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Logic and its applications in Computer Science

Logic is about formalizing human reasoning.

Not every form of reasoning can be given a precise model.

Logic is used extensively in CS:
I At the processor level: logic gates.
I Hardware and software verification: floating point arithmetic

verification, microkernel verification, etc.
I High level programming: logic and constraint programming.
I Artificial intelligence: planning, scheduling, diagnosis, agents, etc.
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Outline of the lectures

Lecture 1 Propositional logic: syntax, semantics, basic notions such as
models, boolean satisfiability, normal forms.

Lecture 2 First-order logic: syntax, semantics, some metatheory.

Lecture 3 Modal logic: syntax, semantics, several standard modal
logics.
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Part I

Propositional Logic
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Propositional logic

Propositional logic is concerned with propositions, i.e., statements
which can be either true or false, and compositions of their truth
values.

Atomic propositions can be any sentences, e.g.,
I It is raining.
I Joe takes his umbrella.
I x < 0.
I x = 0.

These sentences are considered atomic, i.e., the particular
subjects/objects they mention are irrelevant.

Atomic sentences are denoted by letters, such as, a, b, c , etc. These
are called propositional variables.
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Composing propositions

Atomic propositions can be composed to form complex sentences,
e.g.,

It is raining and Joe takes his umbrella.

Or
x ≤ 0 or x = 0.

We are interested in studying the truth value of the combined
propositions, and how their truth can be systematically computed.

The satisfiability problem: given a (complex) formula, how do we
assign truth values to the atomic propositions in the formula so that
the formula becomes true?

Alwen Tiu (ANU) Introduction to Logic SSLL 2009 6 / 101



The language of propositional logic

The language of formulae is defined as the least set of expressions
satisfying the following:

Every propositional variable is a formula (also called an atomic
formula).

> (‘true’) and ⊥ (‘false’) are formulae.

If A is a formula then ¬A (‘not A’) is a formula.

If A and B are formulae then so are:
I A ∧ B (A ‘and’ B),
I A ∨ B (A ‘or’ B),
I and A→ B (A ‘implies’ B).

Or, equivalently, in BNF notation:

F ::= p | ⊥ | > | ¬F | F ∧ F | F ∨ F | F → F

where p is a propositional variable.
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Syntax vs Semantics

Syntax describes the form of a logical statement. Semantics describes
its intended meaning (i.e., some mathematical structures, e.g.,
boolean algebra).

Soundness: does a given syntactic proof procedure “respect” the
semantics?

Completeness: can all semantically valid logical statements be proved
using a purely syntactic procedure?
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Assigning truth values to formulae

Assuming we know the truth values of propositional variables, the truth
value of a complex formula can be calculated as follows:

1 > is always true; ⊥ is always false.

2 A ∧ B is true if and only if A is true and B is true.

3 ¬A is true if and only if A is false.

4 A ∨ B is true if and only if A is true or B is true.

5 A→ B is true if and only if A is false, or A is true and B is true.
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Boolean valuations and models

A boolean valuation is a mapping from propositional variables to the
set {0, 1} (representing, respectively, ‘false’ and ‘true’).

Example: the boolean valuation

{x 7→ 1, y 7→ 0, z 7→ 1, . . .}

assigns x to true, y to false and z to true.

A model of a formula F is a boolean valuation M such that F
evaluates to 1 (‘true’) under the valuation M.

We write M |= F if M is a model for F .

Note: the boolean valuation M is by definition an infinite set, but in
practice we only show the relevant mappings for variables in F .
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Boolean functions

A formula can be seen as a boolean function, i.e., a function that
maps boolean variables (propositionla variables) to the set {0, 1}.
A boolean function can be defined easily by a truth table:

I the columns correspond to the variables and the output of the function,
I the rows of the tables correspond to all possible combination of input

and their output.
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Truth tables for standard connectives

x y (x ∧ y)

0 0 0
0 1 0
1 0 0
1 1 1

x y (x ∨ y)

0 0 0
0 1 1
1 0 1
1 1 1

x y (x → y)

0 0 1
0 1 1
1 0 0
1 1 1

x ¬x

0 1
1 0
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Satisfiability and validity

An important question in propositional logic, and logic in general, is
under what valuation a formula is true (or false).

A formula F is satisfiable if it has a model, i.e., there exists a boolean
valuation M such that M |= F . It is unsatisfiable if it has no model.

A formula F is valid if it is true under all boolean valuation. Valid
formulae are also called tautologies.

Duality in logic: a formula F is valid if and only if ¬F is unsatisfiable.
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Closure under substitutions

A useful property of valid formulae is that they remain valid if we
replace its variables with arbitrary formulae.

Example: x ∨ ¬x is valid. If we replace x with (y ∨ z) then

(y ∨ z) ∨ ¬(y ∨ z)

is also valid.
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Logical equivalence

A particular class of useful tautologies involves logical equivalence.

Logical equivalence between two formulae A and B, written with
A ≡ B, is defined as

(A→ B) ∧ (B → A).

That is, A ≡ B is true if and only if the above formula is a tautology.

Logical equivalence ≡ satisfies the properties of an equivalent
relation, i.e.,

I reflexivity: A ≡ A
I transitivity: A ≡ B and B ≡ C implies A ≡ C
I symmetry: A ≡ B implies B ≡ A.

