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Linear Arithmetic D.P.s—Introduction

If the language is rich enough (has multiplication, has quantifiers),
deciding the validity of arbitrary mathmatical formulas (over Z or
N) is impossible.
With a more impoverished language, a theory may be decidable.
Historically, this research was part of the attempt to determine the
limits of decidability.
In the present, techniques similar to these are used to solve
real-world problems, in a huge variety of systems.
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Presburger formulas

formula ::= formula∧ formula | formula∨ formula |
¬formula | ∃var. formula | ∀var. formula |
term relop term

term ::= numeral | term+ term | − term |
numeral∗ term | var

relop ::= < | ≤ | = | ≥ | >

var ::= x | y | z . . .

numeral ::= 0 | 1 | 2 . . .

numeral∗ term isn’t really multiplication; it’s short-hand for
term+ term+ · · ·+ term.
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Decision Procedures

The aim is to produce an algorithm for determining whether or not
a Presburger formula is valid with respect to the standard
interpretation in arithmetic.
Such an algorithm is a decision procedure if it is sure to correctly
say “true” or “false” for all closed formulas.

Will discuss algorithms for determining truth of formulas of
Presburger arithmetic:

Fourier-Motzkin variable elimination (FMVE), when variables are
from R (or Q)
Omega Test when variables are from Z (or N)
Cooper’s algorithm for Z (or N)
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Quantifier Elimination

All the methods we’ll look at are quantifier elimination
procedures.
If a formula with no free variables has no quantifiers, then it is
easy to determine its truth value, e.g., 10 > 11 ∨ 3+4 < 5×3−6.
Quantifier elimination works by taking input P with n quantifiers
and turning it into equvalent formula P ′ with m quantifiers, and
where m < n.
So, eventually

P ≡ P ′ ≡ ...≡Q

and Q has no quantifiers.
Q will be trivially true or false, and that’s the decision
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Normalisation

Methods require input formulas to be normalised (e.g., collect
coefficients, use only < and ≤)
Methods eliminate innermost existential quantifiers. Universal
quantifiers are normalised with

(∀x . P(x))≡ ¬(∃x . ¬P(x))

In FMVE, the sub-formula under the innermost existential
quantifier must be a conjunction of relations.

This means the inner formula must be converted to disjunctive
normal form (DNF):

(c11∧c12∧·· ·∧c1n1)∨·· ·∨ (cm1∧cm2∧·· ·∧cmnm)
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Disjunctive Normal Form

Transform with equivalences

p∧ (q∨ r) ≡ (p∧q)∨ (p∧ r)
(p∨q)∧ r ≡ (p∧ r)∨ (q∧ r)

Possibly exponential cost.

Must have also moved negations inwards, achieving Negation Normal
Form, using

¬(p∧q) ≡ ¬p∨¬q
¬(p∨q) ≡ ¬p∧¬q

¬¬p ≡ p
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Normalisation (cont.)

The formula under ∃ is in DNF.
Next, the ∃ must be moved inwards

First over disjuncts, using

(∃x .P ∨Q)≡ (∃x . P)∨ (∃x . Q)

Must then ensure every conjunct under the quantifier mentions the
bound variable.
Use

(∃x . P(x) ∧ Q)≡ (∃x . P(x)) ∧ Q

For example

(∃x . 3 < x ∧ x +2y ≤ 6 ∧ y < 0)−→
(∃x . 3 < x ∧ x +2y ≤ 6) ∧ y < 0
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Fourier-Motzkin theorems

The following simple facts are the basis for a very simple-minded
quantifier elimination procedure.
Over R (or Q), with a,b > 0:

(∃x . c ≤ ax ∧bx ≤ d) ≡ bc ≤ ad
(∃x . c < ax ∧bx ≤ d) ≡ bc < ad
(∃x . c ≤ ax ∧bx < d) ≡ bc < ad
(∃x . c < ax ∧bx < d) ≡ bc < ad

In all four, the right hand side is implied by the left because of
transitivity (e.g., x < y ∧y ≤ z ⇒ x < z).
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Fourier-Motzkin theorems (cont.)

