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Material on Graphical Models

Many good books

@ Chris Bishop’s book“Pattern Recognition and Machine Learning”
(Graphical Models chapter available from his webpage in pdf format,
as well as all the figures — many used here in these slides!)

@ Judea Pearl’s “Probabilistic Reasoning in Intelligent Systems”

@ Stephen Lauritzen’s “Graphical Models”

@ ...

Unpublished material

@ Michael Jordan’s unpublished book “An Introduction to Probabilistic
Graphical Models”

@ Koller and Friedman’s unpublished book “Structured Probabilistic
Models”

Videos
@ Sam Roweis’ videos on videolectures.net (Excellent!)
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Introduction

Query in quotes # results in Google Scholar

Kalman Filter >103,000
EM algorithm > 64,000
Hidden Markov Models > 57,000
Bayesian Networks > 31,600
Markov Random Fields > 15,000
Particle Filters > 14,000
Mixture Models > 43,000
Conditional Random Fields > 2,500
Markov Chain Monte Carlo > 76,000

> 18,000

Gibbs Sampling
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Introduction

Graphical Models have been applied to
@ Image Processing
@ Speech Processing
Natural Language Processing
Document Processing
Pattern Recognition
Bioinformatics
Computer Vision
Economics
@ Physics
@ Social Sciences
Q ---
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data selection

Protein interaction data

data selection
Expression data

Pre-processing

Gene partition

EM

Pathway discovery procedure

Annotation
analysis
v

S —
Protein complexes
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A Graphical Model for Chord Progressions

oy

Figure 3. A chord progression generated by the proposed model. This chord progression is very similar to a standard jazz
chord progression.

Figure
likely, there is no global chord structure

4. A chord progression generated by the HMM model. While the individual chord transitions are smooth and
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Computer Vision
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Computer Vision
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Image Processing
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Image Processing
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Introduction

Technically, Graphical Models are

Multivariate probabilistic models...
which are structured...
in terms of conditional independence statements

Informally

Models that represent a system by its parts and the possible
relations among them in a probabilistic way
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Introduction

Questions we want to ask about these models

@ Estimating the parameters of the model given data
@ Obtaining data samples from the model

@ Computing probabilities of particular outcomes

@ Finding most likely outcome
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Univariate Example

p(x) = _exp[ (x—=p)?/(20%)]

@ Estimate 1 and o given X = {x',... x"}

@ Sample from p(x)

o Compute P(u— o < x < pu+0) = ['"7 p(x)dx
@ Find argmax, p(x)

Tibério Caetano: Graphical Models 14 /17 _



Multivariate Case

We want to do the same things
@ For multivariate distributions structured according to ClI
@ Efficiently
@ Accurately

For example, given p(xi, ..., x,; 0)
@ Estimate 6 given a sample X (and criterion, e.g. ML)
@ Compute p(xa), A C {x1,...,X,} (marginal distributions)
@ Find argmax,, . p(xi,...,Xn; ¢) (MAP assignment)

77777
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When trying to answer the relevant questions...

p(x1) = ZXQ XN p(xi, ..., Xn)

.....

O] - [Xz - - -+ - [Xnl)

and similarly for other questions: NOT GOOD

We need compact representations of multivariate
distributions
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When to Use Graphical Models

@ When the compactness of the model arises from
conditional independence statements involving its
random variables.

@ CAUTION: Graphical Models are useful in such cases. If
the probability space is structured in different ways,
Graphical Models may not (and in principle should not)
be the right framework to represent and deal with the
probability distributions involved.
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Basic definitions involving random quantities

@ X - Arandom variable X = (Xj,..., Xy), N> 1

@ x - A particular realization of X: x = (xy,..., Xn)

@ X - Set of all realizations (sample space)

@ X, - A random vector of variables indexed by
AC{1,...,N} (xa for realizations)

@ Xj; - The random vector comprised of all variables other
than those in Xa (AUA={1,... N}, AnA=0). x; for
realizations

o :X:A = {XA}, (fX:A = {XA})

@ p(x) := probability that X assumes realization x

Basic properties of probabilities
00<p(x)<1,¥xeX
° erx ,D(X) =1
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Conditioning and Marginalization

The two ‘rules’ you will always need

Conditioning

® p(xa, Xg) = P(Xa|Xs)P(Xs),
for p(xg) > 0

Marginalization

@ p(xa) = ZXAEXA p(Xa, X3)
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Independence and Conditional Indep.

Independence

@ p(xa, Xg) = p(Xa)P(x8)

Conditional Independence

@ p(Xa, Xa|xc) = p(xa|xc)p(xs|Xc), or equivalently
@ p(XalXxs, Xc) = p(xa|Xc), or equivalently
@ p(xs|Xa, Xc) = p(Xs|Xc)

Notation: XA A XB | XC
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Conditional Independence

Examples

@ Weather tomorrow 1. Weather yesterday | Weather
today

@ My Genome 1L my grandparents’ Genome | my
parent’'s Genome

@ My mood 1L my wife’s boss mood | my wife’s mood

@ A pixel’s color L color of far away pixels | color of
surrounding pixels
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Conditional Independence

The KEY Fact is

p(xa; Xg|Xc) = p(xalxc) x p(xs|Xc)
—r S—— N——
f; (3 variables) f(2 variables) f3(2 variables)

p factors as functions over proper subsets of variables
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Conditional Independence

Therefore

p(xa, xg|xc) = p(xalxc) x p(xs|xc)
—_—— —— ————

f; (8 variables) fo(2 variables) f3(2 variables)

@ p(xa, Xg|Xc) cannot assume arbitrary values for arbitrary
XA, XB, Xc

@ If you vary x4 and xg for fixed x¢, you can only realize
probabilities that satisfy the above condition
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What is a Graphical Model?

