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What is planning?
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Planning is decision making
about which actions to take.

knowledge base (KB)
about the world
general-purpose problem
representation (PDDL,
logic, ...)
algorithms for solving any
problem expressible in the
representation
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What is planning?

Application areas:
control of complex technical systems:

autonomous spacecraft (NASA Deep Space One)
utilities (recovery from electricity network outages)
intelligent manufacturing systems

high-level planning for intelligent robots
problem-solving (games like Rubik’s cube)
related problems: scheduling, time-tabling, ...



Introduction

Transition
systems

Planning with
SAT

Symbolic
Methods

State-space
search

Blocks world
The states

Location on the table does not matter

≡

Location on a block does not matter

≡

At most one block on/under a block is allowed
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Blocks world
The transition graph for three blocks
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Why is planning difficult?

Solutions to simplest planning problems are paths from
an initial state to a goal state in the transition graph.
Efficiently solvable e.g. by Dijkstra’s algorithm in
O(n log n) time.
Q: Why don’t we solve all planning problems this way?
A: State spaces are often huge: 109, 1012, 1015, . . .
states. Constructing the transition graph explicitly is not
feasible!!
Planning algorithms often are – but are not guaranteed
to be – more efficient than the obvious solution method
of constructing the transition graph + running e.g.
Dijkstra’s algorithm.
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Transition systems

A

BC

D

E F
initial state

goal states
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Representation of transition systems

state = valuation of a finite set of state variables

Example

HOUR : {0, . . . , 23} = 13
MINUTE : {0, . . . , 59}= 55
LOCATION : { 51, 52, 82, 101, 102 } = 101
WEATHER : { sunny, cloudy, rainy } = cloudy
HOLIDAY : { T, F } = F

Any n-valued state variable can be represented by
dlog2 ne Boolean (2-valued) state variables.
Actions change the values of the state variables.
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Blocks world with Boolean state variables

Example

A
B

C
s(clearA) = 0 s(clearB) = 1 s(clearC) = 1
s(AonB) = 0 s(AonC) = 0 s(AonTABLE) = 1
s(BonA) = 1 s(BonC) = 0 s(BonTABLE) = 0
s(ConA) = 0 s(ConB) = 0 s(ConTABLE) = 1

Not all valuations correspond to an intended state, e.g. if
s(AonB) = 1 and s(BonA) = 1.
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Actions

Precondition
A Boolean combination (∨,∧,¬) of atomic formulas x = v
where x is a state variable and v is a value 0 or 1.

Effects
A collection of assignments and conditional assignments
x := v
IF φ THEN x := v

Assumptions:
All assignments in an effect are made simultaneously.
Only one occurrence of every assignment x := v:

x := v is equivalent to IF > THEN x := v.
Assignments IF φ THEN x := v and IF φ′ THEN x := v
can be combined to IF φ ∨ φ′ THEN x := v.
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Actions
Example

We abbreviate x = 1 by x and x = 0 by ¬x, and similarly
x := 1 by x and x := 0 by ¬x.

Example
Action for moving B from A to C:
〈BonA ∧ clearB ∧ clearC, {BonC, clearA,¬BonA,¬clearC}〉.

A
B

C A
B
C
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Actions
Active effects

Active effects of an action
For an action 〈p, e〉 and state s, [e]s consists of

x, for x := 1 in e
¬x, for x := 0 in e
x, for IF φ THEN x := 1 in e and s |= φ
¬x, for IF φ THEN x := 0 in e and s |= φ

Executability of an action

〈p, e〉 is executable in a state s iff s |= p and [e]s is consistent.
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Actions
The successor state of a state

Successor states
The successor state execo(s) of s with respect to o = 〈p, e〉
is obtained from s by making the literals [e]s true.
This is defined only if o is executable in s.

Example

〈a, {¬a, b}〉 is executable in state s such that s |= a ∧ b ∧ c
because s |= a and {¬a, b} is consistent.
Hence exec〈a,{¬a,b}〉(s) |= ¬a ∧ b ∧ c.
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Transition systems

Transition system 〈A, I,O,G〉
A is a finite set of state variables,
I is an initial state (a valuation of A),
O is a set of actions over A,
G is a formula over A, the goal.
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Plans

Plans
A plan for 〈A, I,O,G〉 is a sequence π = o1, . . . , on of
actions such that o1, . . . , on ∈ O and there is a sequence of
states s0, . . . , sn (the execution of π) so that

1 s0 = I,
2 si = execoi(si−1) for every i ∈ {1, . . . , n}, and
3 sn |= G.

