Automated Theorem Proving

Peter Baumgartner

NICTA Peter.Baumgartner@nicta.com.au http://users.rsise.anu.edu.au/~baumgart/

Slides partially based on material by Alexander Fuchs, Harald Ganzinger, John Slaney, Viorica Sofronie-Stockermans and Uwe Waldmann

Overview of Automated Theorem Proving (ATP)

- Emphasis on automated proof methods for first-order logic
- More "breadth" than "depth"

Standard techniques covered

- Normal forms of formulas
- Herbrand interpretations
- Resolution calculus, unification
- Instance-based methods
- Model computation
- Set Theory reasoning: Satisfiability Modulo Theories

Part 1: What is Automated Theorem Proving?

First-Order Theorem Proving in Relation to ...

... Calculation: Compute function value at given point:

Problem: $2^2 = ?$ $3^2 = ?$ $4^2 = ?$

"Easy" (often polynomial)

... Constraint Solving: Given:

Problem: $x^2 = a$ where $x \in [1 \dots b]$ (x variable, a, b parameters)

J Instance:
$$a = 16, b = 10$$

Find values for variables such that problem instance is satisfied "Difficult" (often exponential, but restriction to finite domains)

First-Order Theorem Proving: Given:

Problem: $\exists x \ (x^2 = a \land x \in [1 \dots b])$

Is it satisfiable? unsatisfiable? valid?

"Very difficult" (often undecidable)

Logical Analysis Example: Three Coloring Problem

Problem: Given a map. Can it be colored using only three colors, where neighbouring countries are colored differently?

Three Coloring Problem - Graph Theory Abstraction

The Rôle of Theorem Proving?

Three Coloring Problem - Formalization

Every node has at least one color

```
\forall N \; (\operatorname{red}(N) \lor \operatorname{green}(N) \lor \operatorname{blue}(N))
```

Every node has at most one color

$$\forall N ((red(N) \rightarrow \neg green(N)) \land (red(N) \rightarrow \neg blue(N)) \land (blue(N) \rightarrow \neg green(N)))$$

Adjacent nodes have different color

$$\forall M, N \ (edge(M, N) \rightarrow (\neg(red(M) \land red(N)) \land \neg(green(M) \land green(N)) \land \neg(blue(M) \land blue(N))))$$

... with a constraint solver:

Let constraint solver find value(s) for variable(s) such that problem instance is satisfied

Here:	Variables:	Colors of nodes in graph
	Values:	Red, green or blue
	Problem instance:	Specific graph to be colored

... with a theorem prover

Let the theorem prover prove that the three coloring formula (see previous slide) + specific graph (as a formula) is satisfiable

- To solve problem instances a constraint solver is usually much more efficient than a theorem prover (e.g. use a SAT solver)
- Theorem provers are not even guaranteed to terminate, in general

Other tasks where theorem proving is more appropriate?

Functional dependency

Blue coloring depends functionally on the red and green coloring

Blue coloring does not functionally depend on the red coloring

Theorem proving: Prove a formula is valid. Here:

Is "the blue coloring is functionally dependent on the red/red and green coloring" (as a formula) valid, i.e. holds for all possible graphs?

I.e. analysis wrt. all instances \Rightarrow theorem proving is adequate

Theorem Prover Demo

Part 2: Methods in Automated Theorem Proving

How to Build a (First-Order) Theorem Prover

- 1. Fix an input language for formulas
- Fix a semantics to define what the formulas mean Will be always "classical" here
- 3. Determine the desired **services** from the theorem prover (The questions we would like the prover be able to answer)
- Design a calculus for the logic and the services
 Calculus: high-level description of the "logical analysis" algorithm This includes redundancy criteria for formulas and inferences
- 5. Prove the calculus is **correct** (sound and complete) wrt. the logic and the services, if possible
- 6. Design a **proof procedure** for the calculus
- 7. Implement the proof procedure (research topic of its own)

Go through the red issues in the rest of this talk

How to Build a (First-Order) Theorem Prover

1. Fix an input language for formulas

- Fix a semantics to define what the formulas mean Will be always "classical" here
- 3. Determine the desired **services** from the theorem prover (The questions we would like the prover be able to answer)
- 4. Design a calculus for the logic and the services
 Calculus: high-level description of the "logical analysis" algorithm
 This includes redundancy criteria for formulas and inferences
- 5. Prove the calculus is **correct** (sound and complete) wrt. the logic and the services, if possible
- 6. Design a **proof procedure** for the calculus
- 7. Implement the proof procedure (research topic of its own)

Languages and Services — Propositional SAT

Formula: Propositional logic formula ϕ

Question: Is ϕ satisfiable?

(Minimal model? Maximal consistent subsets?)

Theorem Prover: Based on BDD, **DPLL**, or stochastic local search

Issue: the formula ϕ can be **BIG**

- A Branch stands for an interpretation
- Purpose of splitting: satisfy a clause that is currently falsified
- Solution Close branch if some clause is plainly falsified by it (\star)

- A Branch stands for an interpretation
- Purpose of splitting: satisfy a clause that is currently falsified
- Solution Close branch if some clause is plainly falsified by it (\star)

(1) $A \lor B$ (2) $C \lor \neg A$ (3) $D \lor \neg C \lor \neg A$ (4) $\neg D \lor \neg B$

$$\{A, C\} \models A \lor B$$
$$\{A, C\} \models C \lor \neg A$$
$$\{A, C\} \not\models D \lor \neg C \lor \neg A$$
$$\{A, C\} \models \neg D \lor \neg B$$

A Branch stands for an interpretation

- Purpose of splitting: satisfy a clause that is currently falsified
- Solution Close branch if some clause is plainly falsified by it (\star)

(1) $A \lor B$ (2) $C \lor \neg A$ (3) $D \lor \neg C \lor \neg A$ (4) $\neg D \lor \neg B$

$$\{A, C, D\} \models A \lor B$$
$$\{A, C, D\} \models C \lor \neg A$$
$$\{A, C, D\} \models D \lor \neg C \lor \neg A$$
$$\{A, C, D\} \models \neg D \lor \neg B$$

Model $\{A, C, D\}$ found.