What is a Graphical Model?

Given a set of conditional independence statements for the
random vector X = (Xi,..., Xn):

{Xa AL X5, | Xc}

Our object of study will be the family of probability
distributions

p(X17"'7XN)

where these statements hold
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Questions to be addressed

Typical questions when we have a probabilistic model

@ Estimate parameters of the model given data

@ Compute probabilities of particular outcomes

@ Find particularly interesting realizations (e.g. MAP
assignment)

In order to manipulate the probabilistic model

@ We need to know the mathematical structure of p(x)
@ We need to find ways of computing efficiently (and
accurately) in such structure
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How does p(x) look like?
Example:
p(xi, X2, X3) where x; 1L x3 | X2
p(x1, Xs3|X2) = p(x1|X2)P(Xs|X2)
p(X1, X2, X3) = p(X1, X3|%2)p(X2) = p(x1]X2)P(x3]X2)P(X2)

SO,
p(X1, X2, X3) = P(X1|X2)p(X3]X2) p(X2)
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However, p(x1, X2, X3) = p(X1|Xx2)p(X3|x2)p(x2) is also
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Cond. Indep. and Factorization

So Cl seems to generate factorization of p(x)!

@ |s this useful for the questions we want to ask?

Let’'s see an example of how expensive it is to compute p(xz)
p(Xg) = Zx1 X3 p(X1 ) X2, X3)

Without factorization:
P(X2) = Dy, x, P(X1, X2, X3), O(|X1[X2|[X5])

With factorization:
p(X2) = > 4 P(X1, X2, X3) = 32, . P(X1[X2)P(X2| X3)P(X3)
p(x2) = >_,, P(X2|X3)p(Xs) >_,, P(X1|X2), O(|X2[[X5])
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Cond. Indep. and Factorization

Therefore
@ Conditional Independence seems to induce a structure
in p(x) that allows us to exploit the distributive law in
order to make computations more tractable

However, what about the general case p(xi, ..., xy)?
@ What is the form that p(x) will take in general, given a
set of conditional independence statements?
@ Will we be able to exploit the distributive law in this
general case as well?
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Re-Writing the Joint Distribution

A little exercise

P(Xi,. .. Xn) = P(Xt, .- Xn—1)P(XN X1, - oy XN—1)

p(Xi, ..., xn) = p(x1)p(Xa2|X1)P(X3] X1, X2) . .. P(XN| X1, - ., XN—1)
p(x) =TIy p(xilx<)

where

“<i”={j:j<ijeNt}

now denote by = a permutation of the labels {1,..., N} such
that 7; < m;, Vi, Vj € < i. Above we have m =1 (i.e. m; = /)

So we can write

,D(X) = Hfi1 p(Xﬂ'i|X<7Ti)'
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Re-Writing the Joint Distribution

So
Any p(x) can be written as p(x) = Hf\i 1 P(Xr; | Xrr,)-

Now, assume that the following Cl statements hold
P(Xe; | X<r;) = P(Xr;|Xpay,), Vi, Where pa,, C < .

Then we immediately get
p(x) = TTiy P(Xr, | Xpa,)
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Computing in Graphical Models

Algebra is boring, so let’s draw this

@ Let’s represent variables as circles

@ Let’s draw an arrow from j to i if j € pa;

@ The resulting drawing will be a Directed Graph

@ Moreover it will be Acyclic (no directed cycles)
(Exercise:why?)
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Computing in Graphical Models




Bayesian Networks

This is why the name “Graphical Models”

Such Graphical Models with arrows are called
@ Bayesian Networks
@ Bayes Nets
@ Bayes Belief Nets
@ Belief Networks
@ Or, more descriptively: Directed Graphical Models
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Bayesian Networks

A Bayesian Network associated to a DAG is a set of
probability distributions where each element p(x) can be
written as

p(X) = Hip(xi|xpa,-)
where random variable x; is represented as a node in the

DAG and pa; = {x; : 3 arrow x; — x; in the DAG }. “pa” is for
parents.

(Colloquially, we say the BN “is” the DAG)
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Topological Sorts

A permutation 7 of the node labels which, for every node,
makes each of its parents have a smaller index than that of
the node is called a topological sort of the nodes in the DAG.

Theorem: Every DAG has at least one topological sort
(Exercise: Prove)
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A Little Exercise Revisited

Remember?
P(Xi,. .. Xn) = P(Xt, .- Xn—1)P(XN X1, - oy XN—1)
p(Xi, ..., xn) = p(x1)p(Xa2|X1)P(X3] X1, X2) . .. P(XN| X1, - ., XN—1)
p(x) = [T, p(xilx<)
where
“<i”={j:j<ijeNt}
now denote by = a permutation of the labels {1,..., N} such

that m; < m;,Vi,Vj € < i. Above we have ™ = 1
So we can write

,D(X) = Hfi1 p(Xﬂ'i|X<7Ti)'
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Exercises:

@ How many topological sorts has a BN where no Cl
statements hold?

@ How many topological sorts has a BN where all Cl
statements hold?
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Some Key Elements of Lecture 1

@ We can always write p(x) = [[; p(xi|x</)

@ Create a DAG with arrow j — i wheneverj e < i
@ Impose Cl statements by removing some arrows
@ The result will be p(x) = [; p(Xi|Xpa(i)

@ Now there will be permutations =, other than the identity,
such that p(x) = []; p(Xx|Xpa(x)) With 7; > k, where
k € pa(m;).
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Refreshing Exercise

Exercise

Prove that the factorized form for the probability distribution
of a Bayesian Network is indeed normalized to 1.
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Hidden CIl Statements?

