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Material on Graphical Models

Many good books
Chris Bishop’s book‘“Pattern Recognition and Machine Learning”
(Graphical Models chapter available from his webpage in pdf format,
as well as all the figures – many used here in these slides!)
Judea Pearl’s “Probabilistic Reasoning in Intelligent Systems”
Stephen Lauritzen’s “Graphical Models”
· · ·

Unpublished material
Michael Jordan’s unpublished book “An Introduction to Probabilistic
Graphical Models”
Koller and Friedman’s unpublished book “Structured Probabilistic
Models”

Videos
Sam Roweis’ videos on videolectures.net (Excellent!)
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Introduction

Query in quotes “ ” # results in Google Scholar

Kalman Filter >103,000
EM algorithm > 64,000
Hidden Markov Models > 57,000
Bayesian Networks > 31,600
Markov Random Fields > 15,000
Particle Filters > 14,000
Mixture Models > 43,000
Conditional Random Fields > 2,500
Markov Chain Monte Carlo > 76,000
Gibbs Sampling > 18,000
· · ·
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Introduction

Graphical Models have been applied to
Image Processing
Speech Processing
Natural Language Processing
Document Processing
Pattern Recognition
Bioinformatics
Computer Vision
Economics
Physics
Social Sciences
· · ·
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Physics
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Biology

Tibério Caetano: Graphical Models (Lecture 1 - Introduction) 6 / 17

nicta-logo



Music
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Computer Vision

Applications in Vision and PR

Matching
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Computer VisionApplications in Vision and PR

Matching
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Image Processing
4

Fig. 3. The graph formed from the white pixels in the left image forms a
junction-tree (assuming a 2 × 2 model). The graphs formed from the white
pixels in the other two images do not.

[10] for a more complete exposition), we will explain the differences
between the two in terms of image inpainting.

Both algorithms work by passing messages between those cliques
with non-empty intersection. However, when using the junction-
tree algorithm, we connect only enough cliques to form a maximal
spanning tree. Now, suppose that two cliques ca and cb have
intersection Sa,b. If each clique along the path between them also
contains Sa,b, we say that this spanning tree obeys the ‘junction-
tree property’. If this property holds, it can be proven that exact
inference is possible (subject only to the approximations used by our
Gaussian model), and requires that messages be passed only for a
single iteration [10]. Technically, the graphs which obey this property
are the so-calledtriangulated or chordal graphs. The tractability of
exact inference in these graphs depends on their tree-width: graphs
that are more ‘tree-like’ are better suited to efficient exact inference.
See [12] for details.

If this property doesn’t hold, then we may resort to using loopy
belief-propagation, in which case we simply connect all cliques with
non-empty intersection. There is no longer any message passing order
for which equation (15) is well defined (i.e. we must have a criterion
to initialize some messages, and the common choice is to assume
they have a uniform distribution), meaning that messages must be
passed for many iterations in the hope that they will converge.

Figure 3 shows an inpainting problem for which a junction-tree
exists, and two problems for which one does not (assuming 2 × 2-
pixel cliques). Since the regions being inpainted are usually thin lines
(or ‘scratches’), we may often observe graphs which do in fact obey
the junction-tree property in practice.

Fortunately, we found that even in those cases where no junction-
tree existed, loopy belief-propagation tended to converge in very
few iterations. Although there are few theoretical results to justify
this behavior, loopy-belief propagation typically converges quickly
in those cases where the graph almost forms a tree (as is usually the
case for the regions being inpainted).

V. EXPERIMENTAL RESULTS

In order to perform image inpainting, we used a high-level (Python)
implementation of the junction-tree algorithm and loopy belief-
propagation, which is capable of constructing Markov random fields
with any topology. Despite being written in a high-level language,
our implementation is able to inpaint images within a reasonably
short period of time. Since it is difficult to assess the quality of our
results visually, we have reported both the peak signal-to-noise ratio
(PSNR), and the structured similarity (SSIM) [19].

We were not able to directly compare our PSNR results to those
in [2], since they only presented 3× 3 and 5× 5 models. While it is
certainly true that their 3× 3 model produces a much higher PSNR
than our technique (e.g. a PSNR of ∼31.4 for the image in figure
4), its execution time is simply impractical. Fortunately, it is still
possible to measure approximate execution times of a 2 × 2 model

Fig. 4. Above, top-left to bottom-right: the original image; the image
containing the text to be removed; inpainting after a single iteration, using a
single Gaussian (PSNR = 22.74, SSIM = 0.962); inpainting after two iterations
(PSNR = 22.82, SSIM = 0.962). Below: close-ups of all images.

using their approach, even without reporting PSNRs. These results
are presented in the next section.

While it is true that the difference between the two models being
compared makes meaningful comparison difficult, it is most important
to note that there is little visual difference between the two models.
In the next section, we will show that our 2× 2 model is faster than
a similar model using gradient-ascent – it is the combination of these
two results which we believe makes our technique viable.

Figure 4 shows a corrupted image from which we want to remove
the text. The image has been inpainted using a model containing
only a single Gaussian (although the learned mixtures contained three
Gaussians – see below). After a single iteration, most of the text has
been removed, and after two iterations it is almost completely gone.
Although the current state-of-the-art inpainting techniques produce
superior results in terms of PSNR [2], they give similar visual results
and take several thousand iterations to converge, compared to ours
which takes only two (no further improvement was observed after a
third iteration).

Figure 5 compares models of various sizes, varying both the
number of Gaussians used to approximate each mixture, as well as the
maximum number of Gaussians allowed during the inference stage.
The same results are summarized in table I.

The top-right image in figure 5 was produced using a model
in which each expert was approximated using three Gaussians, yet
only one Gaussian was allowed during propagation. In contrast, the
model used to produce the top-left image was approximated using
only a single Gaussian. Interestingly, the former model actually
outperformed the latter in this experiment. While this result may seem
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Image Processing
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Introduction

Technically, Graphical Models are

Multivariate probabilistic models...
which are structured...
in terms of conditional independence statements

Informally

Models that represent a system by its parts and the possible
relations among them in a probabilistic way
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Introduction

Questions we want to ask about these models

Estimating the parameters of the model given data
Obtaining data samples from the model
Computing probabilities of particular outcomes
Finding most likely outcome
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Univariate Example

p(x) = 1
σ
√

2π
exp[−(x−µ)2/(2σ2)]

Estimate µ and σ given X = {x1, . . . , xn}
Sample from p(x)
Compute P(µ− σ ≤ x ≤ µ+ σ) :=

∫ µ+σ

µ−σ p(x)dx
Find argmaxx p(x)

Tibério Caetano: Graphical Models (Lecture 1 - Introduction) 14 / 17

nicta-logo



Multivariate Case

We want to do the same things
For multivariate distributions structured according to CI
Efficiently
Accurately

For example, given p(x1, . . . , xn; θ)

Estimate θ given a sample X (and criterion, e.g. ML)
Compute p(xA), A ⊆ {x1, . . . , xn} (marginal distributions)
Find argmaxx1,...,xn

p(x1, . . . , xn; θ) (MAP assignment)
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Naively...