This can be equivalently expressed as

execon(execon−1(· · · execo1(I) · · · )) |= G.
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Planning in the propositional logic

Planning by satisfiability testing in the propositional
logic:
A planning problem is translated into a formula (with
parameter t) that is satisfiable if and only if a plan of a
length t exists.
Benefits:

1 Upper bound t constrains the set of possible plans very
strongly, which often makes plan search much easier.

2 There are very efficient algorithm implementations for
satisfiability: zChaff, MiniSAT, ...
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Actions as formulae

Idea
Propositional variables a, b, c, . . . for old and a′, b′, c′, . . . for
new values of state variables.

(BonA ∧ clearB ∧ clearC) precondition
∧BonC′ ∧ clearA′ ∧ ¬BonA′ ∧ ¬clearC′ effects
∧(clearB↔ clearB′) state variables
∧(AonB↔ AonB′) that do not change
∧(AonC↔ AonC′)
∧(AonTABLE↔ AonTABLE′)
∧(BonTABLE↔ BonTABLE′)
∧(ConA↔ ConA′)
∧(ConB↔ ConB′)
∧(ConTABLE↔ ConTABLE′)
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Representation of one event/action
Changes to state variables

effect of e on a translation fe(a)
- a↔ a′

a := 1 a′

a := 0 ¬a′
IF φ THEN a := 1 (a ∨ φ)↔ a′

IF φ THEN a := 0 (a ∧ ¬φ)↔ a′

IF φ1 THEN a := 1;
IF φ0 THEN a := 0 (φ1 ∨ (a ∧ ¬φ0))↔ a′

A formula for one event/action e is now defined as

F (e) = φ ∧
∧
a∈A

fe(a)

where φ = prec(e) is a precondition that has to be true for
the event/action to be possible.
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Choice between actions/events

A formula that expresses the choice between actions/events
e1, . . . , en is

R1(A,A′) =
n∨

i=1

F (ei).

We will later instantiate A and A′ with different sets of
propositional variables.
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Existence of plans of length t

Atomic propositions

Define Ai = {ai|a ∈ A} for all i ∈ {0, . . . , t}.
ai expresses the value of a ∈ A at time i.

Plans of length t in the propositional logic

Plans of length t correspond to satisfying valuations of

Φt = ι0 ∧R1(A0, A1) ∧R1(A1, A2) ∧ · · · ∧ R1(At−1, At) ∧Gt

where ι0 =
∧
{a0|a ∈ A, I(a) = 1} ∪ {¬a0|a ∈ A, I(a) = 0}

and Gt is G with propositional variables a replaced by at.
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Planning as satisfiability
Example

Example
Consider

I |= a ∧ b
G = ¬a ∧ b
o1 = 〈a, {¬a, b}〉
o2 = 〈b, {a,¬b}〉.

Formula for plans of length 3 is

(a0 ∧ b0)∧
((a0 ∧ ¬a1 ∧ b1) ∨ (b0 ∧ a1 ∧ ¬b1))∧
((a1 ∧ ¬a2 ∧ b2) ∨ (b1 ∧ a2 ∧ ¬b2))∧
((a2 ∧ ¬a3 ∧ b3) ∨ (b2 ∧ a3 ∧ ¬b3))∧
(¬a3 ∧ b3).

This formula is satisfiable because the valuation v such that
v |= a0 ∧ b0 ∧ ¬a1 ∧ b1 ∧ a2 ∧ ¬b2 ∧ ¬a3 ∧ b3 satisfies it.
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Parallel plans

Efficiency of satisfiability testing is strongly dependent
on the horizon length because known algorithms have
worst-case exponential runtime in the formula size, and
formula size is linearly proportional to horizon length.
Formula sizes can be reduced by allowing several
events/actions in parallel.
On many problems this leads to big speed-ups.
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Interpretation of parallelism

Example

〈a, {¬b}〉 and 〈b, {¬a}〉 have non-contradictory effects and
preconditions.
However, neither action sequence

1 〈b, {¬a}〉, 〈a, {¬b}〉 nor
2 〈a, {¬b}〉, 〈b, {¬a}〉

is executable.

Standard interpretation of parallelism
Actions are executable in every order.
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Interference
Example

Actions do not interfere

A B C D
A
B C

D

Actions can be taken simultaneously.

Actions interfere

A B C D
If A is moved first, B won’t be clear and cannot be moved.
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Interference

Interference
o and o′ interfere if

1 o may make the precondition of o′ false, or
2 o may change the actual effects of o′,

or the other way round.

Example

〈c, {d}〉 and 〈¬d, {f}〉 interfere.
〈c, {d}〉 and 〈d, {f}〉 do not interfere.

