
Logic, Automata, and Games

Sophie Pinchinat

IRISA, university of Rennes 1, France

Logic Summer School 2009

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 1 / 98

1 Logics of Programs
Introductory Example
Kripke Structures
Behavioral Properties

2 The Mu-calculus
The Mu-calculus
Fundamental Questions

3 Automata on Infinite Objects
Generalities
Non-deterministic Parity Tree Automata

4 Games
Generalities
Parity Games
Memoryless Determinacy of Parity Games
Solving Parity Games

5 Membership and Emptiness Problems for NDPT Automata
Alternating Tree Automata
Decision Problems
Mu-calculus and Alternating Parity Tree Automata

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 2 / 98

Logics of Programs Introductory Example

Model-Checking

The Model-checking Problem: A system Sys and a specification
Spec , decide whether Sys satisfies Spec .

Example: Mutual exclusion protocol

Process 1: repeat

00: non-critical section 1

01: wait unless turn = 0

10: critical section 1

11: turn := 1

Process 2: repeat

00: non-critical section 2

01: wait unless turn = 1

10: critical section 2

11: turn := 0
A state is a bit vector

(line no. of process 1,line no. of process 2, value of turn)

Start from (00000).

Spec = “a state (1010b) is never reached”, and “always when a
state (01bcd) is reached, then later a state (10b’c’d’) is reached”
(and similarly for Process 2, i.e. states (bc01d) and (b’c’10d’))

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 3 / 98

Logics of Programs Introductory Example

The Formal Approach

Models of systems are Kripke Structures

Specifications languages are Temporal Logics

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 4 / 98

Logics of Programs Kripke Structures

Kripke Structures

Assume given Prop = p1, . . . , pn a set of atomic propositions (properties).

A Kripke Structure over Prop is S = (S ,R , λ)
◮ S is a set of states (worlds)
◮ R ⊆ S × S is a transition relation
◮ λ : S → 2Prop associates those pi which are assumed true in s. Write
λ(s) as a bit vector (b1, . . . , bn) with bi = 1 iff pi ∈ λ(s)

A rooted Kripke Structure is a pair (S, s) where s is a distinguished
state, called the initial state.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 5 / 98

Logics of Programs Kripke Structures

Mutual Exclusion Protocol

Use p1, p2 for “being in wait instruction before critical section of
Process 1, or Process 2 respectively”

Use p3, p4 for “being in critical section of Process 1, or Process 2
respectively”

Example of label function λ(01101) = {p1, p4} (encoded by (1001))

The relation R is as defined by the transitions of the protocol