Automated Planning

Jussi Rintanen
NICTA, Canberra

February, 2009

What is planning?

Planning is decision making about which actions to take.

- knowledge base (KB) about the world
- general-purpose problem representation (PDDL, logic, ...)
- algorithms for solving any problem expressible in the representation

What is planning?

Application areas:

- control of complex technical systems:
- autonomous spacecraft (NASA Deep Space One)
- utilities (recovery from electricity network outages)
- intelligent manufacturing systems

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search

- high-level planning for intelligent robots
- problem-solving (games like Rubik's cube)
- related problems: scheduling, time-tabling, ...

Blocks world

The states

Location on the table does not matter

At most one block on/under a block is allowed

Blocks world

The transition graph for three blocks

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search

Why is planning difficult?

- Solutions to simplest planning problems are paths from an initial state to a goal state in the transition graph. Efficiently solvable e.g. by Dijkstra's algorithm in $O(n \log n)$ time.
- Q: Why don't we solve all planning problems this way?
- A: State spaces are often huge: $10^{9}, 10^{12}, 10^{15}$ states. Constructing the transition graph explicitly is not feasible!!
- Planning algorithms often are - but are not guaranteed to be - more efficient than the obvious solution method of constructing the transition graph + running e.g. Dijkstra's algorithm.

Why is planning difficult?

- Solutions to simplest planning problems are paths from an initial state to a goal state in the transition graph. Efficiently solvable e.g. by Dijkstra's algorithm in $O(n \log n)$ time.
- Q: Why don't we solve all planning problems this way?
- A: State spaces are often huge: $10^{9}, 10^{12}, 10^{15}, \ldots$ states. Constructing the transition graph explicitly is not feasible!!
- Planning algorithms often are - but are not guaranteed to be - more efficient than the obvious solution method of constructing the transition graph + running e.a. Dijkstra's algorithm.

Why is planning difficult?

- Solutions to simplest planning problems are paths from an initial state to a goal state in the transition graph. Efficiently solvable e.g. by Dijkstra's algorithm in $O(n \log n)$ time.
- Q: Why don't we solve all planning problems this way?
- A: State spaces are often huge: $10^{9}, 10^{12}, 10^{15}, \ldots$ states. Constructing the transition graph explicitly is not feasible!!
- Planning algorithms often are - but are not guaranteed to be - more efficient than the obvious solution method of constructing the transition graph + running e.g. Dijkstra's algorithm.

Transition systems

Introduction
Transition
systems
Definition
State variables
Actions
Plans
Planning with
SAT
Symbolic
Methods
State-space
search

Representation of transition systems

- state = valuation of a finite set of state variables

$$
\begin{aligned}
& \text { Example } \\
& \text { HOUR : }\{0, \ldots, 23\}=13 \\
& \text { MINUTE }:\{0, \ldots, 59\}=55 \\
& \text { LOCATION }:\{51,52,82,101,102\}=101 \\
& \text { WEATHER }:\{\text { sunny, cloudy, rainy }\}=\text { cloudy } \\
& \text { HOLIDAY }:\{\mathrm{T}, \mathrm{~F}\}=\mathrm{F}
\end{aligned}
$$

- Any n-valued state variable can be represented by $\left\lceil\log _{2} n\right\rceil$ Boolean (2-valued) state variables.
- Actions change the values of the state variables.

Blocks world with Boolean state variables

Example

s(clearA)	0 s (clearB)	1 s (clearC)	$=1$
s(AonB)	$=0 \mathrm{~s}$ (AonC)	0 s (AonTABLE)	1
s(BonA)	$=1 \mathrm{~s}$ (BonC)	0 s (BonTABLE)	0
$s(C o n A)$	$=0 \mathrm{~s}($ ConB $)$	$=0 \mathrm{~s}$ (ConTABLE)	1

Not all valuations correspond to an intended state, e.g. if $s($ Aon $B)=1$ and $s($ Bon $A)=1$.

Actions

Precondition

A Boolean combination (\vee, \wedge, \neg) of atomic formulas $x=v$ where x is a state variable and v is a value 0 or 1 .

Effects

Introduction
Transition
systems
Definition

A collection of assignments and conditional assignments
$x:=v$
IF ϕ THEN $x:=v$
Assumptions:

- All assignments in an effect are made simultaneously.
- Only one occurrence of every assignment $x:=v$:
- $x:=v$ is equivalent to IF \top THEN $x:=v$.
- Assignments IF ϕ THEN $x:=v$ and IF ϕ^{\prime} THEN $x:=v$ can be combined to IF $\phi \vee \phi^{\prime}$ THEN $x:=v$.

Actions

Example

We abbreviate $x=1$ by x and $x=0$ by $\neg x$, and similarly $x:=1$ by x and $x:=0$ by $\neg x$.

Example

Action for moving B from A to C :
\langle BonA \wedge clear $B \wedge$ clearC, $\{$ BonC, clearA, \neg BonA, \neg clearC $\}\rangle$.

Introduction
Transition
systems
Definition
State variables
Actions
Plans
Planning with
SAT
Symbolic
Methods
State-space
search

Actions

Active effects

Active effects of an action

For an action $\langle p, e\rangle$ and state $s,[e]_{s}$ consists of

$$
\left\{\begin{array}{l}
x, \text { for } x:=1 \text { in } e \\
\neg x, \text { for } x:=0 \text { in } e \\
x, \text { for IF } \phi \text { THEN } x:=1 \text { in } e \text { and } s \models \phi \\
\neg x, \text { for IF } \phi \text { THEN } x:=0 \text { in } e \text { and } s \models \phi
\end{array}\right.
$$

Definition
State variables
Actions
Plans
Planning with
SAT
Symbolic
Methods
State-space
search

Executability of an action

$\langle p, e\rangle$ is executable in a state s iff $s \models p$ and $[e]_{s}$ is consistent.