In the other direction:

bc < ad ⇒ (∃x . c < ax ∧bx ≤ d)

take x to be d
b : c < a(d

b ), and b(d
b )≤ d .
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Fourier-Motzkin theorems (cont.)

In the other direction:

bc < ad ⇒ (∃x . c < ax ∧bx ≤ d)

take x to be d
b : c < a(d

b ), and b(d
b )≤ d .

For
bc < ad ⇒ (∃x . c < ax ∧bx < d)

take x to be bc+ad
2ab :

c < a
(

bc +ad
2ab

)

≡ 2bc < bc +ad ≡ bc < ad

(and similarly for the other bound)
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Extending to a full procedure

So far: a quantifier elimination procedure for formulas where
quantifiers only ever have scope over 1 upper bound, and 1 lower
bound.
The method needs to extend to cover cases with multiple
constraints.
No lower bound, many upper bounds:

(∃x . b1x < d1∧b2x < d2 · · ·∧bnx < dn)

Verdict: True! (take min(di
bi

)−1 as witness for x)
No upper bound, many lower bounds: obviously analogous.
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Combining many constraints—I

Example:

(∃x . c ≤ ax ∧b1x ≤ d1∧b2x ≤ d2)≡ b1c ≤ ad1∧b2c ≤ ad2

From left to right, result just depends on transitivity.
From right to left, take x to be min(d1

b1
, d2

b2
).

In general, with many constraints, combine all possible lower-upper
bound pairs.

(Proof that this is possible is by induction on number of constraints.)
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Combining many constraints—II

The core elimination formula is

∃x . (
V

h ch ≤ ahx)∧ (
V

i ci < aix)∧ (
V

j bjx ≤ dj)∧ (
V

k bkx < dk )

≡

(
V

h,j bjch ≤ ahdj)∧ (
V

h,k bkch < ahdk ) ∧

(
V

i ,j bjci < aidj)∧ (
V

i ,k bkci < aidk )

With n constraints initially, evenly divided between upper and lower
bounds, this formula generates n2

4 new constraints.
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FMVE example

∀x . 20+x ≤ 0 ⇒ ∃y . 3y +x ≤ 10 ∧ 20≤ y −x
(re-arrange)

≡ ∀x . 20+x ≤ 0 ⇒ ∃y . 20+x ≤ y ∧ 3y ≤ 10−x
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Efficiency

As before, when eliminating an existential over n constraints we
may introduce n2

4 new constraints.
With k quantifiers to eliminate, we might end with

n2k

4k

constraints.
If dealing with alternating quantifiers, repeated conversions to
DNF may really hurt.
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Expressivity

Unique existence:
(∃!x . P(x))≡ (∃x . P(x)∧∀y . P(y)⇒ (y = x))

Conditional expressions:
if formula1 then formula2 else formula3 is the same as
(formula1∧ formula2)∨ (¬formula1∧ formula3)

if-then-else expressions over term, can be moved up and out to be
over formulas:

(if x < y then x else y) < z
≡

if x < y then x < z else y < z

Minimum, maximum, absolute value. . .
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Constraint satisfaction, optimisation

It’s possible to make the algorithm return witnesses to purely
existential problems.
E.g.,

∃x y . 3x +4y = 18∧5x−y ≤ 7

might return {(x ,2),(y ,3)} (or {(x , 2
3),(y ,4)}, or . . . ).

Can also maximise (minimise) z in system ∃~x z. P(~x ,z):
First check ∃~x z. P(~x ,z)
If it has a solution, check

∃z. (∃~x . P(~x ,z)) ∧ (∀~x z ′. P(~x ,z ′) ⇒ z ′ ≤ z)

If there is a maximum solution for z, this will find it
Note alternation of quantifiers!
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Expressivity over Integers—I

Can’t do primality

prime(x)≡ ∃y z. x = yz ∧1 < y < x

because of restriction on multiplication
Can do divisibility by specific numerals:

2|e ≡ ∃x . 2x = e

and so (for example):

∀x . 0 < x < 30 ⇒ ¬(2|x ∧ 3|x ∧ 5|x)
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Expressivity over Integers—II

Can do integer division and modulus, as long as divisor is constant
Use one of the following results (similar for division)

P(x mod d) ≡
∃q r . (x = qd + r)∧ (0≤ r < d ∨d < r ≤ 0)∧P(r)

P(x mod d) ≡
∀q r . (x = qd + r)∧ (0≤ r < d ∨d < r ≤ 0)⇒ P(r)

Any formula involving modulus or integer division by a constant
can be translated to one without.