Important property of interference
Any set of non-interfering actions that are simultaneously
applicable in a state s can be executed in any order, leading
to the same state in all cases.
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Parallel actions
Representation in the propositional logic

Formulas EPC+
e (a) and EPC−e (a) indicate when e makes a

true and false, respectively:

e(a) EPC+
e (a) EPC−e (a)

- ⊥ ⊥
a := 0 ⊥ >
a := 1 > ⊥
IF φ THEN a := 1 φ ⊥
IF φ THEN a := 0 ⊥ φ

IF φ1 THEN a := 1;
IF φ0 THEN a := 0 φ1 φ0

Our earlier definition for effects can be now rephrased as

fe(a) = EPC+
e (a) ∨ (a ∧ ¬EPC−e (a))↔ a′.

We define EPC+
o (a) and EPC−o (a) as EPC+

e (a) and
EPC−e (a) when e is the effects of action o.
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Parallel actions
Representation in the propositional logic

Let R2(A,A′, O) be the conjunction of

(o→prec(o))∧∧
a∈A(o ∧ EPC+

o (a)→a′)∧∧
a∈A(o ∧ EPC−o (a)→¬a′)

for all o ∈ O with effect e and the explanatory frame axioms
(a ∧ ¬a′)→((o1 ∧ EPC−o1

(a)) ∨ · · · ∨ (on ∧ EPC−on
(a)))

(¬a ∧ a′)→((o1 ∧ EPC+
o1

(a)) ∨ · · · ∨ (on ∧ EPC+
on

(a)))
for all a ∈ A where O = {o1, . . . , on}, and∧

o1,o2∈O interfere
¬(o1 ∧ o2).
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Plans with parallel actions

Parallel plans of length n in the propositional logic

Parallel plans of length n correspond to satisfying valuations
of

I0 ∧R2(A0, A1, O0) ∧ · · · ∧ R2(An−1, An, On−1) ∧Gn

where ι0 =
∧
{a0|a ∈ A, I(a) = 1} ∪ {¬a0|a ∈ A, I(a) = 0}

and Gn is G with propositional variables a replaced by an.
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Planning as satisfiability
Example

A
B
C

D
E

A
B
C
D
E

initial state goal state

Problem solved almost without search:
Formulas for lengths 1 to 4 shown unsatisfiable without
any search.
Formula for plan length 5 is satisfiable: 3 nodes in the
search tree.
Plans have 5 to 7 actions, optimal plan has 5.
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Planning as satisfiability
Example

0 1 2 3 4 5
clear(a) F F
clear(b) F F
clear(c) T T F F
clear(d) F T T F F F
clear(e) T T F F F F
on(a,b) F F F T
on(a,c) F F F F F F
on(a,d) F F F F F F
on(a,e) F F F F F F
on(b,a) T T F F
on(b,c) F F T T
on(b,d) F F F F F F
on(b,e) F F F F F F
on(c,a) F F F F F F
on(c,b) T F F F
on(c,d) F F F T T T
on(c,e) F F F F F F
on(d,a) F F F F F F
on(d,b) F F F F F F
on(d,c) F F F F F F
on(d,e) F F T T T T
on(e,a) F F F F F F
on(e,b) F F F F F F
on(e,c) F F F F F F
on(e,d) T F F F F F

ontable(a) T T T F
ontable(b) F F F F
ontable(c) F F F F
ontable(d) T T F F F F
ontable(e) F T T T T T

0 1 2 3 4 5
F F F T T
F F T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F F F
F F F F F
T T F F F F
F T T T T T

0 1 2 3 4 5
F F F T T T
F F T T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F T F F
F F T F F F
T T F F F F
F T T T T T

1 State variable values
inferred from initial values
and goals.

2 Branch: ¬clear(b)1.
3 Branch: clear(a)3.
4 Plan found:

0 1 2 3 4
fromtable(a,b)FFFFT
fromtable(b,c)FFFTF
fromtable(c,d)FFTFF
fromtable(d,e)FTFFF

totable(b,a)FFTFF
totable(c,b)FTFFF
totable(e,d)TFFFF
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Planning as satisfiability
Example

0 1 2 3 4 5
clear(a) F F
clear(b) F F
clear(c) T T F F
clear(d) F T T F F F
clear(e) T T F F F F
on(a,b) F F F T
on(a,c) F F F F F F
on(a,d) F F F F F F
on(a,e) F F F F F F
on(b,a) T T F F
on(b,c) F F T T
on(b,d) F F F F F F
on(b,e) F F F F F F
on(c,a) F F F F F F
on(c,b) T F F F
on(c,d) F F F T T T
on(c,e) F F F F F F
on(d,a) F F F F F F
on(d,b) F F F F F F
on(d,c) F F F F F F
on(d,e) F F T T T T
on(e,a) F F F F F F
on(e,b) F F F F F F
on(e,c) F F F F F F
on(e,d) T F F F F F

ontable(a) T T T F
ontable(b) F F F F
ontable(c) F F F F
ontable(d) T T F F F F
ontable(e) F T T T T T