Logical equivalence is also a congruence, that is, if A ≡ B, then any
occurence of A in a formula F can be replaced by B without changing
the meaning of F .
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Some useful tautologies

Units: A ∧ > ≡ A A ∨ > ≡ >
A ∧ ⊥ ≡ ⊥ A ∨ ⊥ ≡ A

A ∨ ¬A ≡ > A ∧ ¬A ≡ ⊥
Idempotency: A ∧ A ≡ A A ∨ A ≡ A
Commutativity: A ∧ B ≡ B ∧ A A ∨ B ≡ B ∨ A
Associativity: A ∧ (B ∧ C ) ≡ (A ∧ B) ∧ C

A ∨ (B ∨ C ) ≡ (A ∨ B) ∨ C
Distributivity: A ∨ (B ∧ C ) ≡ (A ∨ B) ∧ (A ∨ C )

A ∧ (B ∨ C ) ≡ (A ∧ B) ∨ (A ∧ C )
Implication: A→ B ≡ ¬A ∨ B
de Morgan: ¬¬A ≡ A ¬(A ∧ B) ≡ ¬A ∨ ¬B ¬(A ∨ B) ≡ ¬A ∧ ¬B
Excluded middle: A ∨ ¬A
Contrapositive: A→ B ≡ ¬B → ¬A.
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Normal forms

In checking validity or satisfiability, certain forms of formulae are easier to
work with than others. Three important normal forms that are commonly
used:

Negation normal form (NNF).

Disjunctive Normal Form (DNF).

Conjunctive Normal Form (CNF).

Simplifying assumptions:

We shall work only with formulae which are implication-free. That is,
every implication A→ B is converted into its equivalent ¬A ∨ B.

We assume the formulae do not contain the nullary operators ⊥ and
>.
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Negation normal form

A formula is in negation normal form if the negation operator is
applied only to variables.

Every formula can be transformed into an equivalent NNF using the
following tautologies:

DM1: ¬(A ∧ B) ≡ ¬A ∨ ¬B
DM2: ¬(A ∨ B) ≡ ¬A ∧ ¬B
DM3: ¬¬A ≡ A
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NNF Algorithm

function NNF(A)

case A of
A is a literal: return A
A is ¬¬B: return NNF(B)
A is B ∧ C : return NNF(B) ∧NNF(C )
A is B ∨ C : return NNF(B) ∨NNF(C )
A is ¬(B ∧ C ): return NNF(¬B) ∨NNF(¬C )
A is ¬(B ∨ C ) : return NNF(¬B) ∧NNF(¬C )

end case

Note: a literal is a variable or a negated variable, e.g., ¬x .

Alwen Tiu (ANU) Introduction to Logic SSLL 2009 19 / 101



Conjunctive Normal Form

A literal is a propositional variable or a negation of a propositional
variable, e.g., x , ¬y , etc.

A formula is in conjunctive normal form (CNF) if it is of the form

(A11 ∨ · · · ∨ A1k1) ∧ · · · ∧ (Am1 ∨ · · · ∨ Amkm)

where each Aij is a literal.

In other words, a CNF formula is a conjunction of disjunctions of
literals.

Every NNF formula can be transformed into an equivalent CNF
formula using the distributivity laws. Hence, every formula can be
transformed into an equivalent CNF formula.
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CNF Algorithm (1)

Input: a formula in NNF.
Output: a CNF formula equivalent to the input.
function CNF(A)

case A of
A is a literal: return A
A is B ∧ C : return CNF(B) ∧ CNF(C )
A is B ∨ C : return DistCNF(CNF(B),CNF(C ))

end case

DistCNF distributes a CNF over another CNF, using the distributive laws.
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CNF Algorithm (2)

Input: two CNF formulae A and B.
Output: a CNF of A ∨ B.
function DistCNF(A,B)

if A is C ∧ D then
return DistCNF(C ,B) ∧DistCNF(D,B)

else if B is E ∧ F then
return DistCNF(A,E ) ∧DistCNF(A,F )

else
return A ∨ B.

end if
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Disjunctive Normal Form

A formula is in disjunctive normal form (DNF) if it is of the form

(A11 ∧ · · · ∧ A1k1) ∨ · · · ∨ (Am1 ∧ · · · ∧ Amkm)

for some m and n. As in CNF, each Aij is a literal.

Every NNF formula can be transformed into an equivalent DNF
formula using the distributivity laws.

Exercise: give an algorithm for DNF transformation.
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The resolution proof method

The resolution proof method is really a refutation procedure.

Given a formula in CNF, it checks whether the formula is unsatisfiable.

Since validity is dual to unsatisfiability, we can use resolution to check
for validity: F is valid if ¬F is unsatisfiable.
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A representation of CNF using sets

To simplify presentation, we use another notation to represent CNF
as sets of sets.

A clause is a set of literals, e.g.,

{x , y ,¬z}.

It represents the disjunction of the literals in the set, e.g., the above
clause corresponds to x ∨ y ∨ ¬z .

A formula in CNF is represented as a set of clauses. Each clause
corresponds to a conjunct in the CNF.

For example, (a ∨ b ∨ c) ∧ (¬a ∨ ¬b) ∧ ¬c is represented as

{{a, b, c}, {¬a,¬b}, {¬c}}.

We call this representation the clausal form of the original formula.

Alwen Tiu (ANU) Introduction to Logic SSLL 2009 25 / 101



The inference rule for resolution

The basic mechanism of the resolution proof method is an inference
rule for forming a new clause given two existing ones:

{l1, . . . , lm, x} {¬x , k1, . . . , kn}
{l1, . . . , lm, k1, . . . , kn}

res

Here li and kj are literals, and x is a variable.

The rule says that, given two clauses such that one clause contains a
complement of a literal in the other, form the union of the two
clauses, minus that literal and its complement.