- A Branch stands for an interpretation
- Purpose of splitting: satisfy a clause that is currently falsified
- Solution Close branch if some clause is plainly falsified by it (\star)

Model $\{B\}$ found.

- A Branch stands for an interpretation
- **Purpose of splitting:** satisfy a clause that is currently falsified
- Close branch if some clause is plainly falsified by it (\star)

DPLL is the basis of most efficient SAT solvers today Automated Theorem Proving - Peter Baumgartner - p.18

Formula: Description Logic TBox + ABox (restricted FOL)

TBox: TerminologyProfessor $\Box \exists$ supervises . Student \sqsubseteq BusyPersonABox: Assertionsp : Professor (p, s) : supervises

Question: Is TBox + ABox satisfiable?

(Does *C* subsume *D*?, Concept hierarchy?)

Theorem Prover: Tableaux algorithms (predominantly)

Issue: Push expressivity of DLs while preserving decidability See overview lecture by Maurice Pagnucco on "Knowledge Representation and Reasoning"

Formula: Usually variable-free first-order logic formula ϕ Equality \doteq , combination of theories, free symbols Question: Is ϕ valid? (satisfiable? entailed by another formula?) $\models_{\mathbb{N}\cup\mathbb{L}} \forall I \ (c = 5 \rightarrow \operatorname{car}(\operatorname{cons}(3 + c, I)) \doteq 8)$

Theorem Prover: DPLL(T), translation into SAT, first-order provers

Issue: essentially undecidable for non-variable free fragment

$$P(0) \land (\forall x \ P(x) \rightarrow P(x+1)) \models_{\mathbb{N}} \forall x \ P(x)$$

Design a "good" prover anyways (ongoing research)

Formula: First-order logic formula ϕ (e.g. the three-coloring spec above) Usually with equality \doteq

Question: Is ϕ formula valid? (satisfiable?, entailed by another formula?) Theorem Prover: Superposition (Resolution), Instance-based methods

Issues

- Efficient treatment of equality
- Decision procedure for sub-languages or useful reductions?
 Can do e.g. DL reasoning? Model checking? Logic programming?
- Built-in inference rules for arrays, lists, arithmetics (still open research)

How to Build a (First-Order) Theorem Prover

- 1. Fix an **input language** for formulas
- Fix a semantics to define what the formulas mean Will be always "classical" here
- 3. Determine the desired **services** from the theorem prover (The questions we would like the prover be able to answer)
- 4. Design a calculus for the logic and the services
 Calculus: high-level description of the "logical analysis" algorithm
 This includes redundancy criteria for formulas and inferences
- 5. Prove the calculus is **correct** (sound and complete) wrt. the logic and the services, if possible
- 6. Design a **proof procedure** for the calculus
- 7. Implement the proof procedure (research topic of its own)

"The function f is continuous", expressed in (first-order) predicate logic: $\forall \varepsilon (0 < \varepsilon \rightarrow \forall a \exists \delta (0 < \delta \land \forall x (|x - a| < \delta \rightarrow |f(x) - f(a)| < \varepsilon)))$

Underlying Language

```
Variables \varepsilon, a, \delta, x
Function symbols 0, |\_|, \_ - \_, f(\_)
```

Terms are well-formed expressions over variables and function symbols

Predicate symbols $_ < _, _ = _$

Atoms are applications of predicate symbols to terms

```
Boolean connectives \land, \lor, \rightarrow, \neg
Quantifiers \forall, \exists
```

The function symbols and predicate symbols comprise a signature $\boldsymbol{\Sigma}$

"The function f is continuous", expressed in (first-order) predicate logic:

 $\forall \varepsilon (0 < \varepsilon \rightarrow \forall a \exists \delta (0 < \delta \land \forall x (|x - a| < \delta \rightarrow |f(x) - f(a)| < \varepsilon)))$

"Meaning" of Language Elements – Σ -Algebras

```
Universe (aka Domain): Set U
Variables \mapsto values in U (mapping is called "assignment")
Function symbols \mapsto (total) functions over U
Predicate symbols \mapsto relations over U
Boolean connectives \mapsto the usual boolean functions
Quantifiers \mapsto "for all ... holds", "there is a ..., such that"
Terms \mapsto values in U
Formulas \mapsto Boolean (Truth-) values
```

Let Σ_{PA} be the standard signature of Peano Arithmetic The standard interpretation \mathbb{N} for Peano Arithmetic then is:

$$U_{\mathbb{N}} = \{0, 1, 2, \ldots\}$$

$$0_{\mathbb{N}} = 0$$

$$s_{\mathbb{N}} : n \mapsto n + 1$$

$$+_{\mathbb{N}} : (n, m) \mapsto n + m$$

$$*_{\mathbb{N}} : (n, m) \mapsto n * m$$

$$\leq_{\mathbb{N}} = \{(n, m) \mid n \text{ less than or equal to } m\}$$

$$<_{\mathbb{N}} = \{(n, m) \mid n \text{ less than } m\}$$

Note that \mathbb{N} is just one out of many possible Σ_{PA} -interpretations

Evaluation of terms and formulas

Under the interpretation \mathbb{N} and the assignment $\beta : x \mapsto 1$, $y \mapsto 3$ we obtain

Important Basic Notion: Model

If ϕ is a closed formula, then, instead of $I(\phi) = True$ one writes

$$I \models \phi \qquad \qquad (`'I \text{ is a model of } \phi'')$$

E.g. $\mathbb{N} \models \forall x \exists y \ x < y$

Standard reasoning services can now be expressed semantically

E.g. "entailment":

Axioms over $\mathbb{R} \land \operatorname{continuous}(f) \land \operatorname{continuous}(g) \models \operatorname{continuous}(f+g)$? Services

Model(I,ϕ): $I \models \phi$? (Is I a model for ϕ ?) Validity(ϕ): $\models \phi$? ($I \models \phi$ for every interpretation?) Satisfiability(ϕ): ϕ satisfiable? ($I \models \phi$ for some interpretation?) Entailment(ϕ,ψ): $\phi \models \psi$? (does ϕ entail ψ ?, i.e. for every interpretation I: if $I \models \phi$ then $I \models \psi$?) Solve(I,ϕ): find an assignment β such that $I, \beta \models \phi$ Solve(ϕ): find an interpretation and assignment β such that $I, \beta \models \phi$

Additional complication: fix interpretation of some symbols (as in \mathbb{N} above)

What if theorem prover's native service is only "Is ϕ unsatisfiable?" ?