0 1 2 3 4 5
F F F T T
F F T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F F F
F F F F F
T T F F F F
F T T T T T

0 1 2 3 4 5
F F F T T T
F F T T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F T F F
F F T F F F
T T F F F F
F T T T T T

1 State variable values
inferred from initial values
and goals.

2 Branch: ¬clear(b)1.
3 Branch: clear(a)3.
4 Plan found:

0 1 2 3 4
fromtable(a,b)FFFFT
fromtable(b,c)FFFTF
fromtable(c,d)FFTFF
fromtable(d,e)FTFFF

totable(b,a)FFTFF
totable(c,b)FTFFF
totable(e,d)TFFFF
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Planning as satisfiability
Example

0 1 2 3 4 5
clear(a) F F
clear(b) F F
clear(c) T T F F
clear(d) F T T F F F
clear(e) T T F F F F
on(a,b) F F F T
on(a,c) F F F F F F
on(a,d) F F F F F F
on(a,e) F F F F F F
on(b,a) T T F F
on(b,c) F F T T
on(b,d) F F F F F F
on(b,e) F F F F F F
on(c,a) F F F F F F
on(c,b) T F F F
on(c,d) F F F T T T
on(c,e) F F F F F F
on(d,a) F F F F F F
on(d,b) F F F F F F
on(d,c) F F F F F F
on(d,e) F F T T T T
on(e,a) F F F F F F
on(e,b) F F F F F F
on(e,c) F F F F F F
on(e,d) T F F F F F

ontable(a) T T T F
ontable(b) F F F F
ontable(c) F F F F
ontable(d) T T F F F F
ontable(e) F T T T T T

0 1 2 3 4 5
F F F T T
F F T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F F F
F F F F F
T T F F F F
F T T T T T

0 1 2 3 4 5
F F F T T T
F F T T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F T F F
F F T F F F
T T F F F F
F T T T T T

1 State variable values
inferred from initial values
and goals.

2 Branch: ¬clear(b)1.
3 Branch: clear(a)3.
4 Plan found:

0 1 2 3 4
fromtable(a,b)FFFFT
fromtable(b,c)FFFTF
fromtable(c,d)FFTFF
fromtable(d,e)FTFFF

totable(b,a)FFTFF
totable(c,b)FTFFF
totable(e,d)TFFFF
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Planning as satisfiability
Example

0 1 2 3 4 5
clear(a) F F
clear(b) F F
clear(c) T T F F
clear(d) F T T F F F
clear(e) T T F F F F
on(a,b) F F F T
on(a,c) F F F F F F
on(a,d) F F F F F F
on(a,e) F F F F F F
on(b,a) T T F F
on(b,c) F F T T
on(b,d) F F F F F F
on(b,e) F F F F F F
on(c,a) F F F F F F
on(c,b) T F F F
on(c,d) F F F T T T
on(c,e) F F F F F F
on(d,a) F F F F F F
on(d,b) F F F F F F
on(d,c) F F F F F F
on(d,e) F F T T T T
on(e,a) F F F F F F
on(e,b) F F F F F F
on(e,c) F F F F F F
on(e,d) T F F F F F

ontable(a) T T T F
ontable(b) F F F F
ontable(c) F F F F
ontable(d) T T F F F F
ontable(e) F T T T T T

0 1 2 3 4 5
F F F T T
F F T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F F F
F F F F F
T T F F F F
F T T T T T

0 1 2 3 4 5
F F F T T T
F F T T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F T F F
F F T F F F
T T F F F F
F T T T T T

1 State variable values
inferred from initial values
and goals.

2 Branch: ¬clear(b)1.
3 Branch: clear(a)3.
4 Plan found:

0 1 2 3 4
fromtable(a,b)FFFFT
fromtable(b,c)FFFTF
fromtable(c,d)FFTFF
fromtable(d,e)FTFFF

totable(b,a)FFTFF
totable(c,b)FTFFF
totable(e,d)TFFFF
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Planning as satisfiability
The plan extracted from the satisfying valuation

0 1 2 3 4 5

A
B
C

D
E

A
B
C

D E A
B

C E
D

A B E
D
C

A E
D
C
B

E
D
C
B
A

Plan with the smallest number of actions:
0 1 2 3 4 5

A
B
C

D
E

A
B
C

D E A
B
C

E
D

A
B

E
D
C

A E
D
C
B

E
D
C
B
A
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Sets of states as formulas

Formulas over A represent sets of states
A formula φ over A can be viewed as representing all states
(valuations of A) that satisfy φ.

