofA1; :::; An `
C are provable.
Case 2. Suppose that A1; :::; An ` C follows by a meaning rule. This is

straightforward and like what we did in the proof of lemma 1.
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Case 3. Suppose that A1; :::; An ` C follows from other provable sequents
by a structural rule. We have the rules B, C, and W to consider. For B and C,
you need to convince yourself that if C� is a step in a valid Fitch-style proof,
it does not matter what order the hypotheses are given. We can prove this
by showing that we can just rewrite all the undischarged hypotheses at the
beginning in whatever order and then use the reiteration rule to reconstruct
the proof. Similarly, the fact that we can reiterate freely into subproofs means
that we never have to assume the same formula twice to prove a given formula.
We could have always proven it by assuming it just once. This takes care of
W. (Note that you should be careful. Recall our proof of ::(::A � A) in
intuitionist logic in lecture 2. In this proof we assumed ::A more than once.
But we needed to do so to discharge it more than once. Here we are only talking
about undischarged hypotheses.)
Now we can state our equivalence theorem.

Theorem 3 (Equivalence) There is a valid Fitch-style proof in the system
for R without distribution of the form���������

A1fig

: : :

�������
Anfkg

...
Cfi;:::;kg

if and only if a sequent A1; :::; An ` C is provable in the sequent system for
R without distribution and if there is a Fitch-style proof of C; then 0 ` C is
provable.

Proof. Follows directly from lemmas 1 and 2.

7 Intuitionist Logic

The Restall system for intuitionist logic includes all of the rules of his table
together with left pop and left push. Alternatively, we can de�ne intuitionist
logic as the logic that admits K and the following rule:

Self-Distribution S (X;Z); (Y ;Z)(= (X;Y );Z

From S, we can derive the key axiom of intuitionist logic (formulated as a
Hilbert-style axiom system), (A ! (B ! C)) ! ((A ! B) ! (A ! C)).
The following is a derivation of this axiom:
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A! (B ! C) ` A! (B ! C) A ` A
!E

A! (B ! C);A ` B ! C

A! B ` A! B A ` A!E

A! B;A ` B
!E

(A! (B ! C);A); (A! B;A) ` C S

(A! (B ! C); A! B);A ` C
A! (B ! C); A! B ` A! C !I

(A! (B ! C)) ` ((A! B)! (A! C)) !I

0; (A! (B ! C)) ` ((A! B)! (A! C))
left push

0 ` (A! (B ! C))! ((A! B)! (A! C)) !I

From S, K, left push, and left pop, we can derive all the other rules. For
example, here are derivations of four of the rules. B:

X; (Y ;Z)
(= (X;Z); (Y ;Z) K
(= (X;Y );Z S

C:
(X;Y );Z
(= (X;Y ); (Z;Y ) K
(= (X;Z);Y S

CI:
X;Y
(= (0;X);Y left push
(= (0;Y );X C
(= Y ;X left pop

W:
(X;Y );Y
(= (X;Y ); (0;Y ) left push
(= (X; 0);Y S
(= (0;X);Y CI
(= X;Y left pop

As an exercise, prove all the other rules from the table, using S

8 Further Reading

� J.R. Hindley and J.P. Seldin, Introduction to Combinators and �-Calculus,
Cambridge: Cambridge University Press, 1986

� Greg Restall, An Introduction to Substructural Logics, London: Routlege,
2000
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1 Substructural Logics

In lecture 4 we looked at only two systems �intuitionist logic and R. But clearly
there are many other systems we can construct using these rules. Any system
that rejects one or more of the structural rules is called a substructural logic.
R is a substructural logic, but intuitionist logic is not. In this lecture we will
brie�y survey some substructural logics other than R.

2 Weaker Relevant Logics

A relevant logic, roughly, is a logic that rejects the paradoxes of material and
strict implication. So, every subsystem of a relevant logic is a relevant logic.
Thus, there are many relevant logics other than R. Here we will look at a
motivation for a class of weak relevant logics.
When Georg Cantor and Gottlob Frege �rst presented their di¤erent versions

of modern set theory, they adopted variants of the naïve axiom of comprehen-
sion. This axiom says that for any formula (with at most x free),

9x8y(y 2 x$ A):

As Ernst Zermelo and Bertrand Russell �rst showed, this axiom (together with
classical logic) gets us into a lot of trouble. They derived what has become
known as Russell�s paradox. That is, they showed that from this axiom one
could prove that there is a set that belongs to itself if and only if it does not
belong to itself. Given the law of excluded middle (and other classical principles)
this entails a contradiction.
Here we are not as interested in Russell�s paradox as we are in Curry�s

paradox. For some relevant logicians, the derivation of a contradiction is not
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by itself a worry. These logicians � called dialetheists (for example, Graham
Priest and Richard Sylvan) �believe that there are some true contradictions.
In relevant logic, it is not the case that we can derive every proposition from
a contradiction. It is triviality, not inconsistency, that worries dialetheists. So,
Russell�s paradox is not by itself a worry. Curry�s paradox, on the other hand,
does threaten to trivialize logical systems.
Here is a derivation of Curry�s paradox. Suppose that we accept naïve

comprehension. In terms of our sequent systems, this licences the following
axioms:

SC t 2 fx : A(x)g ` A(t)

SA A(t) ` t 2 fx : A(x)g

�SC�stands for �set conversion�and �SA�stands for �set abstraction�. Let p be
an arbitrary proposition (�the moon is made of green cheese�, �pigs �y�, �New
Zealand will win the next soccer world cup�, ...). Using SC and SA in the
context of the Restall system for R, we can prove that p. Let c be the set
fx : x 2 x! pg. The naive comprehension principle allows us to postulate the
existence of a set corresponding to any formula. Here the formula is x 2 x! p.
Now we have

c 2 c ` c 2 fx : x 2 x! pg= c 2 fx : x 2 x! pg ` c 2 c! p
SC

cut
c 2 c ` c 2 c! p c 2 c ` c 2 c

!E
c 2 c; c 2 c ` p
c 2 c ` p WI

We now can use left pop and ! I to prove

0 ` c 2 c! p

And then we use set abstraction to prove that 0 ` c 2 fx : x 2 x ! pg, which
is just

0 ` c 2 c

But we already have a derivation of c 2 c ` p. So, by cut we have

0 ` p.

Therefore, we have proven that any arbitrary formula is a theorem. This is a
bad thing.
Note that cut (which is derivable in all our systems) and WI are the only

structural rules used in the proof. Thus, in order to formulate a non-trivial set
theory with naïve comprehension, we need to reject WI. In fact, the rejection
of WI by itself is not su¢ cient (there are other structural rules that are close
enough to WI that they allow alternative proofs of the paradox). But, as Ross
Brady has shown, there are a large number of weak relevant logics that can
support a non-trivial naïve set theory.
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3 Linear Logic

Not all logical systems are meant to deal with inferences about propositions.
Linear logic was created as a logic of computational resources. Suppose that you
know that if you have a certain amount of free memory you can run a particular
program, call it �program 1�. Suppose that you know that this amount of free
memory will allow you to run another program, program 2. So, in slightly mixed
notation we have

M ` Run(1)
and

M ` Run(2)
But there is a sense in which we de�nitely do not want to infer

M ` Run(1) and Run(2):

Linear logic adds an intensional form of conjunction, � (fusion), to capture this
notion (both ... and). And it rejects contraction. So we have

M ` Run(1) M ` Run(2)
M ;M ` Run(1) � Run(2)

This tells us that if we have two lots of free memory of that particular size, then
we can run both programs. And this seems right. If we had WI, we would then
be able to infer that one lot of memory would do the trick, but we know that�s
false. So contraction (and WI, which we can infer from contraction) must go.

4 Categorial Grammars

In the 1950s, Joe Lambek constructed what we now think of as substructural
logics for the rules of natural language syntax. These have become known as
Lambek calculi, and are also known under the more general heading of categorial
grammars.
In order to understand how these systems work, let us look at a simple

example. It is standard in most natural languages that if we put a noun phrase
together in the right way with a verb phrase, we get a sentence. So we have the
following rule:

NP + V P �! S

Now, let�s consider a particular noun phrase, Lola, and a particular verb phrase,
is asleep. We use fusion (see the section on linear logic above) to mean con-
catenation. So, we can use the above rule to give us:

Lola � is asleep ` S

Fusion acts like a sort of intensional conjunction. But it is very weak. For
example, it is not commutative (we don�t want to say that is asleep �Lola is a
sentence).
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We also add two types of implication, n and =. For each of these, there are
two sets of introduction and elimination rules:

Lola � is asleep ` S
Lola ` V P=S =I

Lola � is asleep ` S
is asleep ` NPnS nI

And
Lola ` V P=S is asleep ` V P

Lola � is asleep ` S =E

Lola ` NP is asleep ` NPnS
Lola � is asleep ` S nE

Notice that Lola and is asleep each have more than one syntactic type. For
any expression, we can show that it has in�nitely many types, through a process
called type raising, that you can see at work in the use of the introduction rules
for n and =.

5 Further Reading

� Ross Brady, Universal Logic, Stanford: CSLI, 2006 (for weak relevant
logic)

� Jean-Yves Girard, The Blind Spot, 2006,
http://iml.univ-mrs.fr/~girard/coursang/coursang0.pdf.gz (for linear logic)

� Greg Restall, An Introduction to Substructural Logics, London: Routledge,
2000
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