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The (Pairwise) Clustering ProblemThe (Pairwise) Clustering Problem

Given:Given:
- a set of n “objects”
- an n × n matrix of pairwise similarities 

Goal:Goal: Partition the input objects into maximally homogeneous 
groups (i.e., clusters).



ApplicationsApplications

Clustering problems abound in many areas of computer science 
and engineering.

A short list of applications domains:

Image processing and computer vision
Computational biology and bioinformatics
Information retrieval
Data mining
Signal processing
…



What is a Cluster? What is a Cluster? 

No universally accepted definition of a “cluster”.

Informally, a cluster should satisfy two criteria:

Internal criterionInternal criterion: all objects inside a cluster should be highly 
similar to each other.

External criterion:External criterion: all objects outside a cluster should be highly 
dissimilar to the ones inside.



Clustering as a GraphClustering as a Graph--Theoretic ProblemTheoretic Problem



The Binary CaseThe Binary Case

Suppose the similarity matrix is a binary (0/1) matrix.

In this case, the notion of a cluster coincide with that of a 
maximal clique.

Given an unweighted undirected graph G=(V,E):

A clique is a subset of mutually adjacent vertices
A maximal clique is a clique that is not contained in a larger one

How to generalize the notion of a maximal clique 
to weighted graphs?
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Dominant SetsDominant Sets



From Dominant Sets to Local Optima From Dominant Sets to Local Optima 
(and Back) / 1(and Back) / 1



The Standard Simplex The Standard Simplex 
(when (when n n = 3)= 3)



From Dominant Sets to Local Optima From Dominant Sets to Local Optima 
(and Back) / 2(and Back) / 2

Generalization of Motzkin-Straus theorem from graph theory
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Replicator EquationsReplicator Equations



The Fundamental Theorem of Natural SelectionThe Fundamental Theorem of Natural Selection



Grouping by Replicator EquationsGrouping by Replicator Equations



A MATLAB ImplementationA MATLAB Implementation



Characteristic VectorsCharacteristic Vectors



Separating Structure for ClutterSeparating Structure for Clutter





Separating Structure from ClutterSeparating Structure from Clutter
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Image SegmentationImage Segmentation

Image segmentation problem: 
Decompose a given image into 
segments, i.e. regions containing 
“similar” pixels.

First step in many
computer vision problems

Example: Segments might be regions of the image depicting the 
same object.

Semantics Problem: How should we infer objects from segments?



Image SegmentationImage Segmentation



Experimental SetupExperimental Setup



Intensity Segmentation ResultsIntensity Segmentation Results

Dominant sets Ncut  







Intensity Segmentation ResultsIntensity Segmentation Results
(97 x 115)(97 x 115)

Dominant sets                                                   Ncut  



Color Segmentation ResultsColor Segmentation Results
(125 x 83)(125 x 83)

Original image             Dominant sets                    Ncut



Texture Segmentation ResultsTexture Segmentation Results
(approx. 90 x 120)(approx. 90 x 120)



Ncut ResultsNcut Results



Dealing with Large Data SetsDealing with Large Data Sets



Grouping OutGrouping Out--ofof--Sample DataSample Data

Can be computed in linear time wrt the size of S







Results on Berkeley Database Images Results on Berkeley Database Images 
(321 x 481)(321 x 481)



Results on Berkeley Database Images Results on Berkeley Database Images 
(321 x 481)(321 x 481)



Capturing Elongated Structures / 1Capturing Elongated Structures / 1



Capturing Elongated Structures / 2Capturing Elongated Structures / 2



““ClosingClosing”” the Similarity Graphthe Similarity Graph

Basic ideaBasic idea: Trasform the original similarity graph G into a “closed”
version thereof (Gclosed), whereby edge-weights take into account 
chained (path-based) structures.

Unweighted (0/1) case: 

Gclosed = Transitive Closure of G

Note:Note: Gclosed can be obtained from:

A + A2 + … + An



Weighted Closure of Weighted Closure of GG

ObservationObservation: When G is weighted, the ij-entry of Ak represents the sum 
of the total weights on the paths of length k between vertices i and j.

Hence, our choice is:

Aclosed = A + A2 + … + An



Example: Without Closure (Example: Without Closure (σσ = 2)= 2)



Example: Without Closure (Example: Without Closure (σσ = 4)= 4)



Example: Without Closure (Example: Without Closure (σσ = 8)= 8)



Example: With Closure (Example: With Closure (σσ = 0.5)= 0.5)





Grouping Edge ElementsGrouping Edge Elements

Here, the elements to be grouped are edgels (edge elements).

We used Herault/Horaud (1993) similarities, which combine the 
following four terms:

1. Co-circularity
2. Smoothness
3. Proximity
4. Contrast

Comparison with Mean-Field Annealing (MFA).
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Building a Hierarchy: Building a Hierarchy: 
A Family of Quadratic ProgramsA Family of Quadratic Programs



An ObservationAn Observation



The effects of α



Bounds for the Regularization Parameter / 1Bounds for the Regularization Parameter / 1



Bounds for the Regularization Parameter / 2Bounds for the Regularization Parameter / 2



Bounds for the Regularization Parameter / 3Bounds for the Regularization Parameter / 3



The Landscape of  The Landscape of  ffαα



Sketch of the Hierarchical Clustering AlgorithmSketch of the Hierarchical Clustering Algorithm



PseudoPseudo--code of the Algorithmcode of the Algorithm



Results on the IRIS dataset / 1Results on the IRIS dataset / 1



Results on the IRIS dataset / 2Results on the IRIS dataset / 2



Luo and HancockLuo and Hancock’’s Similarities (CVPRs Similarities (CVPR’’01)01)



Klein and KimiaKlein and Kimia’’s Similarities (SODAs Similarities (SODA’’01)01)



Gdalyahu and WeinshallGdalyahu and Weinshall’’s Similarities (PAMI 01)s Similarities (PAMI 01)



Factorization Results Factorization Results 
(Perona and Freeman, 98)(Perona and Freeman, 98)



Typical-cut Results (From Gdalyahu, 1999)
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RationaleRationale

A classical strategy to attack pattern recognition problems consists of 
formulating them in terms of optimization problems. 

In many real-world situations, however, the complexity of the problem at 
hand is such that no single (global) objective function would satisfactorily 
capture its intricacies. 

Examples include:

- Using asymmetric compatibilities in (continuous) consistency 
labeling problems (Hummel & Zucker, 1983)

- Integrating region- and gradient-based methods in image 
segmentation tasks (Chakraborty & Duncan, 1999)

- Grouping with asymmetric affinities (Yu and Shi, 2001; Torsello,
Rota Bulò & Pelillo, 2006)



Game TheoryGame Theory

Game theory was developed precisely to overcome the 
limitations of single-objective optimization (von Neumann, Nash).

It aims at modeling complex situations where players make 
decisions in an attempt to maximize their own (mutually 
conflicting) returns. 

Nowadays, game theory is a well-established field on its own 
and offers a rich arsenal of powerful concepts and algorithms. 

Note: in the case of a particular class of games (i.e., doubly-
symmetric games) game-theoretic criteria reduce to optimality 
criteria.



State of the ArtState of the Art

In the past there have been only few, isolated attempts aimed at
explicitly formulating pattern recognition problems from a purely game-
theoretic perspective

On the one hand, there have been those who have pointed out the 
analogies between classical game-theoretic concepts, such as the 
Nash equilibrium, and consistency criteria for consistent labeling 
problems (e.g., Zucker & Miller, 1992; Sastry et al., 1994).

On the other hand, there have been some attempts at formulating 
specific computer vision and pattern recognition problems, such as 
module integration or image segmentation, as game problems (e.g., 
Bozma & Duncan, 1994; Chackraborty & Duncan, 1999). 

Recently, in the machine learning community, there has been an 
interest in computational game theory (e.g., Ortiz and Kearns, 2002), 
which, however, emphasizes the algorithmic aspects of game theory, 
while neglecting the modeling side.



AimAim

Develop a generic framework for grouping and clustering derived 
from a game-theoretic formalization of the competition between 
class hypotheses..

The approach can deal with non-metric similarities, and, in 
particular, asymmetric and/or negative similarities.

A common method to deal with asymmetric compatibilities is to
symmetrize the similarity matrix (but see Yu and Shi, 2001).

This approach, however, loses any information that might reside in 
the asymmetry.



GameGame Theory: BasicsTheory: Basics

Assume:

– a game between two players 
– complete knowledge 
– a pre-existing set of (pure) strategies O={o1,…,on} available to 

the players.

Each player receives a payoff depending on the strategies selected by 
him and by the adversary

A mixed strategy is a probability distribution x=(x1,…,xn)T over the 
strategies.



Nash Equilibria and ExtensionsNash Equilibria and Extensions

Let A be a payoff matrix: aij is the payoff obtained by playing i
while the opponent plays j.

is the average payoff obtained by playing mixed 
strategy y while the opponent plays x.

A mixed strategy x is a Nash equilibrium if 
for all strategies y. (Best reply to itself.)

A Nash equilibrium is an Evolutionary Stable Strategy (ESS) 
if, for all strategies y

Axy′



Back to OptimazionBack to Optimazion

In doubly-symmetric games (i.e., A=AT), we have:

Nash = Local maximizer of xTAx

ESS = Strict local maximizer of xTAx



The GroupingThe Grouping GameGame

Two players play by simultaneously selecting an element of O. 

Each player receives a payoff proportional to the affinity with 
respect to the element chosen by the opponent.

Clearly, it is in each player’s interest to pick an element that is 
strongly supported by the elements that the adversary is likely to 
choose.



Game Game Theoretic Notions of a ClusterTheoretic Notions of a Cluster

Nash equilibria abstracts well the main characteristics of a 
cluster:

– Internal coherency: High mutual support of all 
elements within the group.

– External incoherency: Low support from elements 
of the group to elements outside the group.

This is not enough, though. We also want the solution to be 
stable and unambiguous, that is we require the solution to be 
isolated. 

Hence we require that groups are ESS’s.



BasicBasic DefinitionsDefinitions
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(Directed) Dominant(Directed) Dominant SetsSets



MainMain resultresult

Theorem Evolutionary stable strategies of the 
grouping game with affinity matrix A are in a one-to-
one correspondence with (directed) dominant sets.

Note:Note: Generalization of CVPR’03/PAMI’07 Theorem which states that 
(undirected) dominant sets are in one-to-one correspondence with 
strict local maximizers of xTAx in the standard simplex.



Replicator Dynamics and ESSReplicator Dynamics and ESS’’ss



Experimental SetupExperimental Setup

We applied the proposed clustering framework to the perceptual 
grouping of edge elements (edgelets) in a noisy image.

Two affinity measure:
– one asymmetric (Williams and Thornber, 2000).
– one symmetric (Hèrault and Houraud, 1983).

Compared the result obtained with our approach (ESS+WT, ESS+HH) 
with the approaches presented in the original papers (WT and HH). 

We also apply the approach to a symmetrized version of the WT 
measure (ESS+WTSIMM).



Synthetic ExamplesSynthetic Examples



Textured BackgroundTextured Background



Textured BackgroundTextured Background









ConclusionsConclusions

Introduced the dominant-set framework for pairwise data 
clustering

Binary affinities: maximal cliques

Symmetric affinities: maxima of quadratic function 
over standard simplex

Arbitrary affinities: Nash equilibria of non-cooperative 
games



Other Applications of DominantOther Applications of Dominant--Set ClusteringSet Clustering

Bioinformatics:Bioinformatics:
Identification of protein binding sites (Zauhar and Bruist, 2005)
Clustering gene expression profiles (Li et al, 2005)
Tag Single Nucleotide Polymorphism (SNPs) selection (Frommlet, 2008)

Security and video surveillance:Security and video surveillance:
Detection of anomalous activities in video streams (Hamid et al., CVPR’05; AI’09)
Detection of malicious activities in the internet (Pouget et al., J. Inf. Ass. Sec. 2006)

ContentContent--based image retrieval:based image retrieval:
Wang et al. (Sig. Proc. 2008); Giacinto and Roli (2007)

Human action recognition: Human action recognition: 
Wei et al. (ICIP’07)

Analysis of fMRI data: Analysis of fMRI data: 
Neumann et al (NeuroImage 2006); Muller et al (J. Mag Res Imag. 2007)

Object tracking:Object tracking:
Gualdi et al. (IWVS’08)



OnOn--going and Future Workgoing and Future Work

- Enumerating dominant sets for “soft” clustering (ICPR’08)
- Using high-order affinities for hypergraph clustering
- Using non-linear payoff functions
- Using alternative equilibrium concepts and game dynamics
- Relations with spectral methods?

Long-term goal: 
To undertake a thorough study of how game-theoretic notions 

and models can be applied to pattern analysis and 
classification (the SIMBAD project).



EUEU--FP7 FET ProjectFP7 FET Project
(2008 (2008 -- 2010)2010)

Beyond Features:Beyond Features:
SimilaritySimilarity--Based Pattern Analysis and RecognitionBased Pattern Analysis and Recognition

(http://simbad(http://simbad--fp7.eu)fp7.eu)

ConsortiumConsortium
1. Ca' Foscari University, Venice, Italy (M.Pelillo) - coordinator 
2. University of York, England (E. Hancock)
3. Delft University of Technology, The Netherlands (B. Duin)
4. Insituto Superior Técnico, Lisbon, Portugal (M. Figueiredo)
5. University of Verona (V. Murino)
6. ETH Zurich, Switzerland (J. Buhmann)

WeWe’’re looking for postre looking for post--docs!docs!
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