Example

a ∨ b over A = {a, b, c} represents the set

{
a
0

b
1

c
0, 011, 100, 101, 110, 111}.
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Relations as formulas

Formulas over A ∪A′ represent binary relations

a ∧ a′ ∧ (b↔ b′) over A ∪A′ where A = {a, b}, A′ = {a′, b′}

represents the binary relation {(
a
1

b
0,

a′

1
b′

0), (11, 11)}.

Valuations
a
1

b
0

a′

1
b′

0 and 1111 of A ∪A′ can be viewed

respectively as pairs of valuations (
a
1

b
0,

a′

1
b′

0) and (11, 11) of A.
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Actions as relations
Example

State variables are A = {a, b, c}.

The formula

a∧¬a′∧ (b↔ b′)∧ ((¬b∨ c)↔ c′)

corresponds to the binary
relation on the right.

000

001
010

a
0

b
1

c
1

100

101
110

111
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Relation operations
Join

Join corresponds to Conjunction
Let φ1 and φ2 represent two relations.
Then φ1 ∧ φ2 represents their join.

Example

b0 ∧ a1 ∧ b1 a1 ∧ (a2 ∨ b2)

01 11
11 11

×

10 10
10 01
10 11
11 10
11 01
11 11

=

01 11 10
01 11 01
01 11 11
11 11 10
11 11 01
11 11 11

which is (b0 ∧ a1 ∧ b1) ∧ (a1 ∧ (a2 ∨ b2)).
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Relation operations
Union

Union corresponds to Disjunction
Let φ1 and φ2 represent two relations.
Then φ1 ∨ φ2 represents their union.

Example
Union of the two relations represented by the formulas
a0 ∧ b0 ∧ (a1 ∨ b1) (a0 ∨ ¬b0) ∧ ¬a1 ∧ ¬b1

11 01
11 10
11 11

∪
01 00
10 00
11 00

=

01 00
10 00
11 00
11 10
11 01
11 11

corresponds to the formula
(a0 ∧ b0) ∨ ((a0 ∨ b0) ∧ (¬a1 ∧ ¬b1)).
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Relation operations
Projection

Relational projection corresponds to the Abstraction
operation

Let φ, on variables A, represent a relation. Let A′ ⊆ A
represent some columns in the relation.
The projection of the relation to A′ is represented by

∃R.φ

where R = A\A′. Here ∃R is the existential abstraction
operation which will be defined on the next slides.
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Existential and universal abstraction

Definition
Existential abstraction of a formula φ with respect to a ∈ A:

∃a.φ = φ[>/a] ∨ φ[⊥/a].

Universal abstraction is defined analogously by using
conjunction instead of disjunction.

Definition
Universal abstraction of a formula φ with respect to a ∈ A:

∀a.φ = φ[>/a] ∧ φ[⊥/a].
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∃-abstraction
Examples

Example

∃b.((a→b) ∧ (b→c))
= ((a→>) ∧ (>→c)) ∨ ((a→⊥) ∧ (⊥→c))
≡ c ∨ ¬a
≡ a→c

∃ab.(a ∨ b) = ∃b.(> ∨ b) ∨ (⊥ ∨ b)
= ((> ∨>) ∨ (⊥ ∨>)) ∨ ((> ∨⊥) ∨ (⊥ ∨⊥))
≡ (> ∨>) ∨ (> ∨⊥) ≡ >

Example
∃-abstraction is also known as forgetting:
∃mon∃tue((mon ∨ tue) ∧ (mon→work) ∧ (tue→work))
≡ ∃tue((work ∧ (tue→work)) ∨ (tue ∧ (tue→work))) ≡ work
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∀ and ∃-abstraction in terms of truth-tables
Example

∀c and ∃c correspond to combining pairs of lines with the
same valuation for variables other than c.