We have obtained a BN by

@ Introducing very “convenient” Cl statements (namely
those that shrink the factors of the expansion

P(X) = ITis P |X<r))
@ By doing so, have we induced other Cl statements?

@ The answer is YES
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Head-to-Tail Nodes (Independence)

Are a and b independent?

a c b

O—0O—=0

Does a 1l b hold?
Check whether p(ab) = p(a)p(b)

p(ab) = >_.p(abc) = 3. p(a)p(cla)p(blc) =
p(a) > . p(blc)p(cla) = p(a)p(bla) # p(a)p(b)
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Head-to-Tail Nodes (Cond. Indep.)

Factorization = CI ?
a c b

O—@—0

Does p(abc) = p(a)p(cla)p(blc) =all b|c?
Assume p(abc) = p(a)p(c|a)p(b|c) holds
Then

b b b
p(ab|c) = pg'zzc)t:) _ p(a)p(g(\igp( o) _ p(C)p(j(\gp( o) _ p(alc)p(b|c)
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Head-to-Tail Nodes (Cond. Indep.)

Cl = Factorization ?

a c b

O—@—0O

Does a Il b | c = p(abc) = p(a)p(c|la)p(b|c)?
Assume a L b | ¢, i.e. p(ablc) = p(alc)p(b|c)
Then

p(abe) := p(able)p(c) = p(alc)p(blo)p(c) 2
p(a)p(cla)p(blc)
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Tail-to-Tail Nodes (Independence)

Are a and b independent?
C

S
S

Does a 1l b hold?
Check whether p(ab) = p(a)p(b)

p(ab) = >, p(abc) = >_, p(c)p(alc)p(blc) =
>cp(b)p(alc)p(c|b) = p(b)p(alb) # p(a)p(b), in generai
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Tail-to-Tail Nodes (Cond. Indep.)

Factorization = CI ?

S|
S

Does p(abc) = p(c)p(alc)p(blc) ==a Ll b|c?
Assume p(abc) = p(c)p(a|c)p(b|c).
Then

plable) = Bz = PIPEERES — p(ale)p(ble)
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Tail-to-Tail Nodes (Cond. Indep.)

Cl = Factorization ?

S
S

Does a Il b| ¢ = p(abc) = p(c)p(a|c)p(b|c)?
Assume a 1L b | c, holds, i.e. p(ab|c) = p(alc)p(b|c) holds
Then

p(abc) = p(ablc)p(c) = p(alc)p(blc)p(c)
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Head-to-Head Nodes (Independence)

Are a and b independent?
a b

Does a 1L b hold?
Check whether p(ab) = p(a)p(b)

p(ab) = >_,p(abc) = >_, p(a)p(b)p(c|ab) = p(a)p(b)
S Tibério Caetano: Graphical Models ||~ '« & £ o o iy e



Head-to-head Nodes (Cond. Indep.)

Factorization = CI ?
a b

Does p(abc) = p(a)p(b)p(clab) =a 1. b|c?
Assume p(abc) = p(a)p(b)p(c|ab) holds
Then

p(ablc) = Lleze) — LEARCIAED) oL p(a|c)p(bc) in general
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Cl < Factorization in 3-Node BNs

Therefore, we conclude that
@ Conditional Independence and Factorization are
equivalent for the “atomic” Bayesian Networks with only
3 nodes.
Question
@ Are they equivalent for any Bayesian Network?

@ To answer we need to characterize which conditional
independence statements hold for an arbitrary
factorization and check whether a distribution that
satisfies those statements will have such factorization.
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Blocked Paths

We start by defining a blocked path, which is one containing

@ Anobserved TT or HT node, or
@ A HH node which is not observed, nor any of its
descendants is observed

Tibério Caetano: Graphical Models 14/19 _



D-Separation

@ A set of nodes Ais said to be d-separated from a set of
nodes B by a set of nodes C if every path from Ato Bis
blocked when C is in the conditioning set.

Exercise: Is X3 d-separated from X; when the conditioning
setis {Xi, Xs}?
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Cl < Factorization for BNs

Theorem: Factorization = ClI
@ If a probability distribution factorizes according to a
directed acyclic graph, and if A, B and C are disjoint
subsets of nodes such that A is d-separated from B by C
in the graph, then the distribution satisfies A 1L B | C.

Theorem: Cl = Factorization
@ If a probability distribution satisfies the conditional
independence statements implied by d-separation over a
particular directed graph, then it also factorizes
according to the graph.
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Factorization = CI for BNs

Proof Strategy:
DF = d-sep

d-sep: d-separation property
DF: Directed Factorization Property
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Cl = Factorization for BNs

Proof Strategy:
d-sep = DL = DF

DL: Directed Local Markov Property: o 1L nd(«) | pa(«)

Thus we obtain DF =- d-sep = DL = DF
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Relevance of Cl < Factorization for BNs

Has local, wants global

@ Cl statements are usually what is known by the expert

@ The expert needs the model p(x) in order to compute
things

@ The Cl = Factorization part gives p(x) from what is
known (Cl statements)
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Changing the class of Cl statements

We obtained BNs by assuming
@ P(Xr;|X<r;) = P(Xn;| Xpa,, ), Vi, Where pa,, C < .
@ We saw in general that such types of Cl statements
would produce others, and in general all Cl statements
can be read as d-separation in a DAG.