Alwen Tiu (ANU) Introduction to Logic SSLL 2009 26 / 101



Saturated sets of clauses

Given clauses C1 and C2, we write res(x ,C1,C2) to denote the
resulting clause obtained by resolving C1 and C2 on the variable x .

A set of clauses ∆ is saturated if for all C1 ∈ ∆ and C2 ∈ ∆, if
res(x ,C1,C2) is defined, then

res(x ,C1,C2) ∈ ∆.

In other words, ∆ is closed under the resolution rule; applying
resolution to any two clauses in ∆ results in another clause already in
∆.
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Unsatisfiability testing with resolutions

Input: a set of clauses ∆
Output: return true if ∆ is unsatisfiable, otherwise return false.
function unsat(∆):

if {} ∈ ∆ then
return true

else if ∆ is saturated then
return false

else
select C1, C2 and x such that res(x ,C1,C2) is defined and
res(x ,C1,C2) 6∈ ∆
return unsat(∆ ∪ {res(x ,C1,C2)})

end if
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Examples

Construct a resolution proof for

{{¬x , y}, {¬y ,¬z}, {x ,¬z}, {z}}.

Clause reuse: some clauses may be used more than once. Example:

{{a, b}, {c , d}, {¬a,¬c}, {¬a,¬d}, {¬b,¬c}, {¬b,¬d}}.
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Unit resolution

Unit resolution is a special case of the resolution rule where one of
the clauses to be resolved is a unit clause, i.e., a set containing only
one literal.

Unit resolution is obviously less expensive than the general resolution.
But it is incomplete.

Example: the set of clauses

{{a, b}, {¬a, b}, {¬b, c}, {¬b,¬c}}

is unsatisfiable but cannot be refuted using unit resolution alone.

Unit resolution is often used as a simplifying step in satisfiability
testing.
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Soundness and completeness of resolution

Theorem

The resolution method is sound. That is, given a clausal form ∆, if
unsat(∆) returns true, then ∆ is unsatisfiable.

Theorem

The resolution method is complete. That is, if a clausal form ∆ is
unsatisfiable, then unsat(∆) returns true.
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Satisfiability testing

Satisfiability testing (SAT) is the problem of determining whether a
given propositional formula is satisfiable or not.

Assume input in clausal form (or equivalently, conjuctive normal
form).

Satisfiability testing is the first problem shown to be NP-complete.
See:
S. A. Cook. The complexity of theorem-proving procedures.
Proceedings of the third annual ACM symposium on Theory of
Computing, 1971.

There is a large amount of research done in finding heuristics for
efficient SAT solving.

SAT competition: http://www.satcompetition.org.
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Heuristics for SAT solving

Most of current SAT solvers are based on DPLL algorithm (after
Davis, Putnam, Logemann and Loveland). See:

I M. Davis and H. Putnam. A computing procedure for quantification
theory. Journal of the ACM, Vol. 7 (3), 1960.

I M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem proving. Communications of the ACM, Vol. 5 (7), 1962.

Much improvement has been done on DPLL, e.g., using various sorts
of “conflict analysis”. See, e.g.,:
J.P. Marques-Silva and K.A. Sakallah. GRASP: A search algorithm
for propositional satisfiability. IEEE Transactions on Computers, Vol.
48 (5), 1999.

Modern SAT solvers have achieved a high level of efficiency that they
are often used as the solver for various NP-complete problems.
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Representing boolean functions

In some application domains, such as formal verification and
diagnoses (of digital circuits), propositional logic is used as a
representation language for systems and their properties.

Two main problems related to this use of propositional logic:
I Optimality of representation: how much space needed to represent

boolean functions.
I Efficiency of (logical) operations: what is the complexity of logical

operations on this representation.
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Binary Decision Tree (BDT)

A binary decision tree is a labelled binary tree satisfying:

1 The leaves are labelled with either 0 (false) or 1 (true).

2 The non-leaf nodes are labelled with positive integers.

3 For every non-leaf node labelled with i has two child nodes, both
labelled with i + 1.

4 The branches of the trees are labelled with either 0 (the low branch)
or 1 (the high branch). Every non-leaf node has a low branch and a
high branch.
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Representing formulae as BDTs

Assume variables are totally ordered, e.g., by assigning indices to
them.

Let F be a formula with variables x1, . . . , xn. A BDT T is a
representation of F if

I the internal nodes of T are labelled with {1, . . . , n},
I every path from the root to a 1-leaf (a 0-leaf) represents a valuation

which makes F true (false).

In other words, a BDT for F is just another way of writing the truth
table of F .

Its size is exponential in the number of variables in F .
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Example: a binary decision tree

BDT for x ∨ ¬y , with variable ordering: x < y .

?>=<89:;1

0

pppppppppppppppp
1

NNNNNNNNNNNNNNNN

?>=<89:;2

0

��������
1

>>>>>>>>
?>=<89:;2

0

��������
1

>>>>>>>>

1 0 1 1

Notice that the path

?>=<89:;1
0 ?>=<89:;2

0
1

corresponds to the valuation

{x 7→ 0, y 7→ 0}
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Binary Decision Diagram (BDD)

A more economical representation of BDT is to allow sharing of
subtrees.

A binary decision diagram of n variables is a rooted directed acyclic
graph G satisfying the following condition:

1 Every terminal vertex of G is labelled with a value value(v) ∈ {0, 1}.
2 Every nonterminal vertex is labelled with an index

index(v) ∈ {1, . . . , n} and has two children low(v) and high(v).
3 For every non terminal vertex v , if low(v) is nonterminal then

index(v) < index(low(v)).