When trying to answer the relevant questions...

p(x1) =
∑

x2,...,xN
p(x1, . . . , xN)

O(|X1| · |X2| · · · · · |XN |)

and similarly for other questions: NOT GOOD

We need compact representations of multivariate
distributions
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When to Use Graphical Models

When the compactness of the model arises from
conditional independence statements involving its
random variables.

CAUTION: Graphical Models are useful in such cases. If
the probability space is structured in different ways,
Graphical Models may not (and in principle should not)
be the right framework to represent and deal with the
probability distributions involved.
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Notation

Basic definitions involving random quantities
X - A random variable X = (X1, . . . ,XN), N ≥ 1
x - A particular realization of X : x = (x1, . . . , xN)
X - Set of all realizations (sample space)
XA - A random vector of variables indexed by
A ⊆ {1, . . . ,N} (xA for realizations)
XÃ - The random vector comprised of all variables other
than those in XA (A ∪ Ã = {1, . . . ,N}, A ∩ Ã = ∅). xÃ for
realizations
XA := {xA}, (XA := {xA})
p(x) := probability that X assumes realization x

Basic properties of probabilities
0 ≤ p(x) ≤ 1, ∀x ∈ X∑

x∈X p(x) = 1
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Conditioning and Marginalization

The two ‘rules’ you will always need

Conditioning

p(xA, xB) = p(xA|xB)p(xB),
for p(xB) > 0

Marginalization

p(xA) =
∑

xÃ∈XÃ
p(xA, xÃ)
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Independence and Conditional Indep.

Independence

p(xA, xB) = p(xA)p(xB)

Conditional Independence

p(xA, xB|xC) = p(xA|xC)p(xB|xC), or equivalently
p(xA|xB, xC) = p(xA|xC), or equivalently
p(xB|xA, xC) = p(xB|xC)

Notation: XA ⊥⊥ XB | XC
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Conditional Independence

Examples

Weather tomorrow ⊥⊥Weather yesterday | Weather
today

My Genome ⊥⊥ my grandparents’ Genome | my
parent’s Genome

My mood ⊥⊥ my wife’s boss mood | my wife’s mood

A pixel’s color ⊥⊥ color of far away pixels | color of
surrounding pixels
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Conditional Independence

The KEY Fact is

p(xA, xB|xC)︸ ︷︷ ︸
f1(3 variables)

= p(xA|xC)︸ ︷︷ ︸
f2(2 variables)

× p(xB|xC)︸ ︷︷ ︸
f3(2 variables)

p factors as functions over proper subsets of variables
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Conditional Independence

Therefore

p(xA, xB|xC)︸ ︷︷ ︸
f1(3 variables)

= p(xA|xC)︸ ︷︷ ︸
f2(2 variables)

× p(xB|xC)︸ ︷︷ ︸
f3(2 variables)

p(xA, xB|xC) cannot assume arbitrary values for arbitrary
xA, xB, xC

If you vary xA and xB for fixed xC, you can only realize
probabilities that satisfy the above condition
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What is a Graphical Model?

What is a Graphical Model?

Given a set of conditional independence statements for the
random vector X = (X1, . . . ,XN):

{XAi ⊥⊥ XBi | XCi}

Our object of study will be the family of probability
distributions

p(x1, . . . , xN)

where these statements hold
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Questions to be addressed

Typical questions when we have a probabilistic model

Estimate parameters of the model given data
Compute probabilities of particular outcomes
Find particularly interesting realizations (e.g. MAP
assignment)

In order to manipulate the probabilistic model

We need to know the mathematical structure of p(x)
We need to find ways of computing efficiently (and
accurately) in such structure
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An Exercise

How does p(x) look like?
Example:
p(x1, x2, x3) where x1 ⊥⊥ x3 | x2

p(x1, x3|x2) = p(x1|x2)p(x3|x2)

p(x1, x2, x3) = p(x1, x3|x2)p(x2) = p(x1|x2)p(x3|x2)p(x2)

so,
p(x1, x2, x3) = p(x1|x2)p(x3|x2)p(x2)
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An Exercise

However, p(x1, x2, x3) = p(x1|x2)p(x3|x2)p(x2) is also

p(x1, x2, x3) = p(x1|x2)p(x2|x3)p(x3)

since p(x3|x2)p(x2) = p(x2|x3)p(x3)

p(x1, x2, x3) = p(x3|x2)p(x2|x1)p(x1)

since p(x1|x2)p(x2) = p(x2|x1)p(x1)
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Cond. Indep. and Factorization

So CI seems to generate factorization of p(x)!

Is this useful for the questions we want to ask?

Let’s see an example of how expensive it is to compute p(x2)

p(x2) =
∑

x1,x3
p(x1, x2, x3)

Without factorization:
p(x2) =

∑
x1,x3

p(x1, x2, x3), O(|X1||X2||X3|)

With factorization:
p(x2) =

∑
x1,x3

p(x1, x2, x3) =
∑

x1,x3
p(x1|x2)p(x2|x3)p(x3)

p(x2) =
∑

x3
p(x2|x3)p(x3)

∑
x1

p(x1|x2), O(|X2||X3|)
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Cond. Indep. and Factorization

Therefore
Conditional Independence seems to induce a structure
in p(x) that allows us to exploit the distributive law in
order to make computations more tractable

However, what about the general case p(x1, . . . , xN)?
What is the form that p(x) will take in general, given a
set of conditional independence statements?
Will we be able to exploit the distributive law in this
general case as well?
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Re-Writing the Joint Distribution

A little exercise

p(x1, . . . , xN) = p(x1, . . . , xN−1)p(xN |x1, . . . , xN−1)

p(x1, . . . , xN) = p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xN |x1, . . . , xN−1)

p(x) =
∏N

i=1 p(xi |x<i)

where
“< i ”:= {j : j < i , j ∈ N+}
now denote by π a permutation of the labels {1, . . . ,N} such
that πj < πi ,∀i ,∀j ∈ < i . Above we have π = 1 (i.e. πi = i)
So we can write
p(x) =

∏N
i=1 p(xπi |x<πi ).
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Re-Writing the Joint Distribution

So
Any p(x) can be written as p(x) =

∏N
i=1 p(xπi |x<πi ).