@ However, there are sets of Cl statements which cannot
be satisfied by any BN.
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Markov Random Fields

@ Ideally we would like to have more freedom

@ There is another class of Graphical Models called
Markov Random Fields (MRFs)

@ MRFs allow for the specification of a different class of Cl
statements

@ The class of Cl statements for MRFs can be easily
defined by graphical means in undirected graphs.
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Graph Separation

Definition of Graph Separation
@ In an undirected graph G, being A, B and C disjoint

subsets of nodes, if every path from A to B includes at
least one node from C, then C is said to separate A from

Bin G.

S

.- s=<

4/18 r
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Graph Separation

Definition of Markov Random Field

@ An MREF is a set of probability distributions
{p(x) : p(x) > 0 Vp, x} such that there exists an
undirected graph G with disjoint subsets of nodes A, B,
C, in which whenever C separates A from B in G,
Al B| Cinp(x), Vp(x)

@ Colloquially, we say that the MRF “is” such undirected
graph. But in reality it is the set of all probability
distributions whose conditional independency
statements are precisely those given by graph
separation in the graph.
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Cliques and Maximal Cliques

Definitions concerning undirected graphs
@ Aclique of a graph is a complete subgraph of it (i.e. a
subgraph where every pair of nodes is connected by an
edge).
@ A maximal clique of a graph is clique which is not a
proper subset of another clique

{X1, Xo} form a clique and { Xz, X5, X4} a maximal clique.
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Factorization Property

Definition of factorization w.r.t. an undirected graph

A probability distribution p(x) is said to factorize with respect
to a given undirected graph if it can be written as

p(X) = 1? HCEG wC(XC)
where C is the set of maximal cliques, ¢ is a maximal clique,

X. is the domain of x restricted to ¢ and ¢¢(x;) is an arbitrary
non-negative real-valued function. Z ensures >, p(x) = 1.
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Cl < Factorization for positive MRFs

Theorem: Factorization = ClI
@ If a probability distribution factorizes according to an
undirected graph, and if A, B and C are disjoint subsets
of nodes such that C separates A from B in the graph,
then the distribution satisfies A LL B | C.

Theorem: Cl = Factorization (Hammersley-Clifford)

@ If a strictly positive probability distribution (p(x) > 0 Vx)
satisfies the conditional independence statements
implied by graph separation over a particular undirected
graph, then it also factorizes according to the graph.
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Factorization = CI for MRFs

Proof...
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Cl = Factorization for +MRFs (H-C Thm)

Mébius Inversion: for CC BC AC Sand F: P(S) — R:

F(A) =3 ppca ZC:CQB(_1)IB‘_|CIF(C)
Define F = ¢ = log p and compute the inner sum for the case where B is
not a clique (i.e. 3X;, Xo not connected in B). Then CI
»(X1,C, X2) + ¢(C) = ¢(C, X1) + ¢(C, X2) holds and

S (-nE-Clgey= Y (-1)E-lClgc) +
ccB CCB:Xi,X¢C
(—1)/EI=10%lg(C, X) +
CCB:X1, X &C
D (NETICEIG(C %) +
CgB;X1,X2¢C
(_1)|B\7|X1UCUX2\¢(X17C7X2) =
CCB;Xi,X&C

= Y (=10)BCs(X1, C, Xe) + &(C) — $(C, X1) — #(C. Xa)]

CgB;X1 7X2¢C

=0
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Relevance of Cl < Factorization for MRFs

Relevance is analogous to the BN case

@ Cl statements are usually what is known by the expert

@ The expert needs the model p(x) in order to compute
things

@ The Cl = Factorization part gives p(x) from what is
known (Cl statements)
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Comparison BNs vs. MRFs

In both types of Graphical Models

@ A relationship between the Cl statements satisfied by a
distribution and the associated simplified algebraic
structure of the distribution is made in term of graphical
objects.

@ The CI statements are related to concepts of separation
between variables in the graph.

@ The simplified algebraic structure (factorization of p(x) in
this case) is related to “local pieces” of the graph (child +
its parents in BNs, cliques in MRFs)
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Comparison BNs vs. MRFs

Differences

@ The set of probability distributions that can be
represented as MRFs is different from the set that can
be represented as BNs.

@ Although both MRFs and BNs are expressed as a
factorization of local functions on the graph, the MRF
has a normalization constant Z = >, T],ce ¥c(Xc) that
couples all factors, whereas the BN has not.

@ The local “pieces” of the BN are probability distributions
themselves, whereas in MRFs they need only be
non-negative functions (i.e. they may not have range
[0 1] as probabilities do).
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Comparison BNs vs. MRFs

Exercises
@ When are the CI statements of a BN and a MRF
precisely the same?

@ A graph has 3 nodes, A, B and C. We know that A 1L B,
but C 1L Aand C L B both do not hold. Can this
represent a BN? An MRF?
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I-Maps, D-Maps and P-Maps

@ A graph is said to be a D-map (for dependence map) of a
distribution if every conditional independence statement
satisfied by the distribution is reflected in the graph.

@ A graph is said to be an I-map (for independence map)
of a distribution if every conditional independence
statement implied by the graph is satisfied in the
distribution.