Example

∃c.(a ∨ (b ∧ c)) ≡ a ∨ b ∀c.(a ∨ (b ∧ c)) ≡ a

a b c a ∨ (b ∧ c)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

a b ∃c.(a ∨ (b ∧ c))
0 0 0

0 1 1

1 0 1

1 1 1

a b ∀c.(a ∨ (b ∧ c))
0 0 0

0 1 0

1 0 1

1 1 1
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Applications of ∃

The relational operations are important for

computing immediate predecessors of a set of states,
computing immediate successors of a set of states,
all states that are reachable from a set of states.
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Symbolic reachability computation

∃A1.(∃A0.(

ι0 ∧R1(A0, A1) ∧ · · · ∧ R1(At−1, At) ∧Gt

R1

ι
⋃

o∈O imgo(ι)
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Symbolic reachability computation

∃A1.(∃A0.(ι0 ∧

R1(A0, A1)

binary relation R1

R1

ι
⋃

o∈O imgo(ι)
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Symbolic reachability computation

∃A1.(∃A0.(

ι0 ∧R1(A0, A1)

relational join of ι and R1

R1

ι
⋃

o∈O imgo(ι)
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Symbolic reachability computation

∃A1.(

∃A0.(ι0 ∧R1(A0, A1))

projection to time 1:
⋃

o∈O imgo(ι)
This is the set of states that are reach-
able from ι by one step with o.
imgo(ι) = {s′|sos′, ι |= s}

ι
⋃

o∈O imgo(ι)
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Symbolic reachability computation

∃A1.(∃A0.(ι0 ∧R1(A0, A1)) ∧R1(A1, A2))

States that are reachable by two steps:⋃
o∈O imgo(

⋃
o∈O imgo(ι))

ι
⋃

o∈O imgo(ι)
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Symbolic reachability computation

∃A1.(∃A0.(ι0 ∧R1(A0, A1)) ∧R1(A1, A2)) ∧G2

Goal states that are reachable by two steps:
(
⋃

o∈O imgo(
⋃

o∈O imgo(ι))) ∩G

Formula for plans of length 2:
ι0 ∧R1(A0, A1) ∧R1(A1, A2) ∧G2

ι
⋃

o∈O imgo(ι)
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Images by ∃-abstraction

Let
A = {a1, . . . , an},
A′ = {a′1, . . . , a′n},
φ be a formula over A that represents a set T of states,
and
τA(o) the formula over A ∪A′ that represents the action
o (a binary relation on states).

The image {s′ ∈ S|s ∈ T, sos′} of T with respect to o is
represented by

∃A.(φ ∧ F (o))

which is a formula over A′.
To obtain a formula over A we rename the variables.

imgo(φ) = (∃A.(φ ∧ F (o)))[A/A′]
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Images and preimages by formula manipulation

Definition
Let o be an action and φ a formula. Define

imgo(φ) = (∃A.(φ ∧ F (o)))[A/A′]
preimgo(φ) = ∃A′.(F (o) ∧ φ[A′/A])
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Forward distances with formulae

Dfwd
4Dfwd

3Dfwd
2Dfwd

1Dfwd
0 ∞

Forward distances with formulae

Dfwd
0 = I

Dfwd
i = Dfwd

i−1 ∨
∨

o∈O imgo(Dfwd
i−1) for all i ≥ 1
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Constructing a plan given the distances

Let n be the minimum number such that Dfwd
n ∧G is

satisfiable. This means that the shortest plan has length n.
An action sequence from an initial state to G can be
extracted as follows (starting from its last action.)

1 Set G := G ∧Dfwd
n .

2 Choose any action e such that preimge(G) ∧Dfwd
n−1 is

satisfiable.
3 Set G := preimge(G) ∧Dfwd

n−1 and n := n− 1.
4 If n > 0 go to 2.
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SAT vs. symbolic reachability

The formula in the SAT case is

Φt = ι0 ∧R1(A0, A1) ∧R1(A1, A2) ∧ · · · ∧ R1(At−1, At) ∧Gt.

In the symbolic reachability computation, generate

ι0

ι0 ∧R1(A0, A1)
ι0 ∧R1(A0, A1) ∧R1(A1, A2)
...
ι0 ∧R1(A0, A1) ∧R1(A1, A2) ∧ · · · ∧ R1(At−1, At)

and from each formula abstract away all but the last time
point, and then intersect the resulting set with G to test if
goals can be reached.
These are from the logical point of view exactly the same
thing.
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Planning by state-space search

There are many alternative ways of doing planning by
state-space search.