Now, assume that the following CI statements hold
p(xπi |x<πi ) = p(xπi |xpaπi

),∀i , where paπi ⊂ < πi .

Then we immediately get
p(x) =

∏N
i=1 p(xπi |xpaπi

)
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Computing in Graphical Models

Algebra is boring, so let’s draw this
Let’s represent variables as circles
Let’s draw an arrow from j to i if j ∈ pai

The resulting drawing will be a Directed Graph
Moreover it will be Acyclic (no directed cycles)
(Exercise:why?)

Types of Graphical Models

Directed Graphical Models:

X1

X2

X3

X5

X6

X4
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Computing in Graphical ModelsTypes of Graphical Models

Directed Graphical Models:

X1

X2

X3

X5

X6

X4

p(x) =? (Exercise)
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Bayesian Networks

This is why the name “Graphical Models”

Such Graphical Models with arrows are called
Bayesian Networks
Bayes Nets
Bayes Belief Nets
Belief Networks
Or, more descriptively: Directed Graphical Models
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Bayesian Networks

A Bayesian Network associated to a DAG is a set of
probability distributions where each element p(x) can be
written as

p(x) =
∏

i p(xi |xpai )

where random variable xi is represented as a node in the
DAG and pai = {xj : ∃ arrow xj → xi in the DAG }. “pa” is for
parents.

(Colloquially, we say the BN “is” the DAG)
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Topological Sorts

A permutation π of the node labels which, for every node,
makes each of its parents have a smaller index than that of
the node is called a topological sort of the nodes in the DAG.

Theorem: Every DAG has at least one topological sort
(Exercise: Prove)
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A Little Exercise Revisited

Remember?

p(x1, . . . , xN) = p(x1, . . . , xN−1)p(xN |x1, . . . , xN−1)

p(x1, . . . , xN) = p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xN |x1, . . . , xN−1)

p(x) =
∏N

i=1 p(xi |x<i)

where
“< i ”:= {j : j < i , j ∈ N+}
now denote by π a permutation of the labels {1, . . . ,N} such
that πj < πi ,∀i ,∀j ∈ < i . Above we have π = 1
So we can write
p(x) =

∏N
i=1 p(xπi |x<πi ).
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Exercises

Exercises:

How many topological sorts has a BN where no CI
statements hold?

How many topological sorts has a BN where all CI
statements hold?
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Some Key Elements of Lecture 1

We can always write p(x) =
∏

i p(xi |x<i)

Create a DAG with arrow j 7→ i whenever j ∈ < i

Impose CI statements by removing some arrows

The result will be p(x) =
∏

i p(xi |xpa(i))

Now there will be permutations π, other than the identity,
such that p(x) =

∏
i p(xπi |xpa(πi )) with πi > k , where

k ∈ pa(πi).
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Refreshing Exercise

Exercise
Prove that the factorized form for the probability distribution
of a Bayesian Network is indeed normalized to 1.
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Hidden CI Statements?

We have obtained a BN by

Introducing very “convenient” CI statements (namely
those that shrink the factors of the expansion
p(x) =

∏N
i=1 p(xπi |x<πi ))

By doing so, have we induced other CI statements?

The answer is YES
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Head-to-Tail Nodes (Independence)

Are a and b independent?
a c b

Does a ⊥⊥ b hold?
Check whether p(ab) = p(a)p(b)

p(ab) =
∑

c p(abc) =
∑

c p(a)p(c|a)p(b|c) =
p(a)

∑
c p(b|c)p(c|a) = p(a)p(b|a) 6= p(a)p(b)
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Head-to-Tail Nodes (Cond. Indep.)

Factorization ⇒ CI ?
a c b

Does p(abc) = p(a)p(c|a)p(b|c) ⇒ a ⊥⊥ b | c ?
Assume p(abc) = p(a)p(c|a)p(b|c) holds

Then

p(ab|c) = p(abc)
p(c)

= p(a)p(c|a)p(b|c)
p(c)

= p(c)p(a|c)p(b|c)
p(c)

= p(a|c)p(b|c)
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Head-to-Tail Nodes (Cond. Indep.)

CI ⇒ Factorization ?
a c b

Does a ⊥⊥ b | c ⇒ p(abc) = p(a)p(c|a)p(b|c)?
Assume a ⊥⊥ b | c, i.e. p(ab|c) = p(a|c)p(b|c)

Then

p(abc) := p(ab|c)p(c) = p(a|c)p(b|c)p(c)
Bayes
=

p(a)p(c|a)p(b|c)
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Tail-to-Tail Nodes (Independence)

Are a and b independent?
c

a b

Does a ⊥⊥ b hold?
Check whether p(ab) = p(a)p(b)

p(ab) =
∑

c p(abc) =
∑

c p(c)p(a|c)p(b|c) =∑
c p(b)p(a|c)p(c|b) = p(b)p(a|b) 6= p(a)p(b), in general
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Tail-to-Tail Nodes (Cond. Indep.)

Factorization ⇒ CI ?
c

a b

Does p(abc) = p(c)p(a|c)p(b|c) ⇒ a ⊥⊥ b | c ?
Assume p(abc) = p(c)p(a|c)p(b|c).
Then

p(ab|c) = p(abc)
p(c)

= p(c)p(a|c)p(b|c)
p(c)

= p(a|c)p(b|c)
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Tail-to-Tail Nodes (Cond. Indep.)

CI ⇒ Factorization ?
c

a b

Does a ⊥⊥ b | c ⇒ p(abc) = p(c)p(a|c)p(b|c)?
Assume a ⊥⊥ b | c, holds, i.e. p(ab|c) = p(a|c)p(b|c) holds
Then

p(abc) = p(ab|c)p(c) = p(a|c)p(b|c)p(c)
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Head-to-Head Nodes (Independence)

Are a and b independent?

c

a b

Does a ⊥⊥ b hold?
Check whether p(ab) = p(a)p(b)

p(ab) =
∑

c p(abc) =
∑

c p(a)p(b)p(c|ab) = p(a)p(b)
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Head-to-head Nodes (Cond. Indep.)

Factorization ⇒ CI ?

c

a b

Does p(abc) = p(a)p(b)p(c|ab) ⇒ a ⊥⊥ b | c ?
Assume p(abc) = p(a)p(b)p(c|ab) holds

Then

p(ab|c) = p(abc)
p(c)

= p(a)p(b)p(c|ab)
p(c)

6= p(a|c)p(b|c) in general
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CI ⇔ Factorization in 3-Node BNs

Therefore, we conclude that
Conditional Independence and Factorization are
equivalent for the “atomic” Bayesian Networks with only
3 nodes.