When d is known, one of the disjuncts will immediately simplify
away to false.
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Expressivity over Integers—III

Any procedure for Z trivially extends to be one for N (or any
mixture of N and Z) too: add extra constraints stating that
variables are ≥ 0
Ignore non-Presburger sub-terms by trying to prove more general
goals.

For example,
∀x y . xy > 6⇒ 2xy > 13

becomes
∀z. z > 6⇒ 2z > 13
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One Nice Thing About the Integers

The relations < and ≤ are inter-convertible:

x ≤ y ≡ x < y +1
x < y ≡ x +1≤ y

Decision procedures can normalise one relation into the other.
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Fourier-Motzkin for Integers?

Central theorem is false:

(∃x : Z. 3≤ 2x ≤ 3) 6≡ 6≤ 6

But one direction still works (thanks to transitivity):

(∃x . c ≤ ax ∧bx ≤ d) ⇒ bc ≤ ad

We can compute consequences of existentially quantified
formulas
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Fourier-Motzkin for Integers?

Have
(∃x . c ≤ ax ∧bx ≤ d) ⇒ bc ≤ ad

Thus an incomplete procedure for universal formulas over Z:
1 Compute negation: (∀x . P(x))≡ ¬(∃x . ¬P(x))

2 Compute consequences:
if (∃x . ¬P(x))⇒⊥ then (∃x . ¬P(x))≡⊥
and

(∀x . P(x))≡>

(Repeat for all quantified variables.)

This is Phase 1 of the Omega Test (when there are no alternating
quantifiers)
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Omega Phase 1—Example

∀x y : Z. 0 < x ∧y < x ⇒ y +1 < 2x
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Omega Phase 1—Example

∀x y : Z. 0 < x ∧y < x ⇒ y +1 < 2x
(normalise)

≡ ¬∃x y . 1≤ x ∧ y +1≤ x ∧ 2x ≤ y +1

∃x y . 1≤ x ∧ y +1≤ x ∧ 2x ≤ y +1
(eliminate y)

⇒ ∃x . 1≤ x ∧ 2x ≤ x
(normalise)

⇒ ∃x . 1≤ x ∧ x ≤ 0
(eliminate x)

⇒ 1≤ 0 (≡⊥)
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Omega Phase 1 and the Interactive Theorem-Provers

The Omega Test’s Phase 1 is used by systems like Coq, HOL4,
HOL Light and Isabelle to decide arithmetic problems.

Against:
it’s incomplete
it’s inefficient

conversion to DNF
quadratic increase in numbers of constraints

For:
it’s easy to implement
it’s easy to adapt the procedures to create proofs that can be
checked by other tools
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Some Shadows

Given ∃x . (
V

i ci ≤ aix)∧ (
V

j bjx ≤ dj)

The formula
^

i ,j

bjci ≤ aidj

is known as the real shadow.
If all of the ai or all of the bj are equal to 1, then the real shadow is
exact
If the shadow is exact, then the formula can be used as an
equivalence.
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Exact Shadows

When a = 1 or b = 1, the core theorem

(∃x : Z. c ≤ ax ∧bx ≤ d)≡ bc ≤ ad

is valid because
⇒: transitivity still holds
⇐: take x = d if b = 1; x = c if a = 1

Omega Test’s inventor, Bill Pugh claims many problems in his
domain (compiler optimisations) have exact shadows.
Experience suggests the same is true in other domains too, such
as interactive theorem-proving.
When shadows are exact, can pretend problem is over R rather
than Z and life is easy.
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Dark Shadows

The formula
^

i ,j

(ai −1)(bj −1)≤ aidj −bjci

is known as the dark shadow. NB: if all ai or all bj are one, then
this is the same as the real shadow (or exact).
The real shadow provides a test for unsatisfiability
The dark shadow tests for satisfiability, because