Actions

The successor state of a state

Successor states

The successor state $\operatorname{exec}_{o}(s)$ of s with respect to $o=\langle p, e\rangle$ is obtained from s by making the literals $[e]_{s}$ true.
This is defined only if o is executable in s.

Example

Transition
systems
Definition
State variables
Actions
Plans
Planning with
SAT
Symbolic
Methods
State-space
search because $s \models a$ and $\{\neg a, b\}$ is consistent. Hence exec $\langle a,\{\neg a, b\}\rangle(s) \models \neg a \wedge b \wedge c$.

Transition systems

Transition system $\langle A, I, O, G\rangle$

- A is a finite set of state variables,

Introduction
Transition
systems
Definition
State variables
Actions
Plans
Planning with
SAT
Symbolic
Methods
State-space
search

Plans

Plans

A plan for $\langle A, I, O, G\rangle$ is a sequence $\pi=o_{1}, \ldots, o_{n}$ of actions such that $o_{1}, \ldots, o_{n} \in O$ and there is a sequence of states s_{0}, \ldots, s_{n} (the execution of π) so that
(1) $s_{0}=I$,
(2) $s_{i}=\operatorname{exec}_{o_{i}}\left(s_{i-1}\right)$ for every $i \in\{1, \ldots, n\}$, and
(3) $s_{n} \mid=G$.

This can be equivalently expressed as

$$
\operatorname{exec}_{o_{n}}\left(\operatorname{exec}_{o_{n-1}}\left(\cdots \operatorname{exec}_{o_{1}}(I) \cdots\right)\right) \models G .
$$

Planning in the propositional logic

- Planning by satisfiability testing in the propositional logic:
A planning problem is translated into a formula (with parameter t) that is satisfiable if and only if a plan of a length t exists.
- Benefits:
(1) Upper bound t constrains the set of possible plans very strongly, which often makes plan search much easier.

Introduction
Transition
systems
Planning with
SAT
Action as formulae
Plans in PL
Parallel plans
Example
Symbolic
Methods
State-space
search
(2) There are very efficient algorithm implementations for satisfiability: zChaff, MiniSAT, ...

Actions as formulae

Idea

Propositional variables a, b, c, \ldots for old and $a^{\prime}, b^{\prime}, c^{\prime}, \ldots$ for new values of state variables.
(BonA \wedge clearB \wedge clearC)
precondition
\wedge BonC $^{\prime} \wedge$ clearA ${ }^{\prime} \wedge \neg$ BonA $^{\prime} \wedge \neg$ clearC $^{\prime}$
effects
$\wedge\left(\right.$ clearB \leftrightarrow clearB' $\left.^{\prime}\right)$
$\wedge\left(\right.$ AonB \leftrightarrow AonB $\left.{ }^{\prime}\right)$
state variables
that do not change
Action as formulae

Representation of one event/action

Changes to state variables

effect of e on a	translation $f_{e}(a)$
-	$a \leftrightarrow a^{\prime}$
$\mathrm{a}:=1$	a^{\prime}
$\mathrm{a}:=0$	$\neg a^{\prime}$
IF ϕ THEN $\mathrm{a}:=1$	$(a \vee \phi) \leftrightarrow a^{\prime}$
IF ϕ THEN $\mathrm{a}:=0$	$(a \wedge \neg \phi) \leftrightarrow a^{\prime}$
IF ϕ_{1} THEN $\mathrm{a}:=1 ;$	
IF ϕ_{0} THEN $\mathrm{a}:=0$	$\left(\phi_{1} \vee\left(a \wedge \neg \phi_{0}\right)\right) \leftrightarrow a^{\prime}$

Introduction
Transition
systems
Planning with
SAT
Action as formulae
Plans in PL
Parallel plans
Example
Symbolic
Methods
State-space
search

A formula for one event/action e is now defined as

$$
F(e)=\phi \wedge \bigwedge_{a \in A} f_{e}(a)
$$

where $\phi=\operatorname{prec}(e)$ is a precondition that has to be true for the event/action to be possible.

Choice between actions/events

A formula that expresses the choice between actions/events e_{1}, \ldots, e_{n} is

$$
\mathcal{R}_{1}\left(A, A^{\prime}\right)=\bigvee_{i=1}^{n} F\left(e_{i}\right)
$$

We will later instantiate A and A^{\prime} with different sets of propositional variables.

Existence of plans of length t

Atomic propositions

Define $A^{i}=\left\{a^{i} \mid a \in A\right\}$ for all $i \in\{0, \ldots, t\}$. a^{i} expresses the value of $a \in A$ at time i.

Plans of length t in the propositional logic
Plans of length t correspond to satisfying valuations of

$$
\Phi_{t}=\iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right) \wedge \mathcal{R}_{1}\left(A^{1}, A^{2}\right) \wedge \cdots \wedge \mathcal{R}_{1}\left(A^{t-1}, A^{t}\right) \wedge G^{t}
$$

Transition
systems
Planning with
SAT
Action as formulae
Plans in PL
Parallel plans
Example
Symbolic
Methods
State-space
search
where $\iota^{0}=\bigwedge\left\{a^{0} \mid a \in A, I(a)=1\right\} \cup\left\{\neg a^{0} \mid a \in A, I(a)=0\right\}$ and G^{t} is G with propositional variables a replaced by a^{t}.