Semantics - Reduction to Unsatisfiability

- Suppose we want to prove an entailment $\phi \models \psi$
- Sequivalently, prove $\models \phi \rightarrow \psi$, i.e. that $\phi \rightarrow \psi$ is valid
- Solution Equivalently, prove that $\neg(\phi \rightarrow \psi)$ is not satisfiable (unsatisfiable)
- Solution Equivalently, prove that $\phi \wedge \neg \psi$ is unsatisfiable

Basis for (predominant) refutational theorem proving

Dual problem, much harder: to disprove an entailment $\phi \models \psi$ find a model of $\phi \wedge \neg \psi$

One motivation for (finite) model generation procedures

How to Build a (First-Order) Theorem Prover

- 1. Fix an input language for formulas
- Fix a semantics to define what the formulas mean Will be always "classical" here
- 3. Determine the desired **services** from the theorem prover (The questions we would like the prover be able to answer)
- Design a calculus for the logic and the services
 Calculus: high-level description of the "logical analysis" algorithm This includes redundancy criteria for formulas and inferences
- 5. Prove the calculus is **correct** (sound and complete) wrt. the logic and the services, if possible
- 6. Design a **proof procedure** for the calculus
- 7. Implement the proof procedure (research topic of its own)

Calculus - Normal Forms

Most first-order theorem provers take formulas in clause normal form

Why Normal Forms?

- Reduction of logical concepts (operators, quantifiers)
- Reduction of syntactical structure (nesting of subformulas)
- Can be exploited for efficient data structures and control

Translation into Clause Normal Form

Prop: the given formula and its clause normal form are equi-satisfiable

Prenex formulas have the form

$$Q_1 x_1 \ldots Q_n x_n F$$
,

where *F* is quantifier-free and $Q_i \in \{\forall, \exists\}$

Computing prenex normal form by the rewrite relation \Rightarrow_P :

$$\begin{array}{ll} (F \leftrightarrow G) & \Rightarrow_{P} & (F \rightarrow G) \wedge (G \rightarrow F) \\ \neg QxF & \Rightarrow_{P} & \overline{Q}x \neg F & (\neg Q) \\ (QxF \ \rho \ G) & \Rightarrow_{P} & Qy(F[y/x] \ \rho \ G), \ y \ \text{fresh}, \ \rho \in \{\wedge, \lor\} \\ (QxF \rightarrow G) & \Rightarrow_{P} & \overline{Q}y(F[y/x] \rightarrow G), \ y \ \text{fresh} \\ (F \ \rho \ QxG) & \Rightarrow_{P} & Qy(F \ \rho \ G[y/x]), \ y \ \text{fresh}, \ \rho \in \{\wedge, \lor, \rightarrow\} \end{array}$$

Here \overline{Q} denotes the quantifier **dual** to Q, i.e., $\overline{\forall} = \exists$ and $\overline{\exists} = \forall$.

 $\forall \varepsilon (0 < \varepsilon \rightarrow \forall a \exists \delta (0 < \delta \land \forall x (|x - a| < \delta \rightarrow |f(x) - f(a)| < \varepsilon)))$ \Rightarrow_P $\forall \varepsilon \forall a (0 < \varepsilon \rightarrow \exists \delta (0 < \delta \land \forall x (|x - a| < \delta \rightarrow |f(x) - f(a)| < \varepsilon)))$ \Rightarrow_P $\forall \varepsilon \forall a \exists \delta (0 < \varepsilon \rightarrow 0 < \delta \land \forall x (|x - a| < \delta \rightarrow |f(x) - f(a)| < \varepsilon))$ \Rightarrow_P $\forall \varepsilon \forall a \exists \delta (0 < \varepsilon \rightarrow \forall x (0 < \delta \land |x - a| < \delta \rightarrow |f(x) - f(a)| < \varepsilon))$ \Rightarrow_P $\forall \varepsilon \forall a \exists \delta \forall x (0 < \varepsilon \rightarrow (0 < \delta \land (|x - a| < \delta \rightarrow |f(x) - f(a)| < \varepsilon)))$

Intuition: replacement of $\exists y$ by a concrete choice function computing y from all the arguments y depends on.

Transformation \Rightarrow_S

$$\forall x_1,\ldots,x_n \exists y \ F \quad \Rightarrow_S \quad \forall x_1,\ldots,x_n \ F[f(x_1,\ldots,x_n)/y]$$

where f/n is a new function symbol (Skolem function).

In the Example

$$\begin{aligned} \forall \varepsilon \forall a \exists \delta \forall x (0 < \varepsilon \to 0 < \delta \land (|x - a| < \delta \to |f(x) - f(a)| < \varepsilon)) \\ \Rightarrow_S \\ \forall \varepsilon \forall a \forall x (0 < \varepsilon \to 0 < d(\varepsilon, a) \land (|x - a| < d(\varepsilon, a) \to |f(x) - f(a)| < \varepsilon) \end{aligned}$$

Clausal Normal Form (Conjunctive Normal Form)

Rules to convert the matrix of the formula in Skolem normal form into a conjunction of disjunctions:

$$\begin{array}{ll} (F \leftrightarrow G) & \Rightarrow_{K} & (F \rightarrow G) \wedge (G \rightarrow F) \\ (F \rightarrow G) & \Rightarrow_{K} & (\neg F \lor G) \\ \neg (F \lor G) & \Rightarrow_{K} & (\neg F \land \neg G) \\ \neg (F \land G) & \Rightarrow_{K} & (\neg F \lor \neg G) \\ \neg \neg F & \Rightarrow_{K} & F \\ F \land G) \lor H & \Rightarrow_{K} & (F \lor H) \land (G \lor H) \\ (F \land \top) & \Rightarrow_{K} & F \\ (F \land \bot) & \Rightarrow_{K} & \bot \\ (F \lor \top) & \Rightarrow_{K} & \top \\ (F \lor \bot) & \Rightarrow_{K} & F \end{array}$$