(a−1)(b−1)≤ ad −bc ⇒ (∃x . c ≤ ax ∧bx ≤ d)

(proof to come)
This is the Phase 2 of the Omega Test
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Omega Test phases 1 & 2

Problem is ∃~x . P(~x)

If input is exact for one of ~x , then eliminate this variable

(∃~x . P(~x))≡ (∃~x ′. P ′(~x ′))

Otherwise, calculate real shadow R:

(∃~x . P(~x))⇒ R

so, if R =⊥, then input formula is not valid.
Otherwise, calculate dark shadow D:

D ⇒ (∃~x . P(~x))

so, if D =>, then input formula is valid.
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Omega Phase 2—Example

(a−1)(b−1)≤ ad −bc ⇒ (∃x . c ≤ ax ∧bx ≤ d)

∃x y . 3x +2y ≤ 18 ∧ 3y ≤ 4x ∧ 3x ≤ 2y +1

3y ≤ 4x 3x ≤ 2y +1 3y ≤ 4x 3x ≤ 18−2y
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Omega Phase 2—Example

(a−1)(b−1)≤ ad −bc ⇒ (∃x . c ≤ ax ∧bx ≤ d)

∃x y . 3x +2y ≤ 18 ∧ 3y ≤ 4x ∧ 3x ≤ 2y +1

3y ≤ 4x 3x ≤ 2y +1 3y ≤ 4x 3x ≤ 18−2y
6≤ 8y +4−9y 6≤ 72−8y −9y

y ≤−2 17y ≤ 66
y ≤ 3

redundant

This gives a suitable value for y , and by back-substitution, finds
x =−1,y =−2 as a possible solution.
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Correctness of Phase 2

Want to show that

(a−1)(b−1)≤ ad −bc ⇒ (∃x . c ≤ ax ∧bx ≤ d)

(extends to multiple constraints by induction)

Proof by contradiction. Assume

(a−1)(b−1)≤ ad −bc
∀x . ax < c ∨ d < bx

Multiply inequalities in last constraint to get

∀x . abx < bc ∨ ad < abx

≡ “there are no multiples of ab between bc and ad”
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Correctness of Phase 2

Have
(a−1)(b−1)≤ ad −bc

∀x . abx < bc ∨ ad < abx

As a and b positive, bc ≤ ad .

Let j be the greatest number such that abj < bc.

Then, ad < ab(j +1), and

abj < bc ≤ ad < ab(j +1)

j is the point where the multiples of ab “step over” the bc . . .ad interval.
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Correctness of Phase 2

Have
(a−1)(b−1)≤ ad −bc

∀x . abx < bc ∨ ad < abx

abj < bc ≤ ad < ab(j +1)

The “gap” between abj and bc must be at least b.

Similarly, the gap between ad and ab(j +1) must be at least a.

I.e., also have
b ≤ bc−abj
a≤ ab(j +1)−ad
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Correctness of Phase 2

Have
(a−1)(b−1)≤ ad −bc

b ≤ bc−abj

a≤ ab(j +1)−ad

Add last two constraints:

a+b ≤ bc +ab−ad
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Correctness of Phase 2

Have
(a−1)(b−1)≤ ad −bc

b ≤ bc−abj

a≤ ab(j +1)−ad

Add last two constraints:

a+b ≤ bc +ab−ad

≡ ad −bc ≤ ab−a−b
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Correctness of Phase 2

Have
(a−1)(b−1)≤ ad −bc

b ≤ bc−abj

a≤ ab(j +1)−ad

Add last two constraints:

a+b ≤ bc +ab−ad

≡ ad −bc ≤ ab−a−b

≡ ad −bc < ab−a−b +1
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Correctness of Phase 2

Have
(a−1)(b−1)≤ ad −bc

b ≤ bc−abj

a≤ ab(j +1)−ad

Add last two constraints:

a+b ≤ bc +ab−ad

≡ ad −bc ≤ ab−a−b

≡ ad −bc < ab−a−b +1

≡ ad −bc < (a−1)(b−1)

Contradiction!
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Splinters

Purely existential formulas are “often”
proved false by their real shadow; or
proved true by their dark shadow