Question
Are they equivalent for any Bayesian Network?

To answer we need to characterize which conditional
independence statements hold for an arbitrary
factorization and check whether a distribution that
satisfies those statements will have such factorization.
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Blocked Paths

We start by defining a blocked path, which is one containing

An observed TT or HT node, or
A HH node which is not observed, nor any of its
descendants is observed

f

e b

a

c

f

e b

a

c
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D-Separation

A set of nodes A is said to be d-separated from a set of
nodes B by a set of nodes C if every path from A to B is
blocked when C is in the conditioning set.

Types of Graphical Models

Directed Graphical Models:

X1

X2

X3

X5

X6

X4

Exercise: Is X3 d-separated from X6 when the conditioning
set is {X1,X5}?
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CI ⇔ Factorization for BNs

Theorem: Factorization ⇒ CI
If a probability distribution factorizes according to a
directed acyclic graph, and if A, B and C are disjoint
subsets of nodes such that A is d-separated from B by C
in the graph, then the distribution satisfies A ⊥⊥ B | C.

Theorem: CI ⇒ Factorization
If a probability distribution satisfies the conditional
independence statements implied by d-separation over a
particular directed graph, then it also factorizes
according to the graph.
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Factorization ⇒ CI for BNs

Proof Strategy:
DF ⇒ d-sep

d-sep: d-separation property
DF: Directed Factorization Property
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CI ⇒ Factorization for BNs

Proof Strategy:
d-sep ⇒ DL ⇒ DF

DL: Directed Local Markov Property: α ⊥⊥ nd(α) | pa(α)

Thus we obtain DF ⇒ d-sep ⇒ DL ⇒ DF
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Relevance of CI ⇔ Factorization for BNs

Has local, wants global

CI statements are usually what is known by the expert

The expert needs the model p(x) in order to compute
things

The CI ⇒ Factorization part gives p(x) from what is
known (CI statements)
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Changing the class of CI statements

We obtained BNs by assuming
p(xπi |x<πi ) = p(xπi |xpaπi

),∀i , where paπi ⊂ < πi .
We saw in general that such types of CI statements
would produce others, and in general all CI statements
can be read as d-separation in a DAG.
However, there are sets of CI statements which cannot
be satisfied by any BN.
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Markov Random Fields

Ideally we would like to have more freedom

There is another class of Graphical Models called
Markov Random Fields (MRFs)

MRFs allow for the specification of a different class of CI
statements

The class of CI statements for MRFs can be easily
defined by graphical means in undirected graphs.
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Graph Separation

Definition of Graph Separation
In an undirected graph G, being A, B and C disjoint
subsets of nodes, if every path from A to B includes at
least one node from C, then C is said to separate A from
B in G.

A

C
B
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Graph Separation

Definition of Markov Random Field

An MRF is a set of probability distributions
{p(x) : p(x) > 0 ∀p, x} such that there exists an
undirected graph G with disjoint subsets of nodes A, B,
C, in which whenever C separates A from B in G,
A ⊥⊥ B | C in p(x), ∀p(x)

Colloquially, we say that the MRF “is” such undirected
graph. But in reality it is the set of all probability
distributions whose conditional independency
statements are precisely those given by graph
separation in the graph.
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Cliques and Maximal Cliques

Definitions concerning undirected graphs
A clique of a graph is a complete subgraph of it (i.e. a
subgraph where every pair of nodes is connected by an
edge).
A maximal clique of a graph is clique which is not a
proper subset of another clique

x1

x2

x3

x4

{X1,X2} form a clique and {X2,X3,X4} a maximal clique.
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Factorization Property

Definition of factorization w.r.t. an undirected graph

A probability distribution p(x) is said to factorize with respect
to a given undirected graph if it can be written as

p(x) = 1
Z

∏
c∈C ψc(xc)

where C is the set of maximal cliques, c is a maximal clique,
xc is the domain of x restricted to c and ψc(xc) is an arbitrary
non-negative real-valued function. Z ensures

∑
x p(x) = 1.
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CI⇔ Factorization for positive MRFs

Theorem: Factorization⇒ CI
If a probability distribution factorizes according to an
undirected graph, and if A, B and C are disjoint subsets
of nodes such that C separates A from B in the graph,
then the distribution satisfies A ⊥⊥ B | C.

Theorem: CI⇒ Factorization (Hammersley-Clifford)
If a strictly positive probability distribution (p(x) > 0 ∀x)
satisfies the conditional independence statements
implied by graph separation over a particular undirected
graph, then it also factorizes according to the graph.
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Factorization⇒ CI for MRFs

Proof...
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CI⇒ Factorization for +MRFs (H-C Thm)
Möbius Inversion: for C ⊆ B ⊆ A ⊆ S and F : P(S) 7→ R:

F (A) =
∑

B:B⊆A
∑

C:C⊆B(−1)|B|−|C|F (C)
Define F = φ = log p and compute the inner sum for the case where B is
not a clique (i.e. ∃X1,X2 not connected in B). Then CI
φ(X1,C,X2) + φ(C) = φ(C,X1) + φ(C,X2) holds and

∑
C⊆B

(−1)|B|−|C|φ(C) =
∑

C⊆B;X1,X2 /∈C

(−1)|B|−|C|φ(C) +

∑
C⊆B;X1,X2 /∈C

(−1)|B|−|C∪X1|φ(C,X1) +

∑
C⊆B;X1,X2 /∈C

(−1)|B|−|C∪X2|φ(C,X2) +

∑
C⊆B;X1,X2 /∈C

(−1)|B|−|X1∪C∪X2|φ(X1,C,X2) =

=
∑

C⊆B;X1,X2 /∈C

(−1)|B|−|C| [φ(X1,C,X2) + φ(C)− φ(C,X1)− φ(C,X2)]︸ ︷︷ ︸
=0
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Relevance of CI⇔ Factorization for MRFs

Relevance is analogous to the BN case

CI statements are usually what is known by the expert

The expert needs the model p(x) in order to compute
things

The CI⇒ Factorization part gives p(x) from what is
known (CI statements)
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Comparison BNs vs. MRFs

In both types of Graphical Models

A relationship between the CI statements satisfied by a
distribution and the associated simplified algebraic
structure of the distribution is made in term of graphical
objects.

The CI statements are related to concepts of separation
between variables in the graph.