@ A graph is said to be an P-map (for perfect map) of a
distribution if it is both a D-map and an |-map for the
distribution.
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I-Maps, D-Maps and P-Maps

D: set of distributions on n variables that can be represented
as a perfect map by a DAG

U: set of distributions on n variables that can be represented
as a perfect map by an Undirected graph

P: set of all distributions on n variables

Tibério Caetano: Graphical Models 16/18 _



Markov Blankets

T

@ The Markov Blanket of a node X; in either a BN or an
MREF is the smallest set of nodes A such that
p(xi|x;) = p(Xi|Xa)

@ BN: parents, children and co-parents of the node

@ MRF: neighbors of the node
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Exercises

@ Show that the Markov Blanket of a node x; in a BN is
given by it’s children, parents and co-parents

@ Show that the Markov Blanket of a node x; in a MRF is
given by its neighbors
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Factorized Distributions

Our p(x) as a factorized form

For BNs, we have
p(x) = I1; p(xi|pai)
for MRFs, we have

p(X) = 7 [Teee YelXe)

Will this enable us to answer the relevant questions in practice?
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Key Concept: Distributive Law

Distributive Law
ab+ ac = a(b + c)
——

3 operations 2 gperations

l.e. if the same constant factor (‘a’ here) is present in every
term, we can gain by “pulling it out”

Consider computing the marginal p(x;) for the MRF with
factorization
p(x) = }va’ﬂ w(x,,x,+1) (Exercise: which graph is this?)

P(X1) =2 s xyZ 1_[:\111 (X5, Xit1)

77777

P(x1) = 2 30, (X1, Xe) X, (X2, Xa) - - 2 Y (XN-1, XN)

O(ITY.; 1%i]) vs. OCZ3 T o6 1%i41))
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Elimination Algorithm

Distributive Law (DL) is the key to efficient inference in GMs

@ The simplest algorithm using the DL is the Elimination
Algorithm

@ This algorithm is appropriate when we have a single
query

@ Just like in the previous example of computing p(x1) in a
givel MRF

@ This algorithm can be seen as successive elimination of
nodes in the graph
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Elimination Algorithm

p(xy) =2~" Dxg, .. P4 X2) (X, X3) Y (X3, X)) (Xa, X5, X6 )Y (X2, X4)
p(x) =2~" 2oy ¥4 02) Xos Y (X4, X3) 2o, ¥(X2, Xa) S w(xs, %) D (%, X5, X6)
X5

Compute p(x;) with elimination order (6, 5, 4, 3, 2)

X6
Mg (x2,X5)
ms (x3,X3)

p(x1) = Z~  sumy, (%1, X2) 2xg ¥(x1, X3)ms (X2, X3) > w(xe, xa)

X4

my (xa)
p(x) =271 S w(xg, x)ma(x) S w(xy, x3)ms (xo, X3)
X2 X3
mg(xq,Xp)
mo(xq)
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Belief Propagation

Belief Propagation Algorithm, also called

@ Probability Propagation
@ Sum-Product Algorithm

@ Does not repeat computations
@ Is specifically targeted at tree-structured graphs
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Belief Propagation in a Chain

Na(mn—l) #a(xn) /J'ﬂ(xn) /J’B(In+l)

—

3

~
I

N—1
Zx<n X>n ZH/ 1 7vb(XhXIJH)
1 —1
z Zx<,, Xon [T (6, Xis) TTiz, (X, Xig1)

3 [ TI 000041 - |, TS (i x000)|

“1 [T ] [zm ]

X<n I= 1 X>n I=n
A

2 83
s &
H ||

ua(Xn):O(Zf-:f 126 1111))) MB(XH):O(Z,'N:,,1 |96 1%i11))
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Belief Propagation in a Chain

@ So, in order to compute p(x,), we only need the
“incoming messages” to x,

@ But nis arbitrary, so in order to answer an arbitrary
query, we need an arbitrary pair of “incoming messages”

@ So we need all messages

@ To compute a message to the right (left), we need all
previous messages coming from the left (right)

@ So the protocol should be: start from the leaves up to xj,
then go back towards the leaves

@ Chain with N nodes = 2(N — 1) messages to be
computed

Tibério Caetano: Graphical Models 8/29 _



Computing Messages

Defining trivial messages:
mo(x1) =1, Mnp1(xn) =1
For i = 2 to N compute
mi1(Xi) = >y, Y(Xi—1, Xi)Mi—2(Xi-1)
For i = N — 1 back to 1 compute
M1 (Xi) = 3y, V(Xi, Xigt)Miz2(X + 1)
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Belief Propagation in a Tree

@ The reason why things are so nice in the chain is that
every node can be seen as a leaf after it has received
the message from one side (i.e. after the nodes from
which the message come have been “eliminated”)

@ “Original Leaves” give us the right place to start the
computations, and from there the adjacent nodes
“become leaves” as well

@ However, this property also holds in a tree
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Belief Propagation in a Tree

Message Passing Equation
my(Xi) = 22 (X5 Xi) [kckogihoi Mi(X))
(szk%k#i mi(x;) := 1 whenever jis a Ieaf)

Computing Marginals
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Max-Product Algorithm

There are important queries other than computing marginals.
For example, we may want to compute the most likely
assignment:

x* = argmax, p(x)

as well as its probability
p(x*)

one possibility would be to compute
p(x;) = >_, p(x) for all /, then x; = argmax, p(x;) and then
simply

X = (X, X5, ..., Xp)

What'’s the problem with this?
" Tibério Caetano: Graphical Models -~~~ oo 12/20 |



Exercise
@ Construct p(xq, x2), with x1, x> € {0, 1,2}, such that
p(x;i, X3) = 0 (where x;' = argmax, p(x;))
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Max-Product (and Max-Sum) Algorithms

Instead we need to compute directly
X* = argmax,, . pP(xi,...,Xn)

We can use the distributive law again, since
max(ab, ac) = amax(b, ¢)
fora>0

Exactly the same algorithm applies here with ‘max’ instead of
> max-product algorithm.

To avoid underflow we compute x* via
log(argmax, p(x)) = argmax, log p(x) = argmax,, > . log fs(xs)
since log is a monotonic function. We can still use the
distributive law since (max, +) is also a commutative
semiring, i.e.
max(a+ b,a+ c¢) = a+ max(b, ¢)
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A Detail in Max-Sum

After computing the max-marginal for the root x:
p; = max ZSNX :ufs—>X(X)

and its maximizer
X; = argmax, p;

It's not a good idea simply to pass back the messages to the
leaves and then terminate (Why?)