But in “rare” cases, the main theorem is needed. Let m be the
maximum of all the djs. Then

(∃x .(
V

i ci ≤ aix)∧ (
V

j bjx ≤ dj)) ≡

(
V

i ,j(ai −1)(bj −1)≤ aidj −bjci)

∨

W

i
W

⌊

mci−ci−m
m

⌋

k=0

(

∃x .
(
V

i ci ≤ aix)∧ (
V

j bjx ≤ dj) ∧

(aix = ci +k)

)

(Proof in notes.)
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Splinters

Purely existential formulas are “often”
proved false by their real shadow; or
proved true by their dark shadow

But in “rare” cases, the main theorem is needed. Let m be the
maximum of all the djs. Then

(∃x .(
V

i ci ≤ aix)∧ (
V

j bjx ≤ dj)) ≡

(
V

i ,j(ai −1)(bj −1)≤ aidj −bjci)

∨

W

i
W

⌊

mci−ci−m
m

⌋

k=0

(

∃x .
(
V

i ci ≤ aix)∧ (
V

j bjx ≤ dj) ∧

(aix = ci +k)

)

(Proof in notes.)

dark shadow

a splinter
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Splinters

A splinter

∃x . (
^

i

ci ≤ aix) ∧ (
^

j

bjx ≤ dj) ∧ (aix = ci +k)

does represent a smaller problem than the original because the
extra equality allows x to be eliminated.
When quantifiers alternate, and there is no exact shadow, the
main theorem is used as an equivalence, and splinters can’t be
avoided.
Splinters must also be checked if neither real nor dark shadows
decide an input formula.
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Eliminating Equalities

In an expression
∃x . · · ·∧cx = e∧·· ·

the existential can be eliminated.

First, multiply all leaves involving x so that they have a common
coefficient. Formula becomes

∃x . · · ·c′x · · ·∧ c′x = e′ ∧·· ·c′x · · ·

This is equivalent to

· · ·e′ · · ·∧ c′ |e′ ∧·· ·e′ · · ·
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Eliminating Equalities

In an expression
∃x . · · ·∧cx = e∧·· ·

the existential can be eliminated.

First, multiply all leaves involving x so that they have a common
coefficient. Formula becomes

∃x . · · ·c′x · · ·∧ c′x = e′ ∧·· ·c′x · · ·

This is equivalent to

· · ·e′ · · ·∧ c |e ∧·· ·e′ · · ·

(But what to do with divisibility leaves?)
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Eliminating Divisibilities

All leaves under an existential must be inequalities.
What to do with a “divides-term”?

∃x . · · ·∧ c |dx +e ∧·· ·

Note: d < c (take modulus if not).

Introduce temporary new existential variable:

∃x y . · · ·∧ cy = dx +e ∧·· ·

Re-arrange:
∃x y . · · ·∧ dx = cy −e ∧·· ·
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Eliminating Divisibilities

Started with: ∃x . · · ·∧ c |dx +e ∧·· · and knowing d < c

Now have: ∃x y . · · ·∧ dx = cy −e ∧·· ·

Use equality elimination to derive

∃y . · · ·∧ d |cy −e ∧·· ·

Because d < c, this process must terminate with elimination of
divisibility term.
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Eliminating Divisibilities

Can eliminate “divides-term” from

∃x . · · ·∧ c |dx +e ∧·· ·

by converting to an equality and eliminating that.

But what if a divides-term comes to be negated, and we have to
eliminate

∃x . · · ·∧ ¬(c |dx +e) ∧·· ·
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Eliminating Divisibilities

Can eliminate “divides-term” from

∃x . · · ·∧ c |dx +e ∧·· ·

by converting to an equality and eliminating that.

But what if a divides-term comes to be negated, and we have to
eliminate

∃x . · · ·∧ ¬(c |dx +e) ∧·· ·

Answer:
¬(c |e)≡

_

i∈1...c−1

c |e + i

Introduces lots of disjuncts amongst conjoined leaves (conversion to
DNF will be ugly).
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Implementation—Constraint tracking

Keep all constraints in canonical form:

0≤ c1v1 +c2v2 + · · ·+cn

and store constraints in a data structure (hash table, say) where keys
are coefficients of variables.