The simplified algebraic structure (factorization of p(x) in
this case) is related to “local pieces” of the graph (child +
its parents in BNs, cliques in MRFs)
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Comparison BNs vs. MRFs

Differences

The set of probability distributions that can be
represented as MRFs is different from the set that can
be represented as BNs.

Although both MRFs and BNs are expressed as a
factorization of local functions on the graph, the MRF
has a normalization constant Z =

∑
x

∏
c∈C ψc(xc) that

couples all factors, whereas the BN has not.

The local “pieces” of the BN are probability distributions
themselves, whereas in MRFs they need only be
non-negative functions (i.e. they may not have range
[0 1] as probabilities do).
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Comparison BNs vs. MRFs

Exercises

When are the CI statements of a BN and a MRF
precisely the same?

A graph has 3 nodes, A, B and C. We know that A ⊥⊥ B,
but C ⊥⊥ A and C ⊥⊥ B both do not hold. Can this
represent a BN? An MRF?
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I-Maps, D-Maps and P-Maps

A graph is said to be a D-map (for dependence map) of a
distribution if every conditional independence statement
satisfied by the distribution is reflected in the graph.

A graph is said to be an I-map (for independence map)
of a distribution if every conditional independence
statement implied by the graph is satisfied in the
distribution.

A graph is said to be an P-map (for perfect map) of a
distribution if it is both a D-map and an I-map for the
distribution.
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I-Maps, D-Maps and P-Maps

P
UD

D: set of distributions on n variables that can be represented
as a perfect map by a DAG
U: set of distributions on n variables that can be represented
as a perfect map by an Undirected graph
P: set of all distributions on n variables
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Markov Blankets

xi

The Markov Blanket of a node Xi in either a BN or an
MRF is the smallest set of nodes A such that
p(xi |xĩ) = p(xi |xA)
BN: parents, children and co-parents of the node
MRF: neighbors of the node
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Exercises

Exercises
Show that the Markov Blanket of a node xi in a BN is
given by it’s children, parents and co-parents

Show that the Markov Blanket of a node xi in a MRF is
given by its neighbors
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Factorized Distributions

Our p(x) as a factorized form

For BNs, we have

p(x) =
∏

i p(xi |pai)

for MRFs, we have

p(x) = 1
Z

∏
c∈C ψc(xc)

Will this enable us to answer the relevant questions in practice?
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Key Concept: Distributive Law

Distributive Law
ab + ac︸ ︷︷ ︸
3 operations

= a(b + c)︸ ︷︷ ︸
2 operations

I.e. if the same constant factor (‘a’ here) is present in every
term, we can gain by “pulling it out”

Consider computing the marginal p(x1) for the MRF with
factorization
p(x) = 1

Z
∏N−1

i=1 ψ(xi , xi+1) (Exercise: which graph is this?)

p(x1) =
∑

x2,...,xN
1
Z
∏N−1

i=1 ψ(xi , xi+1)

p(x1) = 1
Z
∑

x2
ψ(x1, x2)

∑
x3
ψ(x2, x3) · · ·

∑
xN
ψ(xN−1, xN)

O(
∏N

i=1 |Xi |) vs. O(
∑i=N−1

i=1 |Xi ||Xi+1|))
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Elimination Algorithm

Distributive Law (DL) is the key to efficient inference in GMs

The simplest algorithm using the DL is the Elimination
Algorithm
This algorithm is appropriate when we have a single
query
Just like in the previous example of computing p(x1) in a
givel MRF
This algorithm can be seen as successive elimination of
nodes in the graph
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Elimination Algorithm
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Compute p(x1) with elimination order (6, 5, 4, 3, 2)

p(x1) = Z−1 P
x2,...,x6

ψ(x1, x2)ψ(x1, x3)ψ(x3, x5)ψ(x2, x5, x6)ψ(x2, x4)

p(x1) = Z−1 P
x2
ψ(x1, x2)

P
x3
ψ(x1, x3)

P
x4
ψ(x2, x4)

X
x5

ψ(x3, x5)
X
x6

ψ(x2, x5, x6)

| {z }
m6(x2,x5)| {z }

m5(x2,x3)

p(x1) = Z−1sumx2ψ(x1, x2)
P

x3
ψ(x1, x3)m5(x2, x3)

X
x4

ψ(x2, x4)

| {z }
m4(x2)

p(x1) = Z−1
X
x2

ψ(x1, x2)m4(x2)
X
x3

ψ(x1, x3)m5(x2, x3)

| {z }
m3(x1,x2)| {z }

m2(x1)
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Belief Propagation

Belief Propagation Algorithm, also called
Probability Propagation
Sum-Product Algorithm

Does not repeat computations
Is specifically targeted at tree-structured graphs
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Belief Propagation in a Chain

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

p(xn) =
∑

x<n,x>n
1
Z

∏N−1
i=1 ψ(xi , xi+1)

p(xn) = 1
Z

∑
x<n,x>n

∏n−1
i=1 ψ(xi , xi+1)

∏N−1
i=n ψ(xi , xi+1)

p(xn) = 1
Z

[∑
x<n

∏n−1
i=1 ψ(xi , xi+1)

]
·
[∑

x>n

∏N−1
i=n ψ(xi , xi+1)

]

p(xn) = 1
Z

[∑
x<n

n−1∏
i=1

ψ(xi , xi+1)

]
︸ ︷︷ ︸

µα(xn)=O(
Pi=n−1

i=1 |Xi ||Xi+1|)))

·
[∑

x>n

N−1∏
i=n

ψ(xi , xi+1)

]
︸ ︷︷ ︸
µβ(xn)=O(

PN−1
i=n |Xi ||Xi+1|))

Tibério Caetano: Graphical Models (Lecture 5 - Inference) 7 / 29

nicta-logo



Belief Propagation in a Chain

So, in order to compute p(xn), we only need the
“incoming messages” to xn

But n is arbitrary, so in order to answer an arbitrary
query, we need an arbitrary pair of “incoming messages”

So we need all messages

To compute a message to the right (left), we need all
previous messages coming from the left (right)

So the protocol should be: start from the leaves up to xn,
then go back towards the leaves

Chain with N nodes⇒ 2(N − 1) messages to be
computed
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Computing Messages

Defining trivial messages:

m0(x1) := 1, mN+1(xN) := 1

For i = 2 to N compute

mi−1(xi) =
∑

xi−1
ψ(xi−1, xi)mi−2(xi−1)

For i = N − 1 back to 1 compute

mi+1(xi) =
∑

xi+1
ψ(xi , xi+1)mi+2(x + 1)
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Belief Propagation in a Tree