In such cases it is safer to store the maximizing
configurations of previous variables with respect to the next
variables and then simply backtrack to restore the
maximizing path.

In the particular case of a chain, this is called Viterbi
algorithm, an instance of dynamic programming.

Tibério Caetano: Graphical Models 15/29 _



Arbitrary Graphs

@ Elimination algorithm is needed to compute marginals
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A Problem with the Elimination Algorithm

How to compute

p(x, [ Xo)
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A Problem with the Elimination Algorithm

P05 =5 DTS T S0 35 W o e X 55O )
P8 = T ) D) T 53 T (5 5) T 5 505 )
P %) = %gw(x.,xz)xzw(xl,xg; X)W 5 0,

P = %xzw(xl,xz)xzw(xl,xoms(xz,xg)xzw(xz,m

P = %XZWI,xz)m4<x2)§w(xl,x3>ms (x,,)

P %)= %gw(xl,xz)mmz)m; (5%,)

_ 1
p(x,%) :Emz(xl)
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A Problem with the Elimination Algorithm

p(f6)=%§m2(x1) p(xlﬁf6):%m2(xl)
m,(x,)
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A Problem with the Elimination Algorithm

What if now we want to compute

p(x; | %)
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A Problem with the Elimination Algorithm

Pl %) = %zZZZZw(xl,xm(xl,xs)w(xz,xnw(x},xs)z//(xz,xs,xaé(xs,fs)

XX, X, XX,

(X3, %) = %zl//(xl,xz)Zl//(xl,xz)Zl//(xz,x4)zl//(x3,xs)Zl//(xz,xs,x6)5(x6,f6)

-

- 1 .- ~.
(x5, %) = EZW(XPx})Z‘//(xlvxz)Z‘//(xz9x4)21//(x3’!{5)m6(x2’x5) \
X X, X, X ~ 7/

‘_—’

p(x37x6):7ZW(XI7x3)ZW(xl»xz)ms(xbx3)z\:‘//(x27x4)
Z X, X, AR —_——X
_ 1 -~
(x5, %) = }ZW(XU& )Z‘//(xlbeszl(xZ/»/nS (3,,%;)
_ 1
p(x3’x6):EZmz(x1’x3)

_ 1
p(x3,X5) :Eml(x3)
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A Problem with the Elimination Algorithm

_ Repeated Computations!! .
p(x, [ X) p(x; | X¢)

P = 5 2 B T B B (Gt W (55 (oW (550 (13K 50 3T 05307 = 230 25 T 5 05 s 5 X s 500 )

— 1 N —
P(x,.X) = ;;wtr.. r,)zwl‘u r:)ZwmmZ W (x.x, )Zwm. SREALIENA) p(x,,fm):%Zy/(x‘,xl)Zw(x,,x,)ZW(K;J.,);V/(«"\-XS)ZV/(%JW‘B)&(%EJ

o s - | ——-—
pmm:gZw(x--me(»\V»Z)Zwmvmzw(x\v!s)m(x P = T ) L VT u/\-‘;&b("’&)m(*ﬂs)\
- P - - No o~ z4 o o Nl
1 -~ |
p(u-r,):;zwr.-n)Zu/lr.vr:le‘r:-n); s =, SV > 1%,)

oo - - )
m\.m:?;w(»..»‘)Zw(».,»z@Ajly.g = M,m:;ka,jmx;zwu"m,,,i(,rl,x‘.
p(.\z.?),'—Zmﬂu x,) 1 : '

LA e p(x,,m:ZZW.»:)W)m,(x,,x;)
oL )
PO = 5 () PU8T) = ()

How to avoid that?

Tibério Caetano: Graphical Models 22/29 _



The Junction Tree Algorithm

@ The Junction Tree Algorithm is a generalization of the
belief propagation algorithm for arbitrary graphs

@ In theory, it can be applied to any graph (DAG or
undirected)

@ However, it will be efficient only for certain classes of
graphs
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Chordal Graphs

Chordal Graphs (also called triangulated graphs)

@ The JT algorithm runs on chordal graphs

@ A chord in a cycle is an edge connecting two nodes in
the cycle but which does not belong to the cycle (i.e. a
shortcut in the cycle)

@ A graph is chordal if every cycle of length greater than 3
has a chord.

not chordal chordal
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Chordal Graphs

What if a graph is not chordal?

@ Add edges until it becomes chordal
@ This will change the graph

@ Exercise: Why is this not a problem?
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Triangulation Step

(1) Triangulate the graph (if it's not triangulated)
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Junction Tree Construction

(2) Create a Junction Tree

@

&

-




Initialization

(3) Initialize clique potentials (nodes and separators)

y—»

1,2,3
PP  Directly introduced
c

@, =ones(S,S) —_—)

@ Initialized to 1
s
‘P2,4
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X, X3

<

@, ; = ones(S,S)

2,35

X, Xs

D, =ones(S,1)

— X2

28/29

-

\Pz,s,s



Propagation

(4) Message passing

W= %‘P] L@ =D s X Xy | Xy X5 X5
' (O X, ' '
« . D
© 23 = ZLPLZ,S Voo = ® LI’2.3,5 ‘
. 23
Do = Z'{'*“ﬁ W5 = s ¥ss
X, D T X, Xs
R [o} . -
Va6 :(1)72’511125’6 [ONPRES z"}’ 2,56 ‘
2.5 Yo
. (O3 L _ *
‘{1274:32\}'2'4 ®27§‘{1 2,56 ¢ ¢

™~

. . . — X X X.X
(I)z—z‘l"u ‘P24545=(D*2\P2’5_6 2 2 A5 Rg
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We saw that
@ Given p(x;0), Probabilistic Inference consists of
computing
e Marginals of p(x; )
e Conditional distributions
e MAP configurations
@ etc.