Similarly, if high(v) is nonterminal, then

index(v) < index(high(v)).

NOTE: if v is a terminal vertex then index(v) = n + 1.
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Example: a BDD

A BDD representing x ∨ ¬y , assuming the ordering x < y .
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Isomorphic BDDs

Definition

Two BDDs G and G ′ are isomorphic if there exists a one-to-one mapping
σ from vertices of G onto the vertices of G ′ such that for any vertex v , if
σ(v) = v ′ then either

both v and v ′ are terminal vertices with value(v) = value(v ′),

or both v and v ′ are nonterminal vertices with index(v) = index(v ′),
σ(low(v)) = low(v ′) and σ(high(v)) = high(v ′).

Definition

For any vertex v in a BDD G , the subgraph rooted by v is the subgraph of
G consisting of v and all of its decendants.
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Reduced BDD

Definition

A BDD G is reduced if it contains no vertex v with low(v) = high(v), nor
does it contain distinct vertices v and v ′ such that the subgraphs rooted
by v and v ′ are isomorphic.
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Example: a non-reduced BDD

A BDD for x ∨ ¬y , with x < y .

?>=<89:;1
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If x is true, then the value of y does not matter, since the function will
always evaluate to true.
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Example: a reduced BDD

Which BDD is reduced?
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Reducing BDDs

Given a BDD G , there is a polynomial algorithm that computes its
reduced form. See:

The algorithm works by identifying isomorphic subgraphs, starting
with the terminal nodes.

See the following paper for details:
Randal E. Bryant. Graph-Based Algorithms for Boolean Function
Manipulation. IEEE Transactions on Computers, Vol. 35 (8), pages
677 – 691, 1986.
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Dependency on variable ordering
Ordering of variables affects the size of the reduced BDD of a formula F .
Consider the formula (x ∧ z) ∨ y .

x < y < z x < z < y
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Part II

First-Order Logic
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First-order logic

First-order logic extends propositional logic by allowing certain forms
of reasoning about individual objects in logical statements.

In particular, it allows
I representation of relations between individuals (also called predicates),
I representation of individuals and functions on individuals, and
I quantification over individuals: “for all” and “exists”.
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Predicates, functions and constants

We assume a countably infinite set V of variables.
A first-order language is determined by specifying:

1 A countable set R of relation symbols, or predicate symbols. Each
predicate symbol P ∈ R has an arity, which is a non-negative integer,
denoting the number of arguments P takes.

2 A countable set F of function symbols, each of which is associated
with an arity.

3 A countable set C of constant symbols.

The triple Σ = 〈R,F,C〉 is called a (first-order) signature.
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First-order terms

Let Σ = 〈R,F,C〉 be a first-order signature. The set of Σ-terms is the
smallest set satisfying

Any variable in V is a term.

Any constant symbol in C is a term.

If f is a function symbol of arity n, and t1, . . . , tn are terms, then
f (t1, . . . , tn) is a term.
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Formulae of first-order logic

Let Σ = 〈R,F,C〉 be a first-order signature. The set of Σ-formulae is
defined as follows:

The expression R(t1, . . . , tn), where R ∈ R is a predicate symbol of
arity n and each ti is a Σ-term, is a formula. It is called an atomic
formula.

> and ⊥ are formulae.

If F is a formula then ¬F is a formula.

If F and G are formulae, then F ∗ G is a formula, for any binary
propositional connective ∗.
If F is a formula then so are ∀x .F and ∃x .F .

The symbol ∀ is the universal quantifier and ∃ is the existential quantifier.
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Notational convention

To simplify presentation, certain alphabet symbols are associated with
certain syntactic categories:

Variables: x , y , z .

Constants: a, b, c and d .

Function symbols: f , g , h.

Predicate symbols: P, Q, R.

Terms: s, t and u.

Formulae: A, B, C , D, F and G .

We also use descriptive words such as “plus”, “minus”, “equal”, etc. to
represent function/predicate symbols.

Alwen Tiu (ANU) Introduction to Logic SSLL 2009 51 / 101



Some example formulae

“All men are mortal”: Define a signature Σ = 〈R,F,C〉 as follows:

R = {man/1,mortal/1} F = {} C = {}

Then the sentence can be represented as the first-order formula:

∀x .(man(x)→ mortal(x)).

Consider the signature Σ defined as follows:

R = {equal/2} F = {plus/2} C = {}

Suppose that plus denotes the addition operator, and equal denotes
equality on natural numbers. Then commutativity of addition can be
stated as the formula:

∀x∀y .equal(plus(x , y), plus(y , x)).

Alternatively, we can use more familiar symbols, written in infix
notation, e.g.,

∀x∀y .(x + y = y + x).
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Free and bound variables

The variable x in the formula ∀x .P(x) is a bound variable, whose
scope is P(x).

The two occurrences of x in

(∀x .P(x)) ∧ Q(x)

must be distinguished. The right-most occurrence of x is called a free
variable, since it is not under the scope of any quantifier.

The free variables of a formula is defined inductively as follows:
I The free variables of an atomic formula are all the variables occuring in

that formula.
I The free variables of ¬F are the free variables of F .
I The free variables of F ∗ G , where ∗ is a binary connective, are the free

variables of F together with the free variables of G .
I The free variables of ∀x .F and ∃x .F are the free variables of A, except

for x .
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Variable-naming convention

Bound variables in formulae can be renamed without changing its
meaning: for example,

∀x .P(x) and ∀y .P(y)

have the same meaning, i.e., they state that the predicate P holds for
all individual.