The reason why things are so nice in the chain is that
every node can be seen as a leaf after it has received
the message from one side (i.e. after the nodes from
which the message come have been “eliminated”)

“Original Leaves” give us the right place to start the
computations, and from there the adjacent nodes
“become leaves” as well

However, this property also holds in a tree
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Belief Propagation in a Tree

Message Passing Equation

mj(xi) =
∑

xj
ψ(xj , xi)

∏
k :k∼j,k 6=i mk(xj)(∏

k :k∼j,k 6=i mk(xj) := 1 whenever j is a leaf
)

Computing Marginals
p(xi) =

∏
j:j∼i mj(xi)

Tibério Caetano: Graphical Models (Lecture 5 - Inference) 11 / 29

nicta-logo



Max-Product Algorithm

There are important queries other than computing marginals.
For example, we may want to compute the most likely
assignment:

x∗ = argmaxx p(x)

as well as its probability
p(x∗)

one possibility would be to compute
p(xi) =

∑
x̃i

p(x) for all i , then x∗i = argmaxxi
p(xi) and then

simply
x∗ = (x∗1 , x

∗
2 , . . . , x

∗
N)

What’s the problem with this?
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Exercises

Exercise
Construct p(x1, x2), with x1, x2 ∈ {0,1,2}, such that
p(x∗1 , x

∗
2 ) = 0 (where x∗i = argmaxxi

p(xi))
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Max-Product (and Max-Sum) Algorithms

Instead we need to compute directly
x∗ = argmaxx1,...,xN

p(x1, . . . , xN)

We can use the distributive law again, since
max(ab,ac) = a max(b, c)

for a > 0
Exactly the same algorithm applies here with ‘max’ instead of∑

: max-product algorithm.

To avoid underflow we compute x∗ via
log(argmaxx p(x)) = argmaxx log p(x) = argmaxx

∑
s log fs(xs)

since log is a monotonic function. We can still use the
distributive law since (max,+) is also a commutative
semiring, i.e.

max(a + b,a + c) = a + max(b, c)
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A Detail in Max-Sum

After computing the max-marginal for the root x :
p∗i = maxxi

∑
s∼x µfs→x(x)

and its maximizer
x∗i = argmaxxi

p∗i

It’s not a good idea simply to pass back the messages to the
leaves and then terminate (Why?)

In such cases it is safer to store the maximizing
configurations of previous variables with respect to the next
variables and then simply backtrack to restore the
maximizing path.

In the particular case of a chain, this is called Viterbi
algorithm, an instance of dynamic programming.
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Arbitrary Graphs

X1

X2

X3

X5

X6

X4

Elimination algorithm is needed to compute marginals
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A Problem with the Elimination Algorithm
Elimination: example

X1

X2

X3

X5

X6

X4How to compute

)|( 61 xxp
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A Problem with the Elimination AlgorithmElimination
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A Problem with the Elimination AlgorithmElimination
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A Problem with the Elimination Algorithm
Elimination: example

X1

X2

X3

X5

X6

X4
What if now we want to compute

)|( 63 xxp
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A Problem with the Elimination AlgorithmElimination: example
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A Problem with the Elimination Algorithm
Elimination: example
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Repeated Computations!!
)|( 63 xxp)|( 61 xxp

How to avoid that?
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The Junction Tree Algorithm

The Junction Tree Algorithm is a generalization of the
belief propagation algorithm for arbitrary graphs

In theory, it can be applied to any graph (DAG or
undirected)

However, it will be efficient only for certain classes of
graphs
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Chordal Graphs

Chordal Graphs (also called triangulated graphs)
The JT algorithm runs on chordal graphs
A chord in a cycle is an edge connecting two nodes in
the cycle but which does not belong to the cycle (i.e. a
shortcut in the cycle)
A graph is chordal if every cycle of length greater than 3
has a chord.

not chordal

Triangulation

• The first step in the algorithm is totriangulate the graph by proper insertion of edges.

C

FE

A B

DC

FE

A B

D

15

chordal
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Chordal Graphs

What if a graph is not chordal?

Add edges until it becomes chordal

This will change the graph

Exercise: Why is this not a problem?
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Triangulation Step
The Junction Tree Algorithm

(1) Triangulate the graph (if it’s not triangulated)

X1

X2

X3

X5

X6

X4

Tibério Caetano: Graphical Models (Lecture 5 - Inference) 26 / 29

nicta-logo



Junction Tree ConstructionThe Junction Tree Algorithm

(2) Create a Junction Tree

X1

X2

X3

X5

X6

X4
X1 X2 X3 X2 X3 X5

X2 X5 X6X2 X4

X2 X3

X2

X2 X5
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InitializationThe Junction Tree Algorithm

(3) Initialize clique potentials (nodes and separators)

X1 X2 X3 X2 X3 X5

X2 X5 X6X2 X4

X2 X3

X2

X2 X5

cΨ Directly introduced

sΦ Initialized to 1

4,2Ψ

3,2,1Ψ 5,3,2Ψ

6,5,2Ψ

),(3,2 SSones=Φ

),(5,2 SSones=Φ

)1,(2 Sones=Φ
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Propagation
The Junction Tree Algorithm

(4) Message passing
X1 X2 X3 X2 X3 X5

X2 X5 X6X2 X4

X2 X3

X2

X2 X5
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Graphical Models
(Lecture 6 - Learning)

Tibério Caetano

tiberiocaetano.com
Statistical Machine Learning Group

NICTA Canberra

LLSS, Canberra, 2009
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Learning

We saw that
Given p(x ; θ), Probabilistic Inference consists of
computing

Marginals of p(x ; θ)
Conditional distributions
MAP configurations
etc.

However, what is p(x ; θ) in the first place?
Finding p(x ; θ) from data is called Learning or Estimation
or Statistical Inference.
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Maximum Likelihood Estimation

In the case of Graphical Models, we’ve seen that

p(x ; θ) = 1
Z

∏
s∈S fs(xs; θs)

where {s} are subsets of random variables and {fs} are
non-negative real-valued functions.

We can re-write that as
p(x ; θ) = exp(

∑
s∈S log fs(xs; θs)− g(θ))

where g(θ) = log
∑

x exp(
∑

s∈S log fs(xs; θs))
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Data

IID assumption
We observe data X = {X 1, . . . ,X m}
We assume every Xi is a sample from the same
unknown distribution p(x ; θS) (identical assumption)
We assume X i and X j , i 6= j , to be drawn independently
from p(x ; θS) (independence assumption)
This is the iid setting (independently and identically
distributed)
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Maximum Likelihood Estimation

The joint probability of observing the data X is thus
p(X ; θ) =

∏
i p(x i ; θ) =

∏
i exp(

∑
s log fs(x i

s; θs)− g(θ))

Seen as a function of θ this is the likelihood function.