@ However, what is p(x; 0) in the first place?
@ Finding p(x; 0) from data is called Learning or Estimation
or Statistical Inference.
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Maximum Likelihood Estimation

In the case of Graphical Models, we’ve seen that

p(x;0) = 3 [Tses fs(xsi 0s)

where {s} are subsets of random variables and {f} are
non-negative real-valued functions.

We can re-write that as
p(x;0) = exp(>_qcslog fs(Xs: bs) — 9(0))

where g(f) = log >, exp(3_scs 109 fs(Xs; bs))
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IID assumption

@ We observe data X = {X',... X"}

@ We assume every X is a sample from the same
unknown distribution p(x; 6s) (identical assumption)

@ We assume X' and X/, i # j, to be drawn independently
from p(x; 0s) (independence assumption)

@ This is the Jid setting (independently and identically
distributed)
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Maximum Likelihood Estimation

The joint probability of observing the data X is thus
p(X;0) =I1,p(x";0) = [1;exp(>_;log fs(xg; 6s) — 9(6))

Seen as a function of @ this is the likelihood function.

The negative log-likelihood is
—log p(X; 0) = mg(0) — 3_7" 3= log fs(Xg; 0s)
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Maximum Likelihood Estimation

Maximum likelihood estimation consists of finding ¢* that
maximizes the likelihood function, or minimizes the negative
log-likelihood:

6* = argmin, [mg(&) — ) > log fi(x{; 93)]
i=1 s

N J/

::%X)

In order to minimize it we must have V,/(0; X) = 0 and
therefore each VvV, ¢(0; X) = 0,Vs.

What happens for both BNs and MRFs?
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ML Estimation in BNs

For BNs, g(¢) = 0 (Exercise) and ) |, fi(xs;0s) =1 Vs so

i=1

Vo, [mg(@) - Xm: Z log fs(x¢; 0s) + Z As(1 — Z fs(Xs; Qs))] =

m
Z VGS/ fs’(X;/; es’) = >\s’ Z VOS/ fs’(Xs; es/)a Vs
i=1

Xs

Therefore we have 2|S| equations where every pair can be
solved independently for 0y and Ay

So the ML estimation problem decouples on local ML
estimation problems involving only the variables in each
individual set s.
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ML Estimation in MRFs

For MRFs, g(0) # 0 so

[ ZZIogf ]_o =

mve,g(0) ZZV(;J( fs) = 0,Vs

Therefore we have |S| equations that cannot be solved
independently since g(6) involves all s. This may give rise to
a complex non-linear system of equations.

So, learning in MRFs is more difficult than in BNs.
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Exponential Families

Consider the parameterized family of distributions
p(x; 0) = exp({®(x),0) — g(0))

Such a family of distributions is called an Exponential Family
®(x) is the sufficient statistics

0 is the natural parameter

g(8) =log >, exp((®(x),)) is the log-partition function

This is the form of several distributions of interest, like
Gaussian, binomial, multinomial, Poisson, gamma, Rayleigh,
beta, etc.
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Exponential Families

If we assume that our p(x; ) is an exponential family, the
learning problem becomes particularly convenient because it
becomes convex (Why?)

Recall the form of p(x; 6) for a graphical model

p(x; 0) = exp()_scs109 fs(Xs: bs) — g(6))

for it to be an exponential family we need

> ses 109 fs(Xs; 0s) = (P(x), 0) = > s (Ps(Xs), bs)
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Exponential Families for MRFs

For MRFs, the negative log-likelihood now becomes

—log p(X;6) Z Z (s(x3), bs)
=mg(0 mz t1s(Xs), Os)
where we defined 15(xs) := 3.7, ®s(Xs)/m

Taking the gradient and setting to zero we have

Vo.mg(h) mz 11s(Xs), 0s) = 0 =

Vasg(Q) = pis(Xs), but

Vesg(Q) = EXNp(X;O) [(Ds(xs)] (?), so IEx~p(x;6)[q>s(xs)] = Hs(Xs)
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Exponential Families for MRFs

In other words:

@ The ML estimate 6* must be such that the expected
value of the sufficient statistics under p(x; 6*) for every
cligue has to match the sample average for the clique.

Why is the problem convex? (Exercise)
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Exponential Families for BNs

For BNs, the negative Iog—IikeIihood now becomes
—log p(X; 6) Z Z {(dg(x,
=- mz ts(Xs), O0s)
S

where we also defined j5(x;s) := >°7, ds(xL)/m.
Constructing the Lagrangian corresponding to the constraints
> x EXP((®(xs), 0s)) = 1,Vs, and taking the gradient equal to
zero we have

m- ,U/s/(xs’) )\S/E Xgr ~P(Xgr B [q)s/(xs’)] VS
which can be solved for #s and Ay using

Zexp (Xs),0s)) =1
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Example: Discrete BNs

Multinomial random variables

@ Tabular representation for p(x,|X,4(v)) (define
¢y = vUupa(v))

@ One parameter 6, associated to each p(xy|Xpa(v)),
6. 0,(Xs,) = P(Xu|Xoav): Ov)

@ Note that there are no constraints beyond the
normalization constraint

@ Thejointis p(xy|0) =[], Ov(Xs,)

@ The likelihood is then log p(X; 0) = log [ [, p(xv |6)