They are to be applied modulo associativity and commutativity of \wedge and \vee

 $orall arepsilon orall a orall x (0 < arepsilon o 0 < d(arepsilon, a) \wedge (|x - a| < d(arepsilon, a) o |f(x) - f(a)| < arepsilon))$ $\Rightarrow_{\mathcal{K}}$

$$0 < d(\varepsilon, a) \lor \neg (0 < \varepsilon)$$

 $\neg (|x - a| < d(\varepsilon, a)) \lor |f(x) - f(a)| < \varepsilon \lor \neg (0 < \varepsilon)$

Note: The universal quantifiers for the variables ε , *a* and *x*, as well as the conjunction symbol \wedge between the clauses are not written, for convenience

 $N = \{C_1, \ldots, C_k\}$ is called the **clausal (normal) form** (CNF) of F

Note: the variables in the clauses are implicitly universally quantified

Instead of showing that F is unsatisfiable, the proof problem from now is to show that N is unsatisfiable

Can do better than "searching through all interpretations"

Theorem: N is satisfiable iff it has a Herbrand model
A Herbrand interpretation (over a given signature $\Sigma)$ is a Σ -algebra ${\mathcal A}$ such that

Solution The universe is the set T_{Σ} of ground terms over Σ (a ground term is a term without any variables):

$$U_{\mathcal{A}} = \mathsf{T}_{\Sigma}$$

Solution Every function symbol from Σ is "mapped to itself":

 $f_{\mathcal{A}}$: $(s_1, \ldots, s_n) \mapsto f(s_1, \ldots, s_n)$, where f is n-ary function symbol in Σ

Example

$$\Sigma_{Pres} = (\{0/0, s/1, +/2\}, \{

$$U_{\mathcal{A}} = \{0, s(0), s(s(0)), \dots, 0+0, s(0)+0, \dots, s(0+0), s(s(0)+0), \dots\}$$

$$0 \mapsto 0, s(0) \mapsto s(0), s(s(0)) \mapsto s(s(0)), \dots, 0+0 \mapsto 0+0, \dots$$$$

Herbrand Interpretations

Only interpretations p_A of predicate symbols $p \in \Sigma$ is undetermined in a Herbrand interpretation

 $p_{\mathcal{A}}$ represented as the set of ground atoms

 $\{p(s_1, \ldots, s_n) \mid (s_1, \ldots, s_n) \in p_A \text{ where } p \in \Sigma \text{ is } n\text{-ary predicate symbol}\}$

• Whole interpretation represented as $\bigcup_{p \in \Sigma} p_A$

Example

$$\begin{split} & \verb"> \mathbb{N} \text{ as Herbrand interpretation over } \Sigma_{Pres} \\ & I = \{ & 0 \leq 0, \ 0 \leq s(0), \ 0 \leq s(s(0)), \ \dots, \\ & 0 + 0 \leq 0, \ 0 + 0 \leq s(0), \ \dots, \\ & \dots, \ (s(0) + 0) + s(0) \leq s(0) + (s(0) + s(0)), \dots \} \end{split}$$

Proposition

A Skolem normal form $\forall \phi$ is unsatisfiable iff it has no Herbrand model

Theorem (Skolem-Herbrand-Theorem)

 $\forall \phi$ has no Herbrand model iff some finite set of ground instances $\{\phi\gamma_1, \ldots, \phi\gamma_n\}$ is unsatisfiable

Applied to clause logic:

Theorem (Skolem-Herbrand-Theorem)

A set N of Σ -clauses is unsatisfiable iff some finite set of ground instances of clauses from N is unsatisfiable

Leads immediately to theorem prover "Gilmore's Method"

Outer loop: Grounding

Preprocessing:

Inner loop: Propositional Method

Inner loop: Propositional Method

Inner loop: Propositional Method

Calculi for First-Order Logic Theorem Proving

- Gilmore's method reduces proof search in first-order logic to propositional logic unsatisfiability problems
- Main problem is the unguided generation of (very many) ground clauses
- All modern calculi address this problem in one way or another, e.g.
 - Guidance: Instance-Based Methods are similar to Gilmore's method but generate ground instances in a guided way
 - Avoidance: Resolution calculi need not generate the ground instances at all

Resolution inferences operate directly on clauses, not on their ground instances

Next: propositional Resolution, lifting, first-order Resolution

The Propositional Resolution Calculus Res

Modern versions of the first-order version of the resolution calculus [Robinson 1965] are (still) the most important calculi for FOTP today. **Propositional resolution inference rule**:

$$\frac{C \lor A \qquad \neg A \lor D}{C \lor D}$$

Terminology: $C \lor D$: resolvent; A: resolved atom

Propositional (positive) factorisation inference rule:

$$\frac{C \lor A \lor A}{C \lor A}$$

These are **schematic inference rules**:

C and D – propositional clauses

A - propositional atom

" \vee " is considered associative and commutative

Sample Proof

1.	$\neg A \lor \neg A \lor B$	(given)
2.	$A \lor B$	(given)
3.	$\neg C \lor \neg B$	(given)
4.	С	(given)
5.	$\neg A \lor B \lor B$	(Res. 2. into 1.)
6.	$ eg A \lor B$	(Fact. 5.)
7.	$B \lor B$	(Res. 2. into 6.)
8.	В	(Fact. 7.)
9.	$\neg C$	(Res. 8. into 3.)
10.	\perp	(Res. 4. into 9.)