The negative log-likelihood is
− log p(X ; θ) = mg(θ)−∑m

i=1

∑
s log fs(x i

s; θs)
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Maximum Likelihood Estimation

Maximum likelihood estimation consists of finding θ∗ that
maximizes the likelihood function, or minimizes the negative
log-likelihood:

θ∗ = argminθ

[
mg(θ)−

m∑
i=1

∑
s

log fs(x i
s; θs)

]
︸ ︷︷ ︸

:=`(θ;X)

In order to minimize it we must have ∇θ`(θ; X ) = 0 and
therefore each ∇θs`(θ; X ) = 0,∀s.

What happens for both BNs and MRFs?
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ML Estimation in BNs

For BNs, g(θ) = 0 (Exercise) and
∑

xs
fs(xs; θs) = 1 ∀s so

∇θs′

[
mg(θ)−

m∑
i=1

∑
s

log fs(x i
s; θs) +

∑
s

λs(1−
∑

xs

fs(xs; θs))

]
= 0⇒

m∑
i=1

∇θs′ fs′(x i
s′ ; θs′) = λs′

∑
xs

∇θs′ fs′(xs; θs′), ∀s′

Therefore we have 2|S| equations where every pair can be
solved independently for θs′ and λs′

So the ML estimation problem decouples on local ML
estimation problems involving only the variables in each
individual set s.
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ML Estimation in MRFs

For MRFs, g(θ) 6= 0 so

∇θs

[
mg(θ)−

m∑
i=1

∑
s

log fs(x i
s; θs)

]
= 0 ⇒

m∇θsg(θ)−
m∑

i=1

∑
s

∇θs fs(x i
s; θs) = 0,∀s

Therefore we have |S| equations that cannot be solved
independently since g(θ) involves all s. This may give rise to
a complex non-linear system of equations.
So, learning in MRFs is more difficult than in BNs.
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Exponential Families

Consider the parameterized family of distributions

p(x ; θ) = exp(〈Φ(x), θ〉 − g(θ))

Such a family of distributions is called an Exponential Family
Φ(x) is the sufficient statistics
θ is the natural parameter
g(θ) = log

∑
x exp(〈Φ(x), θ〉) is the log-partition function

This is the form of several distributions of interest, like
Gaussian, binomial, multinomial, Poisson, gamma, Rayleigh,
beta, etc.
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Exponential Families

If we assume that our p(x ; θ) is an exponential family, the
learning problem becomes particularly convenient because it
becomes convex (Why?)

Recall the form of p(x ; θ) for a graphical model

p(x ; θ) = exp(
∑

s∈S log fs(xs; θs)− g(θ))

for it to be an exponential family we need∑
s∈S log fs(xs; θs) = 〈Φ(x), θ〉 =

∑
s 〈Φs(xs), θs〉
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Exponential Families for MRFs
For MRFs, the negative log-likelihood now becomes

− log p(X ; θ) =mg(θ)−
m∑

i=1

∑
s

〈
Φs(x i

s), θs
〉

=mg(θ)−m
∑

s

〈µs(xs), θs〉

where we defined µs(xs) :=
∑m

i=1 Φs(xs)/m

Taking the gradient and setting to zero we have

∇θsmg(θ)−m
∑

s

〈µs(xs), θs〉 = 0⇒

∇θsg(θ) = µs(xs), but

∇θsg(θ) = Ex∼p(x ;θ)[Φs(xs)] (?), so Ex∼p(x ;θ)[Φs(xs)] = µs(xs)
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Exponential Families for MRFs

In other words:
The ML estimate θ∗ must be such that the expected
value of the sufficient statistics under p(x ; θ∗) for every
clique has to match the sample average for the clique.

Why is the problem convex? (Exercise)
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Exponential Families for BNs
For BNs, the negative log-likelihood now becomes

− log p(X ; θ) =−
m∑

i=1

∑
s

〈
Φs(x i

s), θs
〉

=−m
∑

s

〈µs(xs), θs〉

where we also defined µs(xs) :=
∑m

i=1 Φs(x i
s)/m.

Constructing the Lagrangian corresponding to the constraints∑
xs

exp(〈Φ(xs), θs〉) = 1,∀s, and taking the gradient equal to
zero we have

m · µs′(xs′) = λs′Exs′∼p(xs′ ;θs′ )[Φs′(xs′)],∀s′
which can be solved for θs′ and λs′ using∑

xs′

exp(〈Φ(xs′), θs′〉) = 1
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Example: Discrete BNs

Multinomial random variables
Tabular representation for p(xv |xpa(v)) (define
φv := v ∪ pa(v))
One parameter θv associated to each p(xv |xpa(v)),
i.e. θv (xφv ) := p(xv |xpa(v); θv )
Note that there are no constraints beyond the
normalization constraint
The joint is p(xV|θ) =

∏
v θv (xφv )

The likelihood is then log p(X ; θ) = log
∏

n p(xV,n|θ)
continuing...
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Example: Discrete BNs
log p(X ; θ) = log

∏
n

p(xV,n|θ)

=
∑

n

log
∏
xV

p(xV; θ)δ(xV,xV,n)

=
∑

n

∑
xV

δ(xV, xV,n) log p(xV; θ)

=
∑
xV

m(xV) log p(xV; θ)

=
∑
xV

m(xV) log
∏

v

θv (xφv )

=
∑
xV

m(xV)
∑

v

log θv (xφv )

=
∑

v

∑
xφv

∑
xV\φv

m(xV)

 log θv (xφv )

=
∑

v

∑
xφv

m(xφv ) log θv (xφv )
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Example: Discrete BNs

The Lagrangian is

L(θ, λ) =
∑

v

∑
xφv

m(xφv ) log θv (xφv ) +
∑

v

λv (1−
∑

xv

θv (xφv ))

and

∇θv′ (xφv′ )
(L(θ, λ)) =

m(xφv′ )

θv ′(xφv′ )
− λv ′ = 0 ⇒ λv ′ =

m(xφv′ )

θv ′(xφv′ )

but since
∑
xv′

θv ′(xφv′ ) = 1, λv ′ = m(xpa(v ′)), so

θv ′(xφv ′ ) =
m(xφv ′ )

m(xpa(v ′))
(Matches intuition)
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Learning the PotentialsML Estimation

First – How to learn the potential functions when we 
have observed data for all variables in the model?