So,
0≤ 3x−4y +6

goes into the (3,−4) bucket, and so does

0≤ 3x−4y +10

But one of these can be dropped!
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Implementation—Redundant Constraints

In general, if p⇒ q, then p∧q ≡ p.

All our constraints are implicitly conjoined together, so if we see that
one implies another, then the implied one can be dropped.

If two constraints have same set of coefficients, then one is redundant

x ≤ y ∧ 0≤ Σicivi +x ⇒ 0≤ Σicivi +y

We can drop 0≤ 3x−4y +10 if we also have 0≤ 3x−4y +6

Eliminating constraints makes the problem smaller, and the procedure
more efficient.
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Implementation—Contradictory Constraints

Use buckets to store potentially “opposite” constraints.
Require bucket keys to have first component positive, so there is a
(3,−4) bucket, but no (−3,−4) bucket.

If a constraint has a negative first coefficient, put it into the “opposite”
bucket.

Constraint Bucket
0≤ 3x−4y +6 (3,−4)
0≤−3x +4y +6 (3,−4)
0≤−2x−3y −10 (2,3)

This allows easy, early detection of contradictions.
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Implementation—Contradictory Constraints

If two constraints have “opposite” constraints, then it’s possible that
there is an early contradiction

x +y < 0 ⇒ ¬(0≤ Σicivi +x ∧ 0≤−Σicivi +y)

Alternatively, if you have

0≤ Σicivi +x 0≤−Σicivi +y

then by addition, you’d better also have

0≤ x +y

By storing opposite constraints together, this check is easy to perform.
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Implementation—Normalisation

The Omega Test’s big disadvantage is that it requires the formula
under quantifier to be eliminated to be in DNF
Consider

∀x . x 6= 10 ∧ x 6= 11 ∧ 9 < x ≤ 12 ⇒ x = 12

Negate, remove 6=, <:

∃x . (x ≤ 9 ∨ 11≤ x) ∧ (x ≤ 10 ∨ 12≤ x) ∧
10≤ x ∧ x ≤ 12 ∧ (x ≤ 11 ∨ 13≤ x)

Evaluate 8 (= 23) clauses.
Clever preparation of input formulas can make orders of
magnitude difference
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Implementation—Normalisation

The propositional tautology (p⇒ (q ≡ q′))⇒ (p∧q ≡ p∧q′) justifies
the following procedure:

If P is an atomic formula, then when processing P ∧Q, assume P
is true while processing Q:

If a sub-formula Q0 of Q is such that P ⇒Q0, then replace Q0 in Q
by >.
If a sub-formula Q0 of Q is such that P ⇒¬Q0, then replace Q0 in
Q by ⊥.

Similarly, (¬p⇒ (q ≡ q′))⇒ (p∨q ≡ p∨q′) for disjunctions.
This optimisation can make a huge difference to usability.

(Unit propagation is a special case of this.)
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Contextual Rewriting—example

Over ∧:

0≤ x +y +4 ∧ (0≤ x +y +6 ∨ 0≤ 2x +3y +6)

is equivalent to
0≤ x +y +4
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Contextual Rewriting—example

Over ∧:

0≤ x +y +4 ∧ (0≤ x +y +6 ∨ 0≤ 2x +3y +6)

is equivalent to
0≤ x +y +4

And
0≤ x +y +4 ∧ 0≤−x−y −6 ∧ 0≤ 2x +3y +6

is equivalent to
⊥
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Contextual Rewriting—example

Over ∨:

0≤ x +y +4 ∨ 0≤ x +y +1 ∨ 0≤ 2x +3y +6

is equivalent to

0≤ x +y +4 ∨ 0≤ 2x +3y +6
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Cooper’s Algorithm

A non-Fourier-Motzkin alternative:

Cooper’s algorithm is a decision procedure for (integer)
Presburger arithmetic.
It is also a quantifier elimination procedure, which also works from
the inside out, eliminating existentials.
Its big advantage is that it doesn’t need to normalise input
formulas to DNF.