1 different ways of expressing planning as a search
problem:

1 search direction: forward, backward
2 representation of search space: states, sets of states

2 different search algorithms:
1 depth-first, breadth-first, bidirectional, ...
2 heuristic search (systematic: A∗, IDA∗, best first, ...;

local: hill-climbing, simulated annealing, ...), ...
3 different ways of controlling search:

1 different heuristics for heuristic search algorithms
2 pruning techniques: invariants, symmetry elimination,...
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Planning by forward search
with depth-first search

G

I



Introduction

Transition
systems

Planning with
SAT

Symbolic
Methods

State-space
search
Progression

Regression

Search

Heuristics

Planning by forward search
with depth-first search

G

I



Introduction

Transition
systems

Planning with
SAT

Symbolic
Methods

State-space
search
Progression

Regression

Search

Heuristics

Planning by forward search
with depth-first search

G

I



Introduction

Transition
systems

Planning with
SAT

Symbolic
Methods

State-space
search
Progression

Regression

Search

Heuristics

Planning by forward search
with depth-first search

G

I



Introduction

Transition
systems

Planning with
SAT

Symbolic
Methods

State-space
search
Progression

Regression

Search

Heuristics

Planning by forward search
with depth-first search

G

I



Introduction

Transition
systems

Planning with
SAT

Symbolic
Methods

State-space
search
Progression

Regression

Search

Heuristics

Planning by forward search
with depth-first search

G

I



Introduction

Transition
systems

Planning with
SAT

Symbolic
Methods

State-space
search
Progression

Regression

Search

Heuristics

Planning by forward search
with depth-first search

G

I



Introduction

Transition
systems

Planning with
SAT

Symbolic
Methods

State-space
search
Progression

Regression

Search

Heuristics

Planning by forward search
with depth-first search

G

I



Introduction

Transition
systems

Planning with
SAT

Symbolic
Methods

State-space
search
Progression

Regression

Search

Heuristics

Planning by forward search
with depth-first search

G

I



Introduction

Transition
systems

Planning with
SAT

Symbolic
Methods

State-space
search
Progression

Regression

Search

Heuristics

Planning by forward search
with depth-first search

G

I



Introduction

Transition
systems

Planning with
SAT

Symbolic
Methods

State-space
search
Progression

Regression

Search

Heuristics

Planning by backward search
with depth-first search, for state sets

G

I

GG1G1 = regr−→(G) G2

G2 = regr−→(G1)
G3

G3 = regr−→(G2), I |= G3
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Planning by backward search
with depth-first search, for state sets

G

I

G

G1G1 = regr−→(G) G2

G2 = regr−→(G1)
G3

G3 = regr−→(G2), I |= G3
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Planning by backward search
with depth-first search, for state sets

G

I

GG1G1 = regr−→(G)

G2

G2 = regr−→(G1)
G3

G3 = regr−→(G2), I |= G3
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Planning by backward search
with depth-first search, for state sets

G

I

GG1G1 = regr−→(G) G2

G2 = regr−→(G1)

G3

G3 = regr−→(G2), I |= G3



Introduction

Transition
systems

Planning with
SAT

Symbolic
Methods

State-space
search
Progression

Regression

Search

Heuristics

Planning by backward search
with depth-first search, for state sets

G

I

GG1G1 = regr−→(G) G2

G2 = regr−→(G1)
G3

G3 = regr−→(G2), I |= G3
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Progression

Progression = computation of successor state(s).
Used in forward search: from the initial state toward the
goal states.

+ Very easy and efficient to implement.
- Search with only one state at a time.

Progression

For a given state s and action o with effects e, the successor
state execo(s) is obtained by changing the literals in [e]s true
in s.
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Regression

Regression = computation of predecessors of states
+ Advantage over progression: a formula represents a

set of states.
- More difficult to implement efficiently.

Regression
1 Start from φ which is initially set to G.
2 Repeat the following.

1 First step: Choose an action o.
2 Second step: Form a new goal φ := preimgo(φ).
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Regression for STRIPS actions
Example

o3

o3 = 〈{�onT,�clr,�clr}, {¬�clr,¬�onT,�on�}〉

G = {�on�,�on�}

G1 = regrstro3
(G) = {�on�,�onT,�clr,�clr}
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Regression for STRIPS actions
Example

o3

o3 = 〈{�onT,�clr,�clr}, {¬�clr,¬�onT,�on�}〉

G = {�on�,�on�}

G1 = regrstro3
(G) = {�on�,�onT,�clr,�clr}
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Regression for STRIPS actions
Example

o3

o3 = 〈{�onT,�clr,�clr}, {¬�clr,¬�onT,�on�}〉

G = {�on�,�on�}

G1 = regrstro3
(G) = {�on�,�onT,�clr,�clr}
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Regression for STRIPS actions
Example

o3

o3 = 〈{�onT,�clr,�clr}, {¬�clr,¬�onT,�on�}〉

G = {�on�,�on�}
G1 = regrstro3

(G) = {�on�,�onT,�clr,�clr}
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Planning by heuristic search
Forward search