Soundness of Propositional Resolution

Proposition

Propositional resolution is sound

Proof:

Let $I \in \Sigma$ -Alg. To be shown:

- 1. for resolution: $I \models C \lor A$, $I \models D \lor \neg A \Rightarrow I \models C \lor D$
- 2. for factorization: $I \models C \lor A \lor A \Rightarrow I \models C \lor A$

Ad (i): Assume premises are valid in *I*. Two cases need to be considered: (a) *A* is valid in *I*, or (b) $\neg A$ is valid in *I*.

a)
$$I \models A \Rightarrow I \models D \Rightarrow I \models C \lor D$$

b)
$$I \models \neg A \Rightarrow I \models C \Rightarrow I \models C \lor D$$

Ad (ii): even simpler

Theorem:

Propositional Resolution is refutationally complete

- Solution That is, if a propositional clause set is unsatisfiable, then Resolution will derive the empty clause \perp eventually
- Solution More precisely: If a clause set is unsatisfiable and closed under the application of the Resolution and Factorization inference rules, then it contains the empty clause \perp
- Perhaps easiest proof: semantic tree proof technique (see blackboard)
- This result can be considerably strengthened, some strengthenings come for free from the proof

Propositional resolution is not suitable for first-order clause sets

Propositional resolution

Clauses	Ground instances
P(f(x), y)	$\{P(f(a), a), \ldots, P(f(f(a)), f(f(a))), \ldots\}$
$\neg P(z, z)$	$\{\neg P(a),\ldots,\neg P(f(f(a)),f(f(a))),\ldots\}$

Only common instances of P(f(x), y) and P(z, z) give rise to inference:

$$\frac{P(f(f(a)), f(f(a)))}{\bot} \neg P(f(f(a)), f(f(a)))$$

Unification

All common instances of P(f(x), y) and P(z, z) are instances of P(f(x), f(x))P(f(x), f(x)) is computed deterministically by unification

First-order resolution

$$\frac{P(f(x), y) \qquad \neg P(z, z)}{\bot}$$

Justified by existence of P(f(x), f(x))

Can represent infinitely many propositional resolution inferences

Substitutions and Unifiers

Solution σ is a mapping from variables to terms which is the identity almost everywhere

Example: $\sigma = [y \mapsto f(x), z \mapsto f(x)]$

- A substitution can be **applied** to a term or atom t, written as $t\sigma$ Example, where σ is from above: $P(f(x), y)\sigma = P(f(x), f(x))$
- A substitution γ is a **unifier** of *s* and *t* iff $s\gamma = t\gamma$

Example: $\gamma = [x \mapsto a, y \mapsto f(a), z \mapsto f(a)]$ is a unifier of P(f(x), y) and P(z, z)

A unifier σ of s is most general iff for every unifier γ of s and t there is a substitution δ such that $\gamma = \sigma \circ \delta$; notation: $\sigma = mgu(s, t)$

Example: $\sigma = [y \mapsto f(x), z \mapsto f(x)] = mgu(P(f(x), y), P(z, z))$

There are (linear) algorithms to compute mgu's or return "fail"

$$\frac{C \lor A \qquad D \lor \neg B}{(C \lor D)\sigma} \quad \text{if } \sigma = \text{mgu}(A, B) \qquad [\text{resolution}]$$

$$\frac{C \lor A \lor B}{(C \lor A)\sigma} \qquad \text{if } \sigma = \mathsf{mgu}(A, B) \quad [\mathsf{factorization}]$$

In both cases, A and B have to be renamed apart (made variable disjoint).

Example

$$\frac{Q(z) \lor P(z, z) \neg P(x, y)}{Q(x)} \quad \text{where } \sigma = [z \mapsto x, y \mapsto x] \quad [\text{resolution}]$$
$$\frac{Q(z) \lor P(z, a) \lor P(a, y)}{Q(a) \lor P(a, a)} \quad \text{where } \sigma = [z \mapsto a, y \mapsto a] \quad [\text{factorization}]$$

Theorem: Resolution is **refutationally complete**

- Solution will derive the empty clause \perp eventually
- Solution More precisely: If a clause set is unsatisfiable and closed under the application of the Resolution and Factorization inference rules, then it contains the empty clause \perp
- Perhaps easiest proof: Herbrand Theorem + completeness of propositional resolution + Lifting Theorem (see blackboard)

Lifting Theorem: the conclusion of any propositional inference on ground instances of first-order clauses can be obtained by instantiating the conclusion of a first-order inference on the first-order clauses

Closure can be achieved by the "Given Clause Loop"

As used in the Otter theorem prover:

Lists of clauses maintained by the algorithm: usable and sos. Initialize sos with the input clauses, usable empty.

Algorithm (straight from the Otter manual):

While (sos is not empty and no refutation has been found)

- 1. Let given_clause be the 'lightest' clause in sos;
- 2. Move given_clause from sos to usable;
- 3. Infer and process new clauses using the inference rules in effect; each new clause must have the given_clause as one of its parents and members of usable as its other parents; new clauses that pass the retention tests are appended to sos;

End of while loop.

Fairness: define clause weight e.g. as "depth + length" of clause.

The "Given Clause Loop" - Graphically

Recall:

- Gilmore's method reduces proof search in first-order logic to propositional logic unsatisfiability problems
- Main problem is the unguided generation of (very many) ground clauses
- All modern calculi address this problem in one way or another, e.g.
 - Guidance: Instance-Based Methods are similar to Gilmore's method but generate ground instances in a guided way
 - Avoidance: Resolution calculi need not generate the ground instances at all

Resolution inferences operate directly on clauses, not on their ground instances

Next: Instance-Based Method "Inst-Gen"

Inst-Gen [Ganzinger&Korovin 2003]

Idea: "semantic" guidance: add only instances that are falsified by a "candidate model"

Eventually, all repairs will be made or there is no more candidate model **Important notation:** \bot denotes both a unique constant and a substitution

that maps every variable to ot

Example (*S* is "current clause set"):

 $S: P(x, y) \lor P(y, x) \qquad S \bot: P(\bot, \bot) \lor P(\bot, \bot) \\ \neg P(x, x) \qquad \neg P(\bot, \bot)$

Analyze $S \perp$:

Case 1: SAT detects unsatisfiability of $S \perp$ Then Conclude S is unsatisfiable

But what if $S \perp$ is satisfied by some model, denoted by I_{\perp} ?