To simplify discussions, we adopt the following naming conventions in
writing formulae:
Bound variables are always chosen so that they are distinct from free
variables.
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Semantics: models

A model for the first-order language determined by Σ =〉R,F,C〉 is a pair
M = 〈D, I〉 where:

D is a non-empty set, called the domain of M, and

I is a mapping, called an interpretation that associates:
I every constant symbol c ∈ C with some element c I ∈ D;
I every n-ary function symbol f ∈ F with some n-ary function

f I : Dn → D; and
I every n-ary relation symbol P ∈ R with some n-ary relation P I ⊆ Dn.
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Semantics: assignments and valuation of terms

Let M = 〈D, I〉 be a model for the first-order language determined by
Σ = 〈R,F,C〉.

An assignment in the model M is a mapping A from the set of
variables to the domain D.

Given an assignment A, to each Σ-term t, we associate a value tI,A in
D as follows:

1 for a constant symbol c , c I,A = c I;
2 for a variable v , v I,A = A(v);
3 for a function symbol f ,

[f (t1, . . . , tn)]I,A = f I(t I,A
1 , . . . , t I,A

n ).
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Example

Suppose Σ is the signature defined by:

R = {} F = {s/1,+/2} C = {0}

Consider the term s(s(0) + s(x)) (where + is written in infix notation).
Several choices of model M = 〈D, I〉 and assignment A:

D = {0, 1, 2, . . .}, 0I = 0, s I is the successor function and +I is the
addition operation. If A is an assignment such that A(x) = 3 then

[s(s(0) + s(x))]I,A = 6.

D is the collection of words over alphabet {a, b}, 0I = a, and s I is the
operation of appending a to the end of a word, and +I is the
concatenation. If A(x) = aba then

[s(s(0) + s(x))]I,A = aaabaaa.
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Semantics: assigning truth values to formulae

Variants: Let x be a variable. The assignments A and B are
x-variants if they assign the same value to every variable, except
possibly x .

Let M = 〈D, I〉 be a model for Σ = 〈R,F,C〉 and let A be an
assignment in M. To each Σ-formula G , we associate a truth value
G I,A (t or f) as follows:

I [P(t1, . . . , tn)]I,A = t if and only if 〈t I,A
1 , . . . , t I,A

n 〉 ∈ P I.
I >I,A = t, ⊥I,A = f.
I [¬G ]I,A = ¬[G I,A], [G ∗H]I,A = G I,A ∗H I,A, for any binary connective ∗.
I [∀x .G ]I,A = t if and only if G I,B = t for every assignment B that is an

x-variant of A.
I [∃x .G ]I,A = t if and only if G I,B = t for some assignment B that is an

x-variant of A.
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Satisfiability and validity

Let Σ = 〈R,F,C〉.
A Σ-formula G is true in the model M = 〈D, I〉 if G I,A = t for all
assignments A.

A Σ formula G is valid if G is true in all models of the language.

A set S of Σ-formulae is satisfiable in M = 〈D, I〉 if there is some
assignment A (called a satisfying assignment) such that G I,A = t for
all G ∈ S . S is satisfiable if it is satisfiable in some model.
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Example

Let Σ = 〈R,F,C〉 where R = {R/2,⊕/2}. Suppose M = 〈D, I〉 be a
model for Σ.
Suppose D = {1, 2, 3, . . .} and ⊕I is the addition operator. Consider the
following interpretations of R:

R I is the equality relation and let G = ∃y .R(x , y ⊕ y). Then G I,A is
true if and only if A(x) is an even number.

R I is the greater-than relation and G = ∀x∀y∃z .R(x ⊕ y , z). Then G
is true in M.

R I is the greater-than-by-4-or-more relation and
G = ∀x∀y∃z .R(x ⊕ y , z). Then the formula G is not true in this
model.
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Example

Let Σ = 〈R,F,C〉 where R = {R/2,⊕/2}. Suppose M = 〈D, I〉 be a
model for Σ.

Suppose D is the set of real numbers and R I is the greater-than
relation. Then the formula

∀x∀y [R(x , y)→ ∃z(R(x , z) ∧ R(z , y))]

is true in M (it expresses the denseness of the reals).

Suppose D = {7, 8} and R I = {(7, 8)}. Then the formula
∀x∀y [R(x , y)→ R(y , x)] (symmetry) is not true in M.
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Example

Drinkers paradox: There is someone in the pub such that if he/she is
drinking then everybody in the pub is drinking.
More formally:

∃x .(drinks(x)→ ∀y .drinks(y)).

This formula is valid.
Proof: ...
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Example: Peano axioms

G. Peano introduced an axiomatization of natural number (1889). Some
of the axioms are given below. We assume the following signature:

R = {= /2} F = {s/1} C = {0}

1 ∀x .x = x .

2 ∀x∀y .x = y → y = x .

3 ∀x∀y∀z .(x = y ∧ y = z)→ x = z .

4 ∀x .¬(s(x) = 0).

5 ∀x∀y .s(x) = s(y)→ x = y .
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Example: the standard model for Peano axioms

The “standard model”: M = 〈D, I〉 where

D is the set of natural numbers {0, 1, 2, . . .},
0I = 0, s I is the successor function (i.e., s I(n) = n + 1)

=I is the equality relation on natural numbers.

Each of the axioms is true in M.
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Example: no finite model for Peano axioms
There cannot be a model M = 〈D, I〉, where D is finite, satisfying all the
Peano axioms.

Proof.

Suppose otherwise, i.e., D = {a0, . . . , an} for some n ≥ 0. Suppose
0I = a0. Consider the following “contrapositive” form of Axiom 5:

∀x∀y .¬(x = y)→ ¬(s(x) = s(y)).

It says that the successor function must be injective. But Axiom 4:
∀x .¬(s(x) = 0) implies that s is a mapping from

{a0, . . . , an} to {a1, . . . , an}.

Therefore, there must be ai and aj in D such that ai 6= aj and

s I(ai ) = s I(aj),

contradicting the injectivity of s I.
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Example: a non-standard model for Peano axioms

A “non-standard model”: M = 〈D, I〉
D is the set of natural numbers plus a new element ω (representing
an “infinite number”).

0I = 0, s I is the successor function on natural numbers, but

s I(ω) = ω.

=I is an equality relation on D, with the additional requirements that:

I s I(ω) = ω
I ω 6= n, for any natural number n.

Note: natural numbers cannot be characterized by finitely many first-order
formulae. We need a “second-order” formula expressing the induction
principle on natural numbers:

∀P.[P(0) ∧ (∀x .P(x)→ P(s(x)))]→ ∀x .P(x).
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Some tautologies

All propositional tautologies are also first-order tautologies.

Some tautologies involving quantifiers:
I (∀x .F ) ∧ G ≡ ∀x(F ∧ G ), (∃x .F ) ∧ G ≡ ∃x(F ∧ G )
I (∀x .F ) ∨ G ≡ ∀x(F ∨ G ), (∃x .F ) ∨ G ≡ ∃x(F ∨ G )
I G → ∀x .F ≡ ∀x(G → F )
I G → ∃x .F ≡ ∃x(G → F )
I (∀x .F )→ G ≡ ∃x(F → G )
I (∃x .F )→ G ≡ ∀x(F → G )

provided that x is not free in G .

De Morgan law for quantifiers:
I ¬(∀x .F ) ≡ ∃x .¬F
I ¬(∃x .F ) ≡ ∀x .¬F
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Prenex Normal Form

A formula is in prenex normal form if it is of the form

Q1x1 · · ·Qnxn.F

where each Qi is either ∀ or ∃ and F is a quantifier-free formula.

Every formula is equivalent a formula in prenex normal form. This is
done as follows:

I Rename the bound variables so that they are pairwise distinct and also
distinct from the free variables.

I Apply the tautologies (in the previous slide) to bring each quantifier to
the outer level of the formula.

Prenex normal form transformation is often used as a pre-processing
step for first-order automated theorem proving.
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Example

Let F be the formula

¬[P(x) ∧ ∀x .(Q(x)→ ∃y .R(x , y))].

To transform F into prenex normal form, first rename the bound variables:

¬[P(x) ∧ ∀z .(Q(z)→ ∃y .R(z , y))].

Then apply first-order equivalences:

¬[P(x) ∧ ∀z .(Q(z)→ ∃y .R(z , y))]
≡ ¬[P(x) ∧ ∀z∃y(Q(z)→ R(z , y))]
≡ ¬[∀z(P(x) ∧ ∃y(Q(z)→ R(z , y))]
≡ ¬[∀z∃y(P(x) ∧ (Q(z)→ R(z , y)))]
≡ ∃z .¬[∃y(P(x) ∧ (Q(z)→ R(z , y)))]
≡ ∃z∀y .¬[P(x) ∧ (Q(z)→ R(z , y))]
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Metatheory: compactness

Theorem

Let S be a set of first-order formulae. If every finite subset of S is
satisfiable, then so is S.

Corollary

Any set S of first-order formulae that is satisfiable in an arbitrary large
finite model is satisfiable in some infinite model.

An important consequence of compactness theorem is that the notion of
being finite cannot be captured using the machinery of first-order logic.
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Metatheory: Löwenheim-Skolem Theorem

Theorem

Let S be a set of first-order formulae. If S is satisfiable, then S is
satisfiable in a countable model.

Note: since the set of real numbers is uncountable, it has no first-order
characterization.
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Part III

Modal Logic
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Modal logic

Modal logic was originally developed to study reasoning about notions
of “necessity” and “possibility”.

However, it is often used to describe a family of logics that capture
different “modes” of truth:

I Modal logic: “It is neccessary that ..”, “It is possible that ..”
I Deontic logic: “It is obligatory that ...”, “Its permitted that ...”
I Temporal logic: “It will always be the case that ..”, “It has always been

the case that ...”
I Epistemic logic: “Alice knows that ...”, “Bob knows that Alice knows

that ..”
I Dynamic logic: “Every execution of a program P leads to a state such

that ...”
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Possible worlds semantics

A commonly used mathematical model of truth in modal logic is that
of Kripke semantics (also called possible worlds semantics).

Truth of a propositional statement is relative to the “world” it lives in.

Different interpretation of worlds: A world can describe
I a point in time;
I the state of a running computer program;
I knowledge of an (autonomous) agent;
I etc.

In general, worlds can be understood abstractly as a relational
structure, i.e., a set with some defined relations on its elements.
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Syntax

Modal logic extends propositional logic with two modal operators: �
(‘neccessity’) and ♦ (‘possibility’).

The language of basic modal logic:

F ::= p | > | ⊥ | ¬F | F ∧ F | F ∨ F | F → F | �F | ♦F .

Some examples:
I ♦A: “A is possible”
I ¬♦A: “A is impossible”
I ¬♦(¬A): “not-A is impossible”
I �A: “A is necessary”

Alwen Tiu (ANU) Introduction to Logic SSLL 2009 75 / 101



Kripke Semantics: Frames and Models

A frame is a pair F = 〈W,R〉 such that
I W is a non-empty set, also called the worlds, and
I R is a binary relation on W.

A frame is basically just a (possibly infinite) directed graph, where W
is the set of vertices and R the set of edges.

A model for the basic modal language is a pair M = 〈F ,V〉, where F
is a frame, and V is a function assigning each propositional variable to
a subset of W.
Intuitively, V(p) is the set of worlds in which p is true.

Notation: We shall sometimes write M = 〈W,R,V〉 if F = 〈W,R〉.
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Kripke Semantics: Graphical Representation

Let W = {w1,w2,w3,w4}, R = {(w1,w2), (w1,w3), (w2,w4), (w3,w4)}
and V be a valuation such that

V(p) = {w1,w2} V(q) = {w1,w3} V(r) = {w2,w3}

and V(u) = ∅ for any u other than p, q, r .

F = 〈W,R〉 M = 〈W,R,V〉
w4

w2

=={{{{{{{{
w3

aaCCCCCCCC

w1

aaCCCCCCCC

=={{{{{{{{

w4 : {}

w2 : {p, r}

77ppppppppppp
w3 : {q, r}

ggNNNNNNNNNNN

w1 : {p, q}

ggNNNNNNNNNNN

77ppppppppppp
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Kripke Semantics: Satisfiability

Let M = 〈W,R,V〉. The relation M,w |= G means: G is true (or
satisfied) in M at world w . We write M,w 6|= G to mean that
M,w |= G does not hold.
The relation |= is defined more precisely as follows:

M,w |= p if and only if w ∈ V(p), where p is a propositional variable.

M,w |= ⊥ never.

M,w |= > always.

M,w |= ¬G if and only if M,w 6|= G .

M,w |= F ∧ G if and only if M,w |= F and M,w |= G .

M,w |= F ∨ G if and only if M,w |= F or M,w |= G .

M,w |= F → G if and only if M,w 6|= F or M,w |= G .
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Kripke Semantics: Satisfiability

Satisfiability of modal operators:
I M,w |= �G if and only if for all v ∈ W, if wRv then M, v |= G .

(G is true in all successor worlds).
I M,w |= ♦G if and only if there exists v ∈ W such that wRv and
M, v |= G .

A formula G is universally true in a model M if it is satisfied in all
worlds in M:

for all w ∈ W, M,w |= G .

A formula G is satisfiable in a model M if it is true in M in some
world:

there exists w ∈ W, M,w |= G .
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Example

Consider the model F = 〈W,R,V〉 where

W = {w1,w2,w3,w4,w5}
R = {(wi ,wj) | j = i + 1}
V (p) = {w2,w3}, V(q) = {w1,w2,w3,w4,w5} and V (r) = {}.

Then

M,w1 |= ♦�p.

M,w1 6|= (♦�p)→ p

M,w2 |= ♦(p ∧ ¬r)

M,w1 |= q ∧ ♦(q ∧ ♦(q ∧ ♦(q ∧ ♦q))).
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Validity in a frame

A formula G is valid in a frame F = 〈W,R〉 if for every valuation V
and for every world w ∈ W

〈W,R,V〉,w |= G .

We write F |= G to mean “G is valid in F”.

Let F be a class of frames. A formula G is valid in the class of frames
F, written |=F G , if G is valid in every frame in F.

A formula G is valid, written |= G , if it is valid in the class of all
frames.

Obviously, all propositional tautologies are valid.
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Example

Let F = 〈W,R〉 be the frame

w4

w2

=={{{{{{{{
w3

aaCCCCCCCC

w1

aaCCCCCCCC

=={{{{{{{{

OO

Then the formula �p → ��p is valid in F .
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Example

Let F = 〈W,R〉 be a frame where W is the set of natural numbers and R
is the less-than relation on W.
Then the formula �♦p → ♦�p is not valid in F .
Proof: Construct a countermodel by choosing a valuation V such that
V(p) is the set of even numbers. Then show that there exists an n ∈ W
such that

〈W,R,V〉, n |= �♦p and 〈W,R,V〉, n 6|= ♦�p.

This is the case for any natural number n.
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Example

Let F be the class of all reflexive frames, i.e., every frame
F = 〈W,R〉 satisifies

∀u ∈ W.uRu.

Then the formula p → ♦p is valid in F.

Let F be the class of all transitive frames, i.e., every frame
F = 〈W,R〉 satisfies: for every u, v ,w ∈ W, if uRv and vRw then
uRw . Then the formula �p → ��p is valid in F.

The formula
�(p → q)→ (�p → �q)

is valid in all frames.
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Axiomatic definition of modal logic

Another way of defining a logic is to define the set of formulae which are
theorems of the logic.

Modal logic K
1 All instances of propositional tautologies are theorems of K.

2 All instances of the modal axioms

(K) �(p → q)→ (�p → �q)
(Dual) ♦p ≡ ¬�¬p.

are theorems of K.

3 Modus ponens: If F is a K-theorem and F → G is a K-theorem, then
G is a K-theorem.

4 Substitution: If G is a K-theorem and H is obtained from G by
uniformly replacing propositional variables in G with arbitrary
formulae, then H is a K-theorem.

5 Generalization: If G is a K-theorem then �G is a K-theorem.
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Soundness and completeness of modal logic K

The modal logic K is sound and complete with respect to the Kripke
semantics.

Theorem

Soundness. Every theorem of K is valid.

Theorem

Completeness. Every valid formula is a theorem of K.
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Normal modal logics

Normal modal logics are a family of logics that extend the modal
logic K.

A normal modal logic is defined by extending K with a set of modal
axioms.

Let L be a set of modal axioms. The set of theorems of the normal
logic defined by L is defined as in K, but with the additional
condition:

I All instances of the axioms in L are theorems of the modal logic L.
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Some modal axioms

Several well-known modal axioms:

(T) �p → p (or equivalently, p → ♦p).

(B) p → �♦p.

(4) �p → ��p.

(5) ♦�p → �p.

(D) �p → ♦p.

Naming convention: A normal modal logic that is obtained by extending K
with a set of axioms S is named by listing the axioms next to K.
For example, KT4 is the logic extending K with axioms T and 4.
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Modal axioms and conditions on frames

Modal axioms have a close correspondence with the “shape” of the
frames that validate the axioms.

For example, if the axiom T is valid in a frame F = 〈W,R〉, then F
must be reflexive, i.e., for all u ∈ W, we have uRu.

Conversely, if a frame F is reflexive, then T must be valid in F .
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Shapes of frames

A frame F = 〈W,R〉 is

reflexive if for every w ∈ W, wRw .

symmetric if for every u, v ∈ W, uRv implies vRu.

transitive if for every u, v ,w ∈ W, if uRv and vRw , then uRw .

euclidean if for every u, v ,w ∈ W, if uRv and uRw then vRw .

serial if for every w ∈ W, there exists v ∈ W such that wRv .
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Modal axioms and shapes of frames

Name Axiom Frame shape
T �p → p Reflexive
B p → �♦p Symmetric
4 �p → ��p Transitive
5 ♦�p → �p Euclidean
D �p → ♦p Serial

Theorem

Let F = 〈W,R〉. Then the axiom T (resp. B, 4, 5, D) is valid in F if and
only F is reflexive (resp. symmetric, transitive, euclidean, serial).

Proof: ...
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Some normal modal logics

KT
KD: also known as deontic logic; logic about “obligations”

KT4 : also known as S4.

KT5 : also known as S5.

Note 1: S5 can be equivalently defined as S4 plus the axiom B.
Note 2: This means that axiom 4 is also a theorem of S5.
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Multi-modal logic

Multi-modal logic generalizes modal logic by allowing a familiy of
modal operators.

Each modal operator in the family can be used to describe different
modes of truth according to an agent.

Let A be a set of agents. To each agent a ∈ A we introduce two
modal operators �a and ♦a.

The language of multi-modal logic:

F ::= p | > | ⊥ | ¬F | F ∧ F | F ∨ F | F → F | �aF | ♦aF .

where a ∈ A.
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Semantics of multimodal logic: frames and models

The notions of frames and models are similar to modal logic.

Let A = {a1, . . . , an} be a set of agents. Then an frame is the tuple

F = 〈W,R1, . . . ,Rn〉

where W is a set of worlds, and each Ri is a binary relation on W.

Valuations are defined as previously. A model is a pair M = 〈F ,V〉 of
frame and valuation.
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Semantics of multi-modal logic: satisfiability

Let A = {a1, . . . , an}. Let M = 〈W,R1, . . . ,Rn,V〉 be a model.
The notion of a formula G being true in M at world w is defined
analogously to the single agent case, with the following modification:

M,w |= �ai G if and only if for all v ∈ W, if wRiv then M, v |= G .

M,w |= ♦ai G if and only if there exists v ∈ W such that wRiv and
M, v |= G .
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Semantics of multi-modal logic: validity

Validity (in a frame) is defined similarly to the single agent case (left
as exercise).

The notion of a “shape” of a frame must now be defined with respect
to all the relations Ri .

For example, a reflexive frame F = 〈W,R1, . . . ,Rn, 〉 satisfies: for
every i ∈ {1, . . . , n}, and for every u ∈ W, we have uRiu.
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Correspondence between modal axioms and shapes of
frames

Let A = {a1, . . . , ai}. The axioms are stated for each modal operator for
each agent. For every a ∈ A:

(T) �ap → p.

(B) p → �♦ap.

(4) �ap → �a�ap.

(5) ♦a�ap → �ap.

(D) �ap → ♦ap.

The correspondence between the axioms and the shapes of frames also
holds for multi-modal logic.
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Epistemic logic

Epistemic logic is a term used to describe a family of logics about
‘knowledge’ and ‘belief’.

The epistemic reading of multi-modal formulae:

�aG agent a ‘knows’ G .

There are several axiomatizations of epistemic logic. Two of the
better known ones are S4 and S5.

Alwen Tiu (ANU) Introduction to Logic SSLL 2009 98 / 101



Epistemic logic S5

Recall that S5 is an extension of (multi-modal) K with

(T) �ap → p, for every agent a.

(5) ♦a�ap → �ap, for every agent a.

Recall also that Axiom 4 is a theorem in S5

(4) �ap → �a�ap.

Epistemic reading of the axioms 4 and 5:

Axiom 4: If agent a knows p then it knows that it knows p.

Axiom 5: consider the contrapositive form of 5:

¬�ap → �a¬�ap.

If agent a does not know p, then it knows that it does not know p.
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The Unknown

As we know, there are known knowns. There are things we know
we know.
We also know there are known unknowns. That is to say we
know there are some things we do not know.
But there are also unknown unknowns, the ones we don’t know
we don’t know.
(Donald Rumsfeld, Former US Secretary of Defense)

Exercise: Show why Rumsfeld is contradicting S5.
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