G
I

distance estimatedistance estimate

distance estimate

distance estim
ate



Introduction

Transition
systems

Planning with
SAT

Symbolic
Methods

State-space
search
Progression

Regression

Search

Heuristics

Planning by heuristic search
Backward search

I
G

distance estim
ate

distance estimate

distance estimatedistance estimate
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Search algorithms: A∗
Example

G
I

0+3 3

1+3

1+2

2+2

2+5 5

2+6 6

2+7

7

3+5

5

3+1

4+8
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Search algorithms: A∗
Example

G
I
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Search algorithms: A∗
Example
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Search algorithms: A∗
Example
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Search algorithms: A∗
Example

G
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Search algorithms: A∗
Example

G
I
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Distances
Illustration

Dfwd
3Dfwd

2Dfwd
1Dfwd

0

∞

s

Forward distance of state s is 3 because s ∈ Dfwd
3 \Dfwd

2 .

s′

As Dfwd
i = Dfwd

3 for all i > 3, forward distance of state s′ is∞.
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Distances
of formulas

Dfwd
4Dfwd

3Dfwd
2Dfwd

1Dfwd
0

G∞

δfwd
I (G) = 3 since s |= G for some s ∈ Dfwd

3 and for no s ∈ Dfwd
2 .
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Distance estimation

Computation of exact distances is as hard as planning
itself: only their approximations are useful as heuristics.
We discuss a distance heuristic for controlling heuristic
search algorithms like A∗, IDA∗.
The distance estimates are a lower bound for forward
distances: since they don’t overestimate they are
admissible as a heuristic.
They can be used with A∗ and IDA∗ to find optimal
plans.
Basic insight: estimate distances one state variable at a
time.
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Distance estimation
Tractor example

1 Tractor moves:
from 1 to 2: T12 = 〈T1, {T2,¬T1}〉
from 2 to 1: T21 = 〈T2, {T1,¬T2}〉
from 2 to 3: T23 = 〈T2, {T3,¬T2}〉
from 3 to 2: T32 = 〈T3, {T2,¬T3}〉

2 Tractor pushes A:
from 2 to 1: A21 = 〈T2 ∧A2, {T1, A1,¬T2,¬A2}〉
from 3 to 2: A32 = 〈T3 ∧A3, {T2, A2,¬T3,¬A3}〉

3 Tractor pushes B:
from 2 to 1: B21 = 〈T2 ∧B2, {T1, B1,¬T2,¬B2}〉
from 3 to 2: B32 = 〈T3 ∧B3, {T2, B2,¬T3,¬B3}〉
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Distance estimation
Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Execute T12 = 〈T1, {T2,¬T1}〉
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Distance estimation
Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Execute T23 = 〈T2, {T3,¬T2}〉
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Distance estimation
Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Execute A32 = 〈T3 ∧A3, {T2, A2,¬T3,¬A3}〉
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Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Execute B32 = 〈T3 ∧B3, {T2, B2,¬T3,¬B3}〉
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Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Execute A21 = 〈T2 ∧A2, {T1, A1,¬T2,¬A2}〉
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Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Execute B21 = 〈T2 ∧B2, {T1, B1,¬T2,¬B2}〉
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Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Distance of A1, B1 is 4.
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Abstraction Heuristics

Key observation
Eliminating any state variable can only reduce the length of
the shortest plan.

Any abstraction, with some variables eliminated, yields
a smaller state space.
Distances in the abstract state space are lower bounds
for the distances in the state space itself.
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Abstraction Heuristics

The tractor example, abstracted to {A1, A2, A3, B1, B2, B3}
(eliminating the tractor) yields actions

1 Tractor moves:
from 1 to 2: T12 = 〈>, {}〉
from 2 to 1: T21 = 〈>, {}〉
from 2 to 3: T23 = 〈>, {}〉
from 3 to 2: T32 = 〈>, {}〉

2 Tractor pushes A:
from 2 to 1: A21 = 〈A2, {A1,¬A2}〉
from 3 to 2: A32 = 〈A3, {A2,¬A3}〉

3 Tractor pushes B:
from 2 to 1: B21 = 〈B2, {B1,¬B2}〉
from 3 to 2: B32 = 〈B3, {B2,¬B3}〉

The abstract state space has 9 states (as opposed to 27).
Reaching A1, B1 from the abstract initial state A3, B3 takes
4 abstract actions.
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Abstraction Heuristics
Aggregation of several abstractions

In practice it is only possible to use abstractions that retain
only very few state variables. These typically yield very
weak lower bounds.
Useful strategy: aggregate several abstractions.

1 Maximum of lower bounds from different abstractions
2 Sum of lower bounds from different abstractions,

provided that no action gets counted twice.
3 More sophisticated aggregation methods exist.

Central problem: Which abstractions to aggregate?
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