Main idea: associate to model I_{\perp} of S_{\perp} a candidate model I_S of S. Calculus goal: add instances to S so that I_S becomes a model of SExample:

$$S: \underline{P(x)} \lor Q(x) \qquad S \bot: \underline{P(\bot)} \lor Q(\bot) \\ \underline{\neg P(a)} \qquad \underline{\neg P(a)}$$

Analyze $S \perp$:

Case 2: SAT detects model $I_{\perp} = \{P(\perp), \neg P(a)\}$ of S_{\perp}

Case 2.1: candidate model $I_S = \{\neg P(a)\}$ derived from literals <u>selected</u> in S by I_{\perp} is not a model of S

Add "problematic" instance $P(a) \lor Q(a)$ to S to refine I_S

Clause set after adding $P(a) \lor Q(a)$

$$S: \underline{P(x)} \lor Q(x) \qquad S \bot : \underline{P(\bot)} \lor Q(\bot) \\ P(a) \lor \underline{Q(a)} \qquad P(a) \lor \underline{Q(a)} \\ \underline{\neg P(a)} \qquad \underline{\neg P(a)} \\ \end{array}$$

Analyze $S \perp$:

Case 2: SAT detects model $I_{\perp} = \{P(\perp), Q(a), \neg P(a)\}$ of S_{\perp}

Case 2.2: candidate model $I_S = \{Q(a), \neg P(a)\}$ derived from literals <u>selected</u> in S by I_{\perp} is a model of S

Then conclude S is satisfiable

How to derive candidate model I_S ?

It provides (partial) interpretation for S_{ground} for given clause set S

$$S: \underline{P(x)} \lor Q(x) \qquad \Sigma = \{a, b\}, S_{\text{ground}}: \underline{P(b)} \lor Q(b)$$
$$\underline{P(a)} \lor \underline{Q(a)} \qquad P(a) \lor \underline{Q(a)}$$
$$\underline{\neg P(a)}$$

- So For each $C_{ground} \in S_{ground}$ find most specific $C \in S$ that can be instantiated to C_{ground}
- Select literal in C_{ground} corresponding to selected literal in that C
- Add <u>selected literal</u> of that C_{ground} to I_S if not in conflict with I_S

Thus, $I_S = \{P(b), Q(a), \neg P(a)\}$

Model Generation

Scenario: no "theorem" to prove, or disprove a "theorem" A model provides further information then Why compute models?

Planning: Can be formalised as propositional satisfiability problem. [Kautz& Selman, AAAI96; Dimopolous et al, ECP97]

Diagnosis: Minimal models of *abnormal* literals (circumscription). [Reiter, Al87]
Databases: View materialisation, View Updates, Integrity Constraints.
Nonmonotonic reasoning: Various semantics (GCWA, Well-founded, Perfect, Stable,...), all based on minimal models. [Inoue et al, CADE 92]
Software Verification: Counterexamples to conjectured theorems.
Theorem proving: Counterexamples to conjectured theorems.
Finite models of quasigroups, (MGTP/G). [Fujita et al, IJCAI 93]

Why compute models (cont'd)?

Natural Language Processing:

Solution Maintain models $\mathcal{I}_1, \ldots, \mathcal{I}_n$ as different readings of discourses:

 $\mathfrak{I}_i \models BG\text{-}Knowledge \cup Discourse_so_far$

Consistency checks ("Mia's husband loves Sally. She is not married.")

BG-Knowledge \cup Discourse_so_far $\not\models \neg$ New_utterance

- *iff* BG-Knowledge \cup Discourse_so_far \cup New_utterance is satisfiable
- Informativity checks ("Mia's husband loves Sally. She is married.")

BG-Knowledge \cup Discourse_so_far $\not\models$ New_utterance

iff BG-Knowledge \cup Discourse_so_far $\cup \neg New_utterance$ is satisfiable

The following axioms specify a group

$$\begin{array}{rcl} \forall x,y,z & : & (x*y)*z & = & x*(y*z) & (\text{associativity}) \\ \forall x & : & e*x & = & x & (\text{left}-\text{identity}) \end{array}$$

$$\forall x : i(x) * x = e \qquad (left - inverse)$$

Does

$$\forall x, y : x * y = y * x \quad (commutat.)$$

follow?

No, it does not

Example - Group Theory

Counterexample: a group with finite domain of size 6, where the elements 2 and 3 are not commutative: Domain: $\{1, 2, 3, 4, 5, 6\}$

e:1

;.		1	2	3	4	5	6
1.		1	2	3	5	4	6
		1	2	3	4	5	6
*:	1	1	2	3	4	5	6
	2	2	1	4	3	6	5
	3	3	5	1	6	2	4
	4	4	6	2	5	1	3
	5	5	3	6	1	4	2
	6	6	4	5	2	3	1

Finite Model Finders - Idea

- Sume a fixed domain size *n*.
- Use a tool to decide if there exists a model with domain size n for a given problem.
- \square Do this starting with n = 1 with increasing *n* until a model is found.
- Solution Note: domain of size n will consist of $\{1, \ldots, n\}$.

1. Approach: SEM-style

- Jools: SEM, Finder, Mace4
- Specialized constraint solvers.
- For a given domain generate all ground instances of the clause.
- Solution Example: For domain size 2 and clause p(a, g(x)) the instances are p(a, g(1)) and p(a, g(2)).

1. Approach: SEM-style

- Set up multiplication tables for all symbols with the whole domain as cell values.
- Solution Example: For domain size 2 and function symbol g with arity 1 the cells are $g(1) = \{1, 2\}$ and $g(2) = \{1, 2\}$.
- Try to restrict each cell to exactly 1 value.
- Solution The clauses are the constraints guiding the search and propagation.
- Solution Example: if the cell of *a* contains $\{1\}$, the clause a = b forces the cell of *b* to be $\{1\}$ as well.

2. Approach: Mace-style

- 🔎 Tools: Mace2, Paradox
- For given domain size n transform first-order clause set into equisatisfiable propositional clause set.
- Original problem has a model of domain size n iff the transformed problem is satisfiable.
- Sun SAT solver on transformed problem and translate model back.