@ continuing...
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Example: Discrete BNs

log p(X; 0) =log [ | p(xv.nl0)
=" log [T p(xv; 6)70xv.0)
n Xy
= Z Z (S(XV7 XV,n) |Og p(Xv; 9)
n Xy

= m(xy)log p(xv; 6)

— Z m(xy)log H Ov(Xg,)

=3 m(xy) Y logb,(xs,)
_ZZ(Z )logﬂ()%)
=3 m(xs,)l0g0,u(xs,)
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Example: Discrete BNs

The Lagrangian is

=" " m(x,,)l0g 0, (x,, +Z/\ 1—29 X5,))

V. Xey,

and

Vo) (B(0. 1)) = 7000

bu‘t S|nce ZHV,(X¢V’) = 1,)\‘// = m(Xpa(v/))7 SO

Xy

m(X¢V,) . "
Ovi(Xs,) = M, (Matches intuition)
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Learning the Potentials

First — How to learn the potential functions when we
have observed data for all variables in the model?

Second — How to learn the potential functions when
there are latent (hidden) variables, i.e., we do not
observe data for them?
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Learning the Potentials

1
‘ ‘ ‘ p(x,) :E\PI,Z (xlvxz)qu,s(xzaxz)

Assume we observe N instances of this model

For 11D sampling, the sufficient statistics are the empirical marginals

ﬁ(xlaxz) and ﬁ(x25x3)

How do we estimate ‘¥ ,(x;,x,) and ‘¥, ,(x,,x;) from the sufficient statistics?
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Learning the Potentials

Let's make a guess: - N
\PI,Z (x,%,) = p(x,x,)
)= PO )P0, X) - so that

p(x,) ‘I—’%L(xz,x3) Pl %)
p(x,)

Do (X1 X5, X,

We can verify that our “guess” is good, because:

Dy (X1, %) = szﬁ(xpxz)

p(x,)
A _ ﬁ(xlaxz)ﬁ(xzaxz) _
pML(x29x3)_; 5(x,) P(x,,%;)
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Learning the Potentials

The general recipe is:
(1) For every maximal clique C, set the clique potential to its empirical marginal

(2) For every intersection S between maximal cliques, associate an empirical
marginal with that intersection and divide it into the potential of ONE of the
cliques that form the intersection

This will give ML estimates for decomposable Graphical Models
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Decomposable Graphs

A graph is complete if E contains all pairs of distinct elements of V.
A graph G = (V, E) is decomposable if either

1. G is complete, or
2. We can express V as V = AU B U C where

a) A, B and C are disjoint,
b) A and C are non-empty,

(
(
(¢) B is complete,

(d) B separates A and C in G, and

(e) AUB and BUC are decomposable.

for decomposable graphs, the derivative of the log-partition
function g(#) decouples over the cliques (Exercise) = MRF
learning easy.
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Learning the Potentials

Non-decomposable Graphical Models:

An iterative procedure must be used: Iterative Proportional Fitting (IPF):

P(xc) _ p(xc)
Yo(xo) Wolxo) Where it can be shown that:

+ P (xe) = plxe)

\P(t+1)( )= \{,(t)( c) p(xc)
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How to estimate the potentials when there are unobserved
variables?

® 0 &

Answer: EM algorithm
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Denote the observed variables by X and the hidden variables by Z

X
AL

X i
® O -

If we knew Z, the problem would reduce to maximizing the complete log-likelihood:

[,(0;x,2) =log p(x,2| 0)
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However, we don’t observe Z, so the probability of the data X is
1(6;x) =log p(x| ) =log > p(x,z|6)

Which is the incomplete log-likelihood
This is the quantity we really want to maximize

Note that now the logarithm cannot transform the product into a sum, since it is
“pblocked” by the sum over Z, and the optimization does not “decouple”
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The basic idea of the EM algorithm is:

Given that Z is not observed, we may try to optimize an “averaged” version, over all
possible values of Z, of the complete log-likelihood

We do that through an “averaging distribution” q:
(1.(0.x,2)), = > a(z| x,0)log p(x,z| )
And obtain the expected complete log-likelihood

The hope then is that maximizing this should at least improve the current estimate for
the parameters (so that iteration would eventually maximize the log-likelihood)
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In order to present the algorithm, we first note that:

1(0;x) =log p(x|0)
1(6:x)=log Y’ p(x,z|6)

p(x,z]0)

1(0;x) = long(z|x) e

p(x,z]0)

>Zq(z | x)log——"—~= 1)

=1L(q,0)

Where L is the auxiliary function. The EM algorithm is coordinate-ascent on L
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The EM algorithm

E - step q(”” =argmax L(q, 9(0)
q

M - step ") = arg maXL(q(Hl): &)
0
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Note that the “M step” is equivalent to maximizing the expected complete log-
likelihood:

_ px,z]0)
L(qﬁ)—Ez:q(ZIX)log e

L(g,0) = q(z| x)log p(x,z|6)~ D q(z| ) logq(z| x)

L(g,0)=(1.(6:%,2)), = > q(z| ¥)log (2] x)

Because the second term does not depend on &
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The general solution to the “E step” turns out to be
q"""(z]x) = p(z]x,0")
Because

O A o p(X,Z|0(t))
L(p(z]x,60),0 )—§p<z|xa9 e r.a")

L(p(z]x,0),0") =3 p(z|x,6")log p(x[6?)

L(p(z]x,0"),60") =log p(x|6)
L(p(z]x,0"),60")=1(0";x)

Tibério Caetano: Graphical Models 30/30 _



	mlss5.pdf
	Lecture 3: Algorithms (Inference)