Planning as satisfiability

Example

Example

Consider

$$
\begin{aligned}
& I \models a \wedge b \\
& G=\neg a \wedge b \\
& o_{1}=\langle a,\{\neg a, b\}\rangle \\
& o_{2}=\langle b,\{a, \neg b\}\rangle .
\end{aligned}
$$

Introduction
Transition
systems
Planning with
SAT
Action as formulae
Plans in PL
Parallel plans
Example
Symbolic
Methods
State-space
search

This formula is satisfiable because the valuation v such that $v \equiv a^{0} \wedge b^{0} \wedge \neg a^{1} \wedge b^{1} \wedge a^{2} \wedge \neg b^{2} \wedge \neg a^{3} \wedge b^{3}$ satisfies it.

Parallel plans

- Efficiency of satisfiability testing is strongly dependent on the horizon length because known algorithms have worst-case exponential runtime in the formula size, and formula size is linearly proportional to horizon length.
- Formula sizes can be reduced by allowing several events/actions in parallel.
- On many problems this leads to big speed-ups.

Interpretation of parallelism

Example

$\langle a,\{\neg b\}\rangle$ and $\langle b,\{\neg a\}\rangle$ have non-contradictory effects and preconditions.
However, neither action sequence
(1) $\langle b,\{\neg a\}\rangle,\langle a,\{\neg b\}\rangle$ nor
(2) $\langle a,\{\neg b\}\rangle,\langle b,\{\neg a\}\rangle$
is executable.
Standard interpretation of parallelism
Actions are executable in every order.

Interference

Example

Actions do not interfere

Introduction
Transition
systems
Planning with
SAT
Action as formulae Plans in PL
Parallel plans
Actions can be taken simultaneously.

Actions interfere

If A is moved first, B won't be clear and cannot be moved.

Interference

Interference

o and o^{\prime} interfere if
(1) o may make the precondition of o^{\prime} false, or

Introduction
Transition
systems
Planning with
SAT
Action as formulae
Plans in PL
Parallel plans
Example
Symbolic
Methods
State-space
search

Important property of interference

Any set of non-interfering actions that are simultaneously applicable in a state s can be executed in any order, leading to the same state in all cases.

Parallel actions

Representation in the propositional logic

Formulas $E P C_{e}^{+}(a)$ and $E P C_{e}^{-}(a)$ indicate when e makes a true and false, respectively:

$e(a)$	$E P C_{e}^{+}(a)$	$E P C_{e}^{-}(a)$
-	\perp	\perp
$\mathrm{a}:=0$	\perp	\top
$\mathrm{a}:=1$	\top	\perp
IF ϕ THEN a $:=1$	ϕ	\perp
IF ϕ THEN a $:=0$	\perp	ϕ
IF ϕ_{1} THEN a $:=1 ;$		
IF ϕ_{0} THEN $\mathrm{a}:=0$	ϕ_{1}	ϕ_{0}

Introduction
Transition
systems
Planning with
SAT
Action as formulae
Plans in PL
Parallel plans
Example
Symbolic
Methods
State-space
search

Our earlier definition for effects can be now rephrased as

$$
f_{e}(a)=E P C_{e}^{+}(a) \vee\left(a \wedge \neg E P C_{e}^{-}(a)\right) \leftrightarrow a^{\prime}
$$

We define $E P C^{+}(a)$ and $E P C^{-}(a)$ as $E P C^{+}(a)$ and

Parallel actions

Representation in the propositional logic

Let $\mathcal{R}_{2}\left(A, A^{\prime}, O\right)$ be the conjunction of

$$
\begin{aligned}
& (o \rightarrow \operatorname{prec}(o)) \wedge \\
& \bigwedge_{a \in A}\left(o \wedge E P C_{o}^{+}(a) \rightarrow a^{\prime}\right) \wedge \\
& \bigwedge_{a \in A}\left(o \wedge E P C_{o}^{-}(a) \rightarrow \neg a^{\prime}\right)
\end{aligned}
$$

for all $o \in O$ with effect e and the explanatory frame axioms

Introduction
Transition
systems
Planning with
SAT
Action as formulae
Plans in PL
Parallel plans
Example
Symbolic
Methods
State-space search

Plans with parallel actions

Parallel plans of length n in the propositional logic

Parallel plans of length n correspond to satisfying valuations of

$$
I^{0} \wedge \mathcal{R}_{2}\left(A^{0}, A^{1}, O^{0}\right) \wedge \cdots \wedge \mathcal{R}_{2}\left(A^{n-1}, A^{n}, O^{n-1}\right) \wedge G^{n}
$$

where $\iota^{0}=\bigwedge\left\{a^{0} \mid a \in A, I(a)=1\right\} \cup\left\{\neg a^{0} \mid a \in A, I(a)=0\right\}$ and G^{n} is G with propositional variables a replaced by a^{n}.

Planning as satisfiability

Example

initial state

goal state

Introduction
Transition
systems
Planning with
SAT
Action as formulae
Plans in PL
Parallel plans
Example
Symbolic
Methods
State-space
search

Problem solved almost without search:

- Formulas for lengths 1 to 4 shown unsatisfiable without any search.
- Formula for plan length 5 is satisfiable: 3 nodes in the search tree.
- Plans have 5 to 7 actions, optimal plan has 5.