Paradox - Example

Domain:	$\{1, 2\}$
Clauses:	$\{p(a) \lor f(x) = a\}$
Flattened:	$p(y) \lor f(x) = y \lor a \neq y$
Instances:	$p(1) \lor f(1) = 1 \lor a \neq 1$
	$p(2) \lor f(1) = 1 \lor a \neq 2$
	$p(1) \lor f(2) = 1 \lor a \neq 1$
	$p(2) \lor f(2) = 1 \lor a \neq 2$
Totality:	$a=1 \lor a=2$
	$f(1)=1\vee f(1)=2$
	$f(2) = 1 \lor f(2) = 2$
Functionality:	$a eq 1 \lor a eq 2$
	$f(1) eq 1 \lor f(1) eq 2$
	$f(2) \neq 1 \lor f(2) \neq 2$

A model is obtained by setting the blue literals true

Theory Reasoning

Let T be a first-order theory of signature Σ Let L be a class of Σ -formulas

The T-validity Problem

- Solutions ϕ in L, is it the case that $T \models \phi$? More accurately:
- Siven ϕ in L, is it the case that $T \models \forall \phi$?

Examples

- "0/0, s/1, +/2, =/2, $\leq /2'' \models \exists y.y > x$
- "An equational theory" $\models \exists s_1 = t_1 \land \cdots \land s_n = t_n$ (E-Unification problem)
- "Some group theory" $\models s = t$ (Word problem)

The T-validity problem is decidably only for restricted L and T

Theory-Reasoning in Automated First-Order Theorem Proving

- Semi-decide the *T*-validity problem, $T \models \phi$?
- $\checkmark \phi$ arbitrary first-order formula, T universal theory
- Generality is strength and weakness at the same time
- Really successful only for specific instance:
 - $\mathcal{T} = equality$, inference rules like paramodulation

Satisfiability Modulo Theories (SMT)

- **Solution** Decide the *T*-validity problem, $T \models \phi$?
- Solution: ϕ is quantifier-free, i.e. all variables implicitly universally quantified
- Applications in particular to formal verification

Checking Satisfiability Modulo Theories

Given: A quantifier-free formula ϕ (implicitly existentially quantified) **Task:** Decide whether ϕ is T-satisfiable (*T*-validity via " $T \models \forall \phi$ " iff " $\exists \neg \phi$ is not *T*-satisfiable")

Approach: eager translation into SAT

- Encode problem into a T-equisatisfiable propositional formula
- Feed formula to a SAT-solver

Approach: lazy translation into SAT

- Couple a SAT solver with a given decision procedure for T-satisfiability of ground literals
- Solution For instance if T is "equality" then the Nelson-Oppen congruence closure method can be used
$$g(a) = c \land f(g(a)) \neq f(c) \lor g(a) = d \land c \neq d$$

Theory: Equality

$$\underbrace{g(a)=c}_{1} \land \underbrace{f(g(a))\neq f(c)}_{\overline{2}} \lor \underbrace{g(a)=d}_{3} \land \underbrace{c\neq d}_{\overline{4}}$$

$$\underbrace{g(a) = c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) = d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

• Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT solver.

$$\underbrace{g(a)=c}_{1} \land \underbrace{f(g(a))\neq f(c)}_{\overline{2}} \lor \underbrace{g(a)=d}_{3} \land \underbrace{c\neq d}_{\overline{4}}$$

• Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT solver.

• SAT solver returns model {1, 2, 4}. Theory solver finds {1, 2} *E*-unsatisfiable.

$$\underbrace{g(a)=c}_{1} \land \underbrace{f(g(a))\neq f(c)}_{\overline{2}} \lor \underbrace{g(a)=d}_{3} \land \underbrace{c\neq d}_{\overline{4}}$$

- Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT solver.
- SAT solver returns model {1, 2, 4}.
 Theory solver finds {1, 2} *E*-unsatisfiable.
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2\}$ to SAT solver.

$$\underbrace{g(a)=c}_{1} \land \underbrace{f(g(a))\neq f(c)}_{\overline{2}} \lor \underbrace{g(a)=d}_{3} \land \underbrace{c\neq d}_{\overline{4}}$$

- Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT solver.
- SAT solver returns model {1, 2, 4}.
 Theory solver finds {1, 2} *E*-unsatisfiable.
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2\}$ to SAT solver.
- SAT solver returns model {1, 2, 3, 4}.
 Theory solver finds {1, 3, 4} *E*-unsatisfiable.

$$\underbrace{g(a)=c}_{1} \land \underbrace{f(g(a))\neq f(c)}_{\overline{2}} \lor \underbrace{g(a)=d}_{3} \land \underbrace{c\neq d}_{\overline{4}}$$

- Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT solver.
- SAT solver returns model {1, 2, 4}.
 Theory solver finds {1, 2} *E*-unsatisfiable.
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2\}$ to SAT solver.
- SAT solver returns model {1, 2, 3, 4}.
 Theory solver finds {1, 3, 4} *E*-unsatisfiable.
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2, \overline{1} \lor \overline{3} \lor 4\}$ to SAT solver. SAT solver finds $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2, \overline{1} \lor \overline{3} \lor 4\}$ unsatisfiable.

Lazy Translation into SAT: Summary

- Abstract *T*-atoms as propositional variables
- SAT solver computes a model, i.e. satisfying boolean assignment for propositional abstraction (or fails)
- Solution from SAT solver may not be a *T*-model. If so,
 - Refine (strengthen) propositional formula by incorporating reason for false solution
 - Start again with computing a model

Theory Consequences

The theory solver may return consequences (typically literals) to guide the SAT solver

Online SAT solving

The SAT solver continues its search after accepting additional clauses (rather than restarting from scratch)

Preprocessing atoms

Atoms are rewritten into normal form, using theory-specific atoms (e.g. associativity, commutativity)

Several layers of decision procedures

"Cheaper" ones are applied first

Theories:

- \mathcal{R} : theory of rationals $\Sigma_{\mathcal{R}} = \{\leq, +, -, 0, 1\}$
- \mathcal{L} : theory of lists $\Sigma_{\mathcal{L}} = \{=, hd, tl, nil, cons\}$
- *E*: theory of equality
 ∑: free function and predicate symbols

Problem: Is

 $x \leq y \wedge y \leq x + hd(cons(0, nil)) \wedge P(h(x) - h(y)) \wedge \neg P(0)$ satisfiable in $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E}$? G. Nelson and D.C. Oppen: *Simplification by cooperating decision procedures*, ACM Trans. on Programming Languages and Systems, 1(2):245-257, 1979.