Second – How to learn the potential functions when 
there are latent (hidden) variables, i.e., we do not 

observe data for them?
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Learning the Potentials
Completely Observed GMs

X1 X2 X3 ),(),(1)( 323,2212,1 xxxx
Z

xp V ΨΨ=

Assume we observe N instances of this model

For IID sampling, the sufficient statistics are the empirical marginals

),(~
21 xxp and ),(~

32 xxp

How do we estimate                      and                     from the sufficient statistics?  ),( 212,1 xxΨ ),( 323,2 xxΨ
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Learning the Potentials
Completely Observed GMs

Let’s make a guess:

)(~
),(~),(~

),,(ˆ
2

3221
321 xp

xxpxxpxxxpML = , so that

We can verify that our “guess” is good, because:  

),(~),(ˆ
21212,1 xxpxxML =Ψ

)(~
),(~

),(ˆ
2

32
323,2 xp

xxpxxML =Ψ

∑ ==
3

),(~
)(~

),(~),(~
),(ˆ 21

2

3221
21

x
ML xxp

xp
xxpxxpxxp

∑ ==
1

),(~
)(~

),(~),(~
),(ˆ 32

2

3221
32

x
ML xxp

xp
xxpxxpxxp
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Learning the Potentials
Completely Observed GMs

The general recipe is:

(1) For every maximal clique C, set the clique potential to its empirical marginal

(2) For every intersection S between maximal cliques, associate an empirical 
marginal with that intersection and divide it into the potential of ONE of the 
cliques that form the intersection 

This will give ML estimates for decomposable Graphical Models
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Decomposable Graphs

Undirected Graphical Models:
Chordal Graphs, Decomposable Graphs,
Junction Trees, and Factorizations

Peter Bartlett. October 2003.

These notes present some properties of chordal graphs, a set of undirected graphs
that are important for undirected graphical models.

Definitions

We consider undirected graphs G = (V, E), where V is the vertex set and the
edge set E is a set of unordered distinct pairs from V . We say that vertices
u, v ∈ V are neighbors if {u, v} ∈ E.

A cycle in a graph is a vertex sequence v1, . . . , vn where v1 = vn but all other
pairs are distinct, and {vi, vi+1} ∈ E. A cycle is chordless if all pairs of vertices
that are not adjacent in the cycle are not neighbors (that is, any {va, vb} with
|a− b| 6= 1 is not in E). That is, there is no chord, or shortcut, for the cycle.

A graph is chordal (also called triangulated) if it contains no chordless cycles
of length greater than 3.

A graph is complete if E contains all pairs of distinct elements of V .
A graph G = (V, E) is decomposable if either

1. G is complete, or

2. We can express V as V = A ∪B ∪ C where

(a) A, B and C are disjoint,

(b) A and C are non-empty,

(c) B is complete,

(d) B separates A and C in G, and

(e) A ∪B and B ∪ C are decomposable.

A path is a sequence v1, . . . , vn of distinct vertices for which all {vi, vi+1} ∈ E.
A tree is an undirected graph for which every pair of vertices is connected
by precisely one path. A clique of a graph G is a subset of vertices that are
completely connected. A maximal clique of G is a clique for which every superset
of vertices of G is not a clique.

A clique tree for a graph G = (V, E) is a tree T = (VT , ET ) where VT is a
set of cliques of G that contains all maximal cliques of G.

We’ll label each edge e = (C1, C2) of a clique tree with the corresponding
separator set, C1 ∩C2. (But notice that these labels might not uniquely specify
an edge.)

A junction tree for a graph G is a clique tree for G that satisfies the following
condition. For any cliques C1 and C2 in the tree, every clique on the path
connecting C1 and C2 contains C1 ∩ C2.

1

for decomposable graphs, the derivative of the log-partition
function g(θ) decouples over the cliques (Exercise)⇒ MRF
learning easy.
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Learning the PotentialsCompletely Observed GMs

Non-decomposable Graphical Models:

An iterative procedure must be used: Iterative Proportional Fitting (IPF):
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Where it can be shown that:
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t xpxp =+
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EM Algorithm
Hidden variables: EM algorithm

How to estimate the potentials when there are unobserved
variables?

X1 X2 X3

Answer: EM algorithm
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EM Algorithm
Hidden variables: EM algorithm

Denote the observed variables by X and the hidden variables by Z

X1 X2 X3

If we knew Z, the problem would reduce to maximizing the complete log-likelihood:

X Z

)|,(log),;( θθ zxpzxlc =
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EM Algorithm
Hidden variables: EM algorithm

However, we don’t observe Z, so the probability of the data X is

Which is the incomplete log-likelihood

This is the quantity we really want to maximize

Note that now the logarithm cannot transform the product into a sum, since it is 
“blocked” by the sum over Z, and the optimization does not “decouple”

∑==
z

zxpxpxl )|,(log)|(log);( θθθ
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EM Algorithm
Hidden variables: EM algorithm

The basic idea of the EM algorithm is:

Given that Z is not observed, we may try to optimize an “averaged” version, over all 
possible values of Z, of the complete log-likelihood 

We do that through an “averaging distribution” q:

)|,(log),|(),,( θθθ zxpxzqzxl
z

qc ∑=

And obtain the expected complete log-likelihood

The hope then is that maximizing this should at least improve the current estimate for 
the parameters (so that iteration would eventually maximize the log-likelihood)
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EM AlgorithmHidden variables: EM algorithm

In order to present the algorithm, we first note that:
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)|(

)|,(log)|(
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θθ
θθ

qL
xzq
zxpxzq

xzq
zxpxzqxl

zxpxl
xpxl

z

z

z

=

≥

=
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∑

∑

∑

Where L is the auxiliary function. The EM algorithm is coordinate-ascent on L
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EM Algorithm
Hidden variables: EM algorithm

The EM algorithm

E - step

M - step

),(maxarg )()1( t

q

t qLq θ=+

),(maxarg )1()1( θθ
θ

++ = tt qL
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EM Algorithm
Hidden variables: EM algorithm

Note that the “M step” is equivalent to maximizing the expected complete log-
likelihood:

∑

∑ ∑

∑

−=
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=

z
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z z

z

xzqxzqzxlqL

xzqxzqzxpxzqqL
xzq
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θθ

θθ

θθ

Because the second term does not depend on θ
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EM Algorithm
Hidden variables: EM algorithm

The general solution to the “E step” turns out to be

Because

),|()|( )()1( tt xzpxzq θ=+

);()),,|((
)|(log)),,|((
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),|(
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