Planning as satisfiability

Example

012345
clear(a) F F clear(b) $F \quad F$ clear(c) TT FF clear(d) FTTFFF clear(e) TTFFFF on(a,b) FFF

T on (a, c) FFFFFF on(a,d) FFFFFF on (a, e) FFFFFF on(b,a)TT FF on $(\mathrm{b}, \mathrm{c}) \mathrm{FF}$ TT on(b,d) FFFFFF on(b,e) FFFFFF on(c, a) FFFFFF on(c,b) T FFF on(c, d) FFFTTT on(c,e) FFFFFF on(d,a)FFFFFF on(d, b) FFFFFF on(d, c) FFFFFF on(d,e) FFTTTT on(e, a) FFFFFF on(e,b) FFFFFF on(e,c) FFFFFF on(e,d) TFFFFF ontable(a) TTT F ontable(b) FF FF ontable(c) F FFF ontable(d) TTFFFF ontable(e) FTTTTT

(1) State variable values inferred from initial values and goals.
Branch: „clear(b) Branch: clear(a) ${ }^{3}$. 4 Plan found:

Planning as satisfiability

Example

012345	012345	012345		
clear(a) FF	FFF TT	FFFTTT		
clear(b) F F	FF TTF	FFTTTF		
clear(c) TT FF	TTTTFF	TTTTFF		
clear(d) FTTFFF	FTTFFF	FTTFFF	(1) State variable values	Introduction
clear(e)TTFFFF	TTFFFF	TTFFFF		Imroaucion
on(a,b) FFF T	FFFFFT	FFFFFT	inferred from initial values	Transition
on(a, c) FFFFFF on(a,d) FFFFFF	FFFFFF FFFFFF	FFFFFFF FFFFFF	and goals.	systems
on(a,e) FFFFFF	FFFFFF	FFFFFF	and goals.	Planning with
on(b,a) TT FF	TTT FF	TTTFFF	Branch: \neg clear(b)1	SAT
on(b,c) FF TT	FFFFTT	FFFFTT		Action as formulae
on(b,d) FFFFFF	FFFFFF	FFFFFF		Plans in PL
on(b,e) FFFFFF	FFFFFF	FFFFFF	Branch: cear(a)	Paralle plans
on(c, a) FFFFFF	FFFFFF	FFFFFF		Example
on(c,b) T FFF	TT FFF	TTFFFF	Plan found:	
on(c,d) FFFTTT	FFFTTT	FFRTTT	Plan found.	Symbolic Methods
on(c,e) FFFFFF	FFFFFF	FFFFFF	fromtable(a,b)FFFF+	
on(d, a) FFFFFF	FFFFFF	FFFFFF	fromtable(a,b) F F F F T	State-space
on(d, b) FFFFFF on(d,c)FFFFFF	FFFFFF FFFFFF	FFFFFF FFFFFF	fromtable(b,c) F F T F	State-space search
on(d,e) FFTTTT	FFTTTT	FFTTTT	fromtable(c,d) F F T F F	
on(e, a) FFFFFF	FFFFFF	FFFFFF		
on(e, b) FFFFFF	FFFFFF	FFFFFF	fromtabe(0,e) F IF F-	
on(e,c) FFFFFF	FFFFFF	FFFFFF	totable(b,a)FFTFF	
on(e,d) TFFFFF ontable(a) TTT	TFFFFF	TFFFFF	俍	
ontable(a) TTT F ontable(b) FF FF	TTTTTF FFF FF	TTTTTF FFFTFF	totable(c,b) F TFFF	
ontable(c) F FFF	FF FFF	FFTFFF	totable(e,d) TFFFF	
ontable(d) TTFFFF	TTFFFF	TTFFFF		
ontable(e) F TTTTT	FTTTTT	FTTTTT		

Planning as satisfiability

Example

012345	012345	012345
clear(a) FF	FFF TT	FFFTTT
clear(b) F F	FF TTF	FFTTTF
clear(c) TT FF	TTTTFF	TTTTFF
clear(d) FTTFFF	FTTFFF	FTTFFF
clear(e) TTFFFF	TTFFFF	TTFFFF
on $(\mathrm{a}, \mathrm{b}) \mathrm{FFF}$ T	FFFFFT	FFFFFT
on(a, c) FFFFFF	FFFFFF	FFFFFF
on (a,d) FFFFFF	FFFFFF	FFFFFF
on(a,e) FFFFFF	FFFFFF	FFFFFF
on(b,a) TT FF	TTT FF	TTTFFF
on(b,c) FF TT	FFFFTT	FFFFTT
on(b,d) FFFFFF	FFFFFF	FFFFFF
on(b,e) FFFFFF	FFFFFF	FFFFFF
on(c, a) FFFFFF	FFFFFF	FFFFFF
on(c,b) T FFF	TT FFF	TTFFFF
on(c,d) FFFTT	FFFTTT	FFFTTT
on(c,e) FFFFFF	FFFFFF	FFFFFF
on(d,a) FFFFFF	FFFFFF	FFFFFF
on(d, b) FFFFFF	FFFFFF	FFFFFF
on(d,c) FFFFFF	FFFFFF	FFFFFF
on(d,e) FFTTTT	FFTTTT	FFTTTT
on(e, a) FFFFFF	FFFFFF	FFFFFF
on(e,b) FFFFFF	FFFFFF	FFFFFF
on(e,c) FFFFFF	FFFFFF	FFFFFF
on(e, d) TFFFFF	TFFFFF	TFFFFF
ontable(a) TTT F	TTTTTF	TTTTTF
ontable(b) FF FF	FFF FF	FFFTFF
ontable(c) F FFF	FF FFF	FFTFFF
ontable(d) TTFFFF	TTFFFF	TTFFFF
ontable(e) FTTTTT	FTTTTT	FTTT

(1) State variable values inferred from initial values and goals.
(2) Branch: \neg clear $(\mathrm{b})^{1}$.
(3) Branch: clear $(\mathrm{a})^{3}$.