Given:

- T_1, T_2 first-order theories with signatures Σ_1, Σ_2
- ϕ quantifier-free formula over $\Sigma_1 \cup \Sigma_2$

Obtain a decision procedure for satisfiability in $T_1 \cup T_2$ from decision procedures for satisfiability in T_1 and T_2 .

 $x \le y \land y \le x + \operatorname{hd}(\operatorname{cons}(0,\operatorname{nil})) \land P(h(x) - h(y)) \land \neg P(0)$

$$x \le y \land y \le x + \underbrace{\mathrm{hd}(\mathrm{cons}(0,\mathrm{nil}))}_{v_1} \land P(\underbrace{h(x)}_{v_3} - \underbrace{h(y)}_{v_4}) \land \neg P(\underbrace{0}_{v_5})$$

$$\begin{aligned} x &\leq y \wedge y \leq x + \underbrace{\mathrm{hd}(\mathrm{cons}(0,\mathrm{nil}))}_{v_1} \wedge P(\underbrace{h(x)}_{v_3} - \underbrace{h(y)}_{v_4}) \wedge \neg P(\underbrace{0}_{v_5}) \\ & \underbrace{\mathcal{R}}_{v_2} \\ \hline \mathcal{R} & \underbrace{\mathcal{L}}_{v_2} \\ \hline x &\leq y \\ y &\leq x + v_1 \\ \hline y &\leq x + v_1 \\ \hline \end{array}$$

$x \le y \land y \le x + 1$	$\operatorname{nd}(\operatorname{cons}(0,\operatorname{nil})) \wedge P(h(x))$	$-\underline{h(y)}) \wedge \neg P(\underline{0})$
	v_1 v_3	V4 V5
	3	V-2
\mathcal{R}	\mathcal{L}	ε
$x \leq y$		$P(v_2)$
$y \leq x + v_1$		$\neg P(v_5)$
$v_2 = v_3 - v_4$	$v_1 = hd(cons(v_5, nil))$	$v_3 = h(x)$
$v_5 = 0$		$v_A = h(y)$

Variable abstraction + equality propagation:

$x \le y \land y \le x + \mathbf{h}$	$\operatorname{nd}(\operatorname{cons}(0,\operatorname{nil})) \wedge P(h(x))$	$-\underline{h(y)}) \wedge \neg P(\underline{0})$
	v_1 v_3	V4 V5
	2	1/2
\mathcal{R}	\mathcal{L}	ε
$x \leq y$		$P(v_2)$
$y \leq x + v_1$		$\neg P(v_5)$
$v_2 = v_3 - v_4$	$v_1 = hd(cons(v_5, nil))$	$v_3 = h(x)$
$v_{5} = 0$		$v_4 = h(y)$

 $v_1 = v_5$

$x \le y \land y \le x + \operatorname{hd}(\operatorname{cons}(0,\operatorname{nil})) \land P(h(x) - h(y)) \land \neg P(\underline{0})$		
	v_1 v_3	V4 V5
	2	1/2
\mathcal{R}	\mathcal{L}	ε
$x \leq y$		$P(v_2)$
$y \leq x + v_1$		$\neg P(v_5)$
$v_2 = v_3 - v_4$	$v_1 = hd(cons(v_5, nil))$	$v_3 = h(x)$
$v_5 = 0$		$v_4 = h(y)$
x = y	$v_1 = v_5$	

$x \le y \land y \le x + \mathbf{b}$	$\operatorname{ad}(\operatorname{cons}(0,\operatorname{nil})) \wedge P(h(x) -$	$-\underbrace{h(y)}{\wedge} \neg P(\underline{0})$
	v1 v3	V4 V5
	1	¹ 2
\mathcal{R}	\mathcal{L}	ε
$x \leq y$		$P(v_2)$
$y \le x + v_1$		$\neg P(v_5)$
$v_2 = v_3 - v_4$	$v_1 = \operatorname{hd}(\operatorname{cons}(v_5, \operatorname{nil}))$	$v_3 = h(x)$
$v_5 = 0$		$v_4 = h(y)$
x = y	$v_1 = v_5$	$v_3 = v_4$

$x \le y \land y \le x + 1$	$\operatorname{nd}(\operatorname{cons}(0,\operatorname{nil})) \wedge P(\underbrace{h(x)})$	$-\underbrace{h(y)}_{v_5}) \wedge \neg P(\underbrace{0}_{v_5})$
		U ²
\mathcal{R}	\mathcal{L}	ε
$x \leq y$		$P(v_2)$
$y \leq x + v_1$		$\neg P(v_5)$
$v_2 = v_3 - v_4$	$v_1 = hd(cons(v_5, nil))$	$v_3 = h(x)$
$v_{5} = 0$		$v_4 = h(y)$
x = y	$v_1 = v_5$	$v_3 = v_4$
$v_2 = v_5$		

$x \le y \land y \le x + \mathbf{h}$	$\operatorname{ad}(\operatorname{cons}(0,\operatorname{nil})) \wedge P(\underline{h(x)})$	$-\underbrace{h(y)}_{v_5}) \wedge \neg P(\underbrace{0}_{v_5})$
	2	1/2
\mathcal{R}	\mathcal{L}	ε
$x \leq y$		$P(v_2)$
$y \leq x + v_1$		$\neg P(v_5)$
$v_2 = v_3 - v_4$	$v_1 = hd(cons(v_5, nil))$	$v_3 = h(x)$
$v_5 = 0$		$v_4=h(y)$
x = y	$v_1 = v_5$	$v_3 = v_4$
$v_2 = v_5$		1

Conclusions

- Talked about the role of first-order theorem proving
- Talked about some standard techniques (Normal forms of formulas, Resolution calculus, unification, Instance-based method, Model computation)
- Talked about DPLL and Satisfiability Modulo Theories (SMT)

Further Topics

- Redundancy elimination, efficient equality reasoning, adding arithmetics to first-order theorem provers
- FOTP methods as decision procedures in special cases E.g. reducing planning problems and temporal logic model checking problems to function-free clause logic and using an instance-based method as a decision procedure
- Implementation techniques
- Competition CASC and TPTP problem library
- Instance-based methods (a lot to do here, cf. my home page) Attractive because of complementary features to more established methods