Description is of simplest possible implementation: many tweaks are
possible.
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Cooper’s Algorithm: outline

To eliminate the quantifier in ∃x . P(x):
1 Normalise so that only operators are <, and divisibility (c|e), and

negations only occur around divisibility leaves.
2 Compute least common multiple of all coefficients of x , and

multiply all leaves through by appropriate numbers so that every
leaf features x multiplied by the same number c.

3 Now apply (∃x . P(cx))≡ (∃x . P(x)∧c|x).
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Cooper’s Algorithm: normalisation

∀x y : Z. 0 < y ∧x < y ⇒ x +1 < 2y
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Cooper’s Algorithm: normalisation

∀x y : Z. 0 < y ∧x < y ⇒ x +1 < 2y
(normalise)

≡ ¬∃x y . 0 < y ∧x < y ∧2y < x +2
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Cooper’s Algorithm: normalisation

∀x y : Z. 0 < y ∧x < y ⇒ x +1 < 2y
(normalise)

≡ ¬∃x y . 0 < y ∧x < y ∧2y < x +2
(transform y to 2y everywhere)

≡ ¬∃x y . 0 < 2y ∧2x < 2y ∧2y < x +2
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Cooper’s Algorithm: normalisation

∀x y : Z. 0 < y ∧x < y ⇒ x +1 < 2y
(normalise)

≡ ¬∃x y . 0 < y ∧x < y ∧2y < x +2
(transform y to 2y everywhere)

≡ ¬∃x y . 0 < 2y ∧2x < 2y ∧2y < x +2
(give y unit coefficient)

≡ ¬∃x y . 0 < y ∧2x < y ∧y < x +2∧2 |y
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Cooper’s Algorithm: two cases

How might ∃x . P(x) be true?

Either:
there is a least x making P true; or
there is no least x : however small you go, there will be a smaller x
that still makes P true

Construct two formulas corresponding to both cases.
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Cooper’s Algorithm: infinitely many small solutions

The case when the values of x satisfying P “go all the way down”.

Look at the leaf formulas in P, and think about their values when x has
been made arbitrarily small:

x < e: if x goes as small as we like, this will be true
e < x : if x goes small, this will be false
c|x +e: unchanged

This constructs P−∞, a formula where x only occurs in divisibility
leaves.

Say δ is the l.c.m. of the constants involved in divisibility leaves. Need
just test P−∞ on 1 . . .δ.
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Cooper’s Algorithm: P−∞ example

For
∃y . 0 < y ∧ 2x < y ∧ y < x +2 ∧ 2 |y

0 < y will become false as y gets small
2x < y also becomes false as y gets small
y < x +2 will be true as y gets small
2 |y doesn’t change (it tests if y is even or not)

So in this case, P−∞(y)≡ (⊥∧⊥∧>∧2 |y)≡⊥.
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Cooper’s Algorithm: least solution

The case when there is a least x satisfying P.

For there to be a least x satisfying P, it must be the case that one of
the leaves e < x is true, and that if x was any smaller the formula
would become false.

Let B = {e : e < x is a leaf of P}

Need just consider P(b + j), where b ∈ B and j ∈ 1 . . .δ.

Final elimination formula is:

(∃x . P(x))≡
_

j=1..δ
P−∞(j) ∨

_

j=1..δ

_

b∈B

P(b + j)
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Cooper’s Algorithm: example continued

For
∃y . 0 < y ∧ 2x < y ∧ y < x +2 ∧ 2 |y

least solutions, if they exist, will be at y = 1, y = 2, y = 2x +1, or
y = 2x +2.

The divisibility constraint eliminates two of these.

Original formula is equivalent to:

(2x < 2 ∧ 0 < x) ∨ (0 < 2x +2 ∧ x < 0)

(Which is unsatisfiable for x .)
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Conclusions

This just scratches the surface of a very big area.
Fourier-Motzkin methods are very simple techniques for solving
problems in R, Q, Z, and N.
The correctness of the Omega Test and of Cooper’s algorithm are
alternative proofs of Presburger’s 1929 result that Presburger
arithmetic is decidable.
Many other methods exist (particularly for purely existential
problems, which is the field of linear programming).
Though most interesting maths remains undecidable, these
methods are extremely useful in practical situations.
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