Introduction
Transition
systems
Planning with

Action as formulae
Plans in PL
Parallel plans
Example
Symbolic
Methods
State-space
search

Planning as satisfiability

Example

012345	012345	012345
clear(a) F F	FFF TT	FFFTTT
clear(b) F	FF TTF	FFTTTF
clear(c) T T FF	TTTTFF	TTTTFF
clear(d) F TTFFF	FTTFFF	FTTFFF
clear(e) TTFFFF	TTFFFF	TTFFFF
on(a,b) F F F	FFFFFT	FFFFFT
on(a,c) FFFFFF	FFFFFF	FFFFFF
on(a,d) FFFFFF	FFFFFF	FFFFFF
on(a,e) FFFFFF	FFFFFF	FFFFFF
on(b,a) TT FF	TTT FF	TTTFFF
on(b,c) FF TT	FFFFTT	FFFFTT
on(b,d) F F F F F F	FFFFFF	FFFFFF
on(b,e) FFFFFF	FFFFFF	FFFFFF
on(c,a) F F F F F F	FFFFFF	FFFFFF
on(c,b) T FFF	TT FFF	TTFFFF
on(c,d) F F F T T	FFFTTT	FFFTTT
on(c,e) F F F F F F	FFFFFF	FFFFFF
on(d,a)FFFFFF	FFFFFF	FFFFFF
on(d,b)FFFFFF	FFFFFF	FFFFFF
on(d,c) F F F F F F	FFFFFF	FFFFFF
on(d,e) FFTTTT	FFTTTT	FFTTT
on(e,a) FFFFFF	FFFFFF	FFFFFF
on(e,b) FFFFFF	FFFFFF	FFFFFF
on(e,c) FFFFFF	FFFFFF	FFFFFF
on(e,d) TFFFFF	TFFFFF	TFFFFF
ontable(a) T T T F	TTTTTF	TTTTTF
ontable(b) F F F F	FFF FF	FFFTFF
ontable(c) F FFF	FF FFF	FFTFFF
ontable(d) T T F F F F	TTFFFF	TTFFFF
ontable(e) F T T T T T	FTTTTT	FTTTT

(1) State variable values inferred from initial values and goals.
(2) Branch: \neg clear(b) $)^{1}$.
(3) Branch: clear $(a)^{3}$.
(9) Plan found:
01234
fromtable(a,b)FFFFT
fromtable(b,c)FFFTF
fromtable(c,d)FFTFF
fromtable(d,e)FTFFF
totable(b,a)FFTFF
totable(c,b)FTFFF
totable(e,d)TFFFF

Introduction
Transition
systems
Planning with

Action as formulae
Plans in PL
Parallel plans
Example
Symbolic
Methods
State-space
search

Planning as satisfiability

The plan extracted from the satisfying valuation

Sets of states as formulas

Formulas over A represent sets of states

A formula ϕ over A can be viewed as representing all states (valuations of A) that satisfy ϕ.

Example

$a \vee b$ over $A=\{a, b, c\}$ represents the set $\left\{\begin{array}{l}a b c \\ 010, ~ 011, ~ 100, ~ 101, ~ 110, ~ 111\} . ~\end{array}\right.$

Relations as formulas

Formulas over $A \cup A^{\prime}$ represent binary relations
$a \wedge a^{\prime} \wedge\left(b \leftrightarrow b^{\prime}\right)$ over $A \cup A^{\prime}$ where $A=\{a, b\}, A^{\prime}=\left\{a^{\prime}, b^{\prime}\right\}$ represents the binary relation $\left\{\left(\begin{array}{ll}a b & a^{\prime} b^{\prime} \\ 10 & 10\end{array}\right),(11,11)\right\}$.

$$
a b a^{\prime} b^{\prime}
$$

Valuations 1010 and 1111 of $A \cup A^{\prime}$ can be viewed respectively as pairs of valuations $\left(\begin{array}{c}a b \\ 10\end{array} a^{\prime} b^{\prime} 0^{\prime}\right)$ and $(11,11)$ of A.

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
Sets, Relations
Operations
Reachability
State-space
search

Actions as relations

Example

State variables are $A=\{a, b, c\}$. The formula
$a \wedge \neg a^{\prime} \wedge\left(b \leftrightarrow b^{\prime}\right) \wedge\left((\neg b \vee c) \leftrightarrow c^{\prime}\right)$
100
corresponds to the binary relation on the right.

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
Sets, Relations
Operations
Reachability
State-space
search

Relation operations

 Join
Join corresponds to Conjunction

Let ϕ_{1} and ϕ_{2} represent two relations. Then $\phi_{1} \wedge \phi_{2}$ represents their join.

Example

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
Sets, Relations
Operations
Reachability
State-space
search
which is $\left(b^{0} \wedge a^{1} \wedge b^{1}\right) \wedge\left(a^{1} \wedge\left(a^{2} \vee b^{2}\right)\right)$.

Relation operations

Union

Union corresponds to Disjunction

Let ϕ_{1} and ϕ_{2} represent two relations.
Then $\phi_{1} \vee \phi_{2}$ represents their union.

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
Sets, Relations
Operations
Reachability
State-space
search
corresponds to the formula $\left(a^{0} \wedge b^{0}\right) \vee\left(\left(a^{0} \vee b^{0}\right) \wedge\left(\neg a^{1} \wedge \neg b^{1}\right)\right)$.

Relation operations

Projection

Relational projection corresponds to the Abstraction operation
Let ϕ, on variables A, represent a relation. Let $A^{\prime} \subseteq A$
represent some columns in the relation.
The projection of the relation to A^{\prime} is represented by
where $R=A \backslash A^{\prime}$. Here $\exists R$ is the existential abstraction operation which will be defined on the next slides.

Existential and universal abstraction

Definition

Existential abstraction of a formula ϕ with respect to $a \in A$:

$$
\exists a . \phi=\phi[\top / a] \vee \phi[\perp / a] .
$$

systems
Planning with
SAT
Symbolic
Methods
Sets, Relations
Operations
Reachability

Definition

Universal abstraction of a formula ϕ with respect to $a \in A$:

$$
\forall a \cdot \phi=\phi[\top / a] \wedge \phi[\perp / a] .
$$

ヨ-abstraction

Examples

Example

$$
\begin{aligned}
& \exists b .((a \rightarrow b) \wedge(b \rightarrow c)) \\
& =((a \rightarrow \top) \wedge(\top \rightarrow c)) \vee((a \rightarrow \perp) \wedge(\perp \rightarrow c)) \\
& \equiv c \vee \neg a \\
& \equiv a \rightarrow c \\
& \exists a b .(a \vee b)=\exists b .(\top \vee b) \vee(\perp \vee b) \\
& =((\top \vee \top) \vee(\perp \vee \top)) \vee((\top \vee \perp) \vee(\perp \vee \perp)) \\
& \equiv(\top \vee \top) \vee(\top \vee \perp) \equiv \top
\end{aligned}
$$

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
Sets, Relations
Operations
Reachability
State-space
search

Example

\exists-abstraction is also known as forgetting:
\exists mon \exists tue $(($ mon \vee tue $) \wedge($ mon \rightarrow work $) \wedge($ tue \rightarrow work $))$
$\equiv \exists$ tue $(($ work $\wedge($ tue \rightarrow work $)) \vee($ tue $\wedge($ tue \rightarrow work $))) \equiv$ work

\forall and \exists-abstraction in terms of truth-tables

Example

$\forall c$ and $\exists c$ correspond to combining pairs of lines with the same valuation for variables other than c.

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
Sets, Relations
Operations
Reachability
State-space
search

Applications of \exists

The relational operations are important for

- computing immediate predecessors of a set of states,
- computing immediate successors of a set of states,
- all states that are reachable from a set of states.

Symbolic reachability computation

$$
\iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right) \wedge \cdots \wedge \mathcal{R}_{1}\left(A^{t-1}, A^{t}\right) \wedge G^{t}
$$

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
Sets, Relations
Operations
Reachability
State-space
search

Symbolic reachability computation

$$
\mathcal{R}_{1}\left(A^{0}, A^{1}\right)
$$

binary relation \mathcal{R}_{1}

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
Sets, Relations
Operations
Reachability
State-space
search

Symbolic reachability computation

$$
\iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right)
$$

relational join of ι and \mathcal{R}_{1}

Introduction

Transition
systems
Planning with
SAT
Symbolic
Methods
Sets, Relations
Operations
Reachability
State-space
search

Symbolic reachability computation

$$
\exists A^{0} .\left(\iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right)\right)
$$

projection to time 1: $\bigcup_{o \in O} i m g_{o}(\iota)$ This is the set of states that are reachable from ι by one step with o. $\operatorname{img}_{o}(\iota)=\left\{s^{\prime} \mid s o s^{\prime}, \iota \models s\right\}$

Symbolic reachability computation

$$
\exists A^{1} .\left(\exists A^{0} .\left(\iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right)\right) \wedge \mathcal{R}_{1}\left(A^{1}, A^{2}\right)\right)
$$

States that are reachable by two steps:
$\bigcup_{o \in O} i m g_{o}\left(\bigcup_{o \in O} i m g_{o}(\iota)\right)$

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
Sets, Relations
Operations
Reachability
State-space
search

Symbolic reachability computation

$$
\exists A^{1} .\left(\exists A^{0} .\left(\iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right)\right) \wedge \mathcal{R}_{1}\left(A^{1}, A^{2}\right)\right) \wedge G^{2}
$$

Goal states that are reachable by two steps:
$\left(\bigcup_{o \in O} i m g_{o}\left(\bigcup_{o \in O} i m g_{o}(\iota)\right)\right) \cap G$

Formula for plans of length 2:
$\iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right) \wedge \mathcal{R}_{1}\left(A^{1}, A^{2}\right) \wedge G^{2}$

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
Sets, Relations
Operations
Reachability
State-space
search

Images by \exists-abstraction

Let

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$,
- $A^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\}$,
- ϕ be a formula over A that represents a set T of states, and
- $\tau_{A}(o)$ the formula over $A \cup A^{\prime}$ that represents the action o (a binary relation on states).
The image $\left\{s^{\prime} \in S \mid s \in T, \operatorname{sos}^{\prime}\right\}$ of T with respect to o is represented by

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
Sets, Relations
Operations
Reachability
State-space search

$$
\exists A \cdot(\phi \wedge F(o))
$$

which is a formula over A^{\prime}.
To obtain a formula over A we rename the variables.

$$
\operatorname{img}_{o}(\phi)=(\exists A .(\phi \wedge F(o)))\left[A / A^{\prime}\right]
$$

Images and preimages by formula manipulation

Definition

Let o be an action and ϕ a formula. Define

$$
\begin{aligned}
\operatorname{img}_{o}(\phi) & =(\exists A .(\phi \wedge F(o)))\left[A / A^{\prime}\right] \\
\operatorname{preimg}_{o}(\phi) & =\exists A^{\prime} .\left(F(o) \wedge \phi\left[A^{\prime} / A\right]\right)
\end{aligned}
$$

Forward distances with formulae

Transition
systems
Planning with
SAT
Symbolic
Methods
Sets, Relations
Operations
Reachability

$$
\begin{aligned}
& D_{0}^{f w d}=I \\
& D_{i}^{f w d}=D_{i-1}^{f w d} \vee \bigvee_{o \in O} i m g_{o}\left(D_{i-1}^{f w d}\right) \text { for all } i \geq 1
\end{aligned}
$$

Constructing a plan given the distances

Let n be the minimum number such that $D_{n}^{\text {fwd }} \wedge G$ is satisfiable. This means that the shortest plan has length n.
An action sequence from an initial state to G can be extracted as follows (starting from its last action.)
(1) Set $G:=G \wedge D_{n}^{\text {fwd }}$.
(2) Choose any action e such that $\operatorname{preimg}_{e}(G) \wedge D_{n-1}^{f w d}$ is satisfiable.

Transition
systems
Planning with
SAT
Symbolic
Methods
Sets, Relations
Operations
Reachability
State-space
search
(3) Set $G:=\operatorname{preimg}_{e}(G) \wedge D_{n-1}^{\text {fwd }}$ and $n:=n-1$.
(4) If $n>0$ go to 2 .

SAT vs. symbolic reachability

The formula in the SAT case is

$$
\Phi_{t}=\iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right) \wedge \mathcal{R}_{1}\left(A^{1}, A^{2}\right) \wedge \cdots \wedge \mathcal{R}_{1}\left(A^{t-1}, A^{t}\right) \wedge G^{t}
$$

Introduction
Transition
systems
Planning with
SAT

$$
\begin{aligned}
& \iota^{0} \\
& \iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right) \\
& \iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right) \wedge \mathcal{R}_{1}\left(A^{1}, A^{2}\right) \\
& \vdots \\
& \iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right) \wedge \mathcal{R}_{1}\left(A^{1}, A^{2}\right) \wedge \cdots \wedge \mathcal{R}_{1}\left(A^{t-1}, A^{t}\right)
\end{aligned}
$$

and from each formula abstract away all but the last time point, and then intersect the resulting set with G to test if goals can be reached.
These are from the logical point of view exactly the same thing.

Symbolic
Methods
Sets, Relations
Operations
Reachability
State-space search

Planning by state-space search

There are many alternative ways of doing planning by state-space search.
(1) different ways of expressing planning as a search problem:
(1) search direction: forward, backward
(2) representation of search space: states, sets of states
(2) different search algorithms:
(1) depth-first, breadth-first, bidirectional, ...
(2) heuristic search (systematic: A $*$, IDA $*$, best first, ...; local: hill-climbing, simulated annealing, ...), ...
(3) different ways of controlling search:
(1) different heuristics for heuristic search algorithms
(2) pruning techniques: invariants, symmetry elimination,...

Planning by forward search

with depth-first search

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

Planning by forward search
 with depth-first search

Planning by forward search
 with depth-first search

Planning by forward search
 with depth-first search

Planning by forward search

with depth-first search

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

Planning by forward search
 with depth-first search

Planning by forward search

 with depth-first search
Planning by forward search
 with depth-first search

Planning by forward search

with depth-first search

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

Planning by forward search
 with depth-first search

Planning by backward search

with depth-first search, for state sets

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

Planning by backward search

with depth-first search, for state sets

Planning by backward search

with depth-first search, for state sets

$$
G_{1}=\operatorname{regr}_{\longrightarrow}(G)
$$

$$
G_{1} \longrightarrow G
$$

Planning by backward search

with depth-first search, for state sets

$$
\begin{array}{ll}
G_{1}=\operatorname{regr}_{\longrightarrow}(G) & G_{2} \longrightarrow G_{1} \longrightarrow G \\
G_{2}=\operatorname{regr}_{\longrightarrow}\left(G_{1}\right) &
\end{array}
$$

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

Planning by backward search

with depth-first search, for state sets

$$
\begin{aligned}
& G_{1}=\operatorname{regr}_{\longrightarrow}(G) \quad G_{3} \longrightarrow G_{2} \longrightarrow G_{1} \longrightarrow G \\
& G_{2}=\operatorname{regr}_{\longrightarrow}\left(G_{1}\right) \\
& G_{3}=\operatorname{regr}_{\longrightarrow}\left(G_{2}\right), I \models G_{3}
\end{aligned}
$$

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

Progression

- Progression = computation of successor state(s).
- Used in forward search: from the initial state toward the goal states.
+ Very easy and efficient to implement.
- Search with only one state at a time.

Progression

For a given state s and action o with effects e, the successor state $\operatorname{exec}_{o}(s)$ is obtained by changing the literals in $[e]_{s}$ true in s.

Regression

- Regression = computation of predecessors of states
+ Advantage over progression: a formula represents a set of states.
- More difficult to implement efficiently.

Regression

(c) Start from ϕ which is initially set to G.
(2) Repeat the following.
(1) First step: Choose an action o.
(2) Second step: Form a new goal $\phi:=\operatorname{preimg}_{o}(\phi)$.

Regression for STRIPS actions

Example

$$
\begin{aligned}
& G=\{\square \text { on■, ■on■ }\}
\end{aligned}
$$

Regression for STRIPS actions

Example

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

$$
G=\{\square \text { on } \llbracket, \llbracket o n \llbracket\}
$$

Regression for STRIPS actions

Example

$$
\begin{aligned}
& o_{3}=\langle\{\text { ■onT, ■clr, ■clr }\},\{\square \mathrm{clr}, \square \square \circ \mathrm{nT}, \square \mathrm{on} \text {. }\}\rangle \\
& G=\{\square \circ \mathrm{n} \square \text {, ■on■ }\}
\end{aligned}
$$

Regression for STRIPS actions

Example

$$
\begin{aligned}
& o_{3}=\langle\{\square \mathrm{onT}, \square \mathrm{clr}, \square \mathrm{clr}\},\{\square \mathrm{clr}, \square \square \mathrm{nT}, \square \mathrm{on}-\}\rangle \\
& G=\{\square \circ \mathrm{n} \square \text {, ■on■ }\} \\
& G_{1}=\operatorname{reg}_{o_{3}}^{s t r}(G)=\{\square \mathrm{on} \square, \square \mathrm{onT}, \square \mathrm{clr}, \square \mathrm{clr}\}
\end{aligned}
$$

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

Planning by heuristic search

Forward search

Planning by heuristic search

Backward search

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

Search algorithms: A*

Example

Transition
systems
Planning with
SAT

Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

Search algorithms: A*

Example

Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

Search algorithms: A*

Example

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

Search algorithms: A*

Example

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

Search algorithms: A*

Example

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

Search algorithms: A*

Example

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

Distances

Illustration

Forward distance of state s is 3 because $s \in D_{3}^{f w d} \backslash D_{2}^{f w d}$.

Introduction

Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

As $D_{i}^{\text {fud }}=D_{3}^{\text {fwd }}$ for all $i>3$, forward distance of state s^{\prime} is ∞.

Distances

of formulas

$\delta_{I}^{\text {twd }}(G)=3$ since $s \models G$ for some $s \in D_{3}^{\text {fwd }}$ and for no $s \in D_{2}^{\text {fwd }}$.

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

Distance estimation

- Computation of exact distances is as hard as planning itself: only their approximations are useful as heuristics.
- We discuss a distance heuristic for controlling heuristic search algorithms like $A *$, IDA*.
- The distance estimates are a lower bound for forward distances: since they don't overestimate they are admissible as a heuristic.
- They can be used with $A *$ and IDA $*$ to find optimal

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics plans.

- Basic insight: estimate distances one state variable at a time.

Distance estimation

Tractor example

Introduction
Transition
systems
Planning with
SAT
(1) Tractor moves:

- from 1 to 2: $T 12=\langle T 1,\{T 2, \neg T 1\}\rangle$
- from 2 to 1: $T 21=\langle T 2,\{T 1, \neg T 2\}\rangle$
- from 2 to 3: $T 23=\langle T 2,\{T 3, \neg T 2\}\rangle$
- from 3 to 2: $T 32=\langle T 3,\{T 2, \neg T 3\}\rangle$

Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics
(2) Tractor pushes A :

- from 2 to 1: $A 21=\langle T 2 \wedge A 2,\{T 1, A 1, \neg T 2, \neg A 2\}\rangle$
- from 3 to 2: $A 32=\langle T 3 \wedge A 3,\{T 2, A 2, \neg T 3, \neg A 3\}\rangle$
(3) Tractor pushes B:
- from 2 to 1: $B 21=\langle T 2 \wedge B 2,\{T 1, B 1, \neg T 2, \neg B 2\}\rangle$
- from 3 to 2: $B 32=\langle T 3 \wedge B 3,\{T 2, B 2, \neg T 3, \neg B 3\}\rangle$

Distance estimation

Tractor example

Execute $T 12=\langle T 1,\{T 2, \neg T 1\}\rangle$

Distance estimation

Tractor example

Execute $T 23=\langle T 2,\{T 3, \neg T 2\}\rangle$

Distance estimation

Tractor example

Execute $A 32=\langle T 3 \wedge A 3,\{T 2, A 2, \neg T 3, \neg A 3\}\rangle$

Distance estimation

Tractor example

Execute $B 32=\langle T 3 \wedge B 3,\{T 2, B 2, \neg T 3, \neg B 3\}\rangle$

Distance estimation

Tractor example

Execute $A 21=\langle T 2 \wedge A 2,\{T 1, A 1, \neg T 2, \neg A 2\}\rangle$

Distance estimation

Tractor example

Execute $B 21=\langle T 2 \wedge B 2,\{T 1, B 1, \neg T 2, \neg B 2\}\rangle$

Distance estimation

Tractor example

Distance of $A 1, B 1$ is 4 .

Abstraction Heuristics

Key observation

Eliminating any state variable can only reduce the length of the shortest plan.

- Any abstraction, with some variables eliminated, yields a smaller state space.
- Distances in the abstract state space are lower bounds for the distances in the state space itself.

Abstraction Heuristics

The tractor example, abstracted to $\{A 1, A 2, A 3, B 1, B 2, B 3\}$ (eliminating the tractor) yields actions
(1) Tractor moves:

- from 1 to $2: T 12=\langle T,\{ \}\rangle$
- from 2 to 1: $T 21=\langle T,\{ \}\rangle$
- from 2 to 3: $T 23=\langle T,\{ \}\rangle$
- from 3 to $2: T 32=\langle T,\{ \}\rangle$

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics
(3) Tractor pushes B:

- from 2 to 1: $B 21=\langle B 2,\{B 1, \neg B 2\}\rangle$
- from 3 to 2: $B 32=\langle B 3,\{B 2, \neg B 3\}\rangle$

The abstract state space has 9 states (as opposed to 27). Reaching $A 1, B 1$ from the abstract initial state $A 3, B 3$ takes 4 abstract actions.

Abstraction Heuristics

In practice it is only possible to use abstractions that retain only very few state variables. These typically yield very weak lower bounds.
Useful strategy: aggregate several abstractions.
(1) Maximum of lower bounds from different abstractions
(2) Sum of lower bounds from different abstractions, provided that no action gets counted twice.
(3) More sophisticated aggregation methods exist.

Central problem: Which abstractions to aggregate?

Introduction
Transition
systems
Planning with
SAT
Symbolic
Methods
State-space
search
Progression
Regression
Search
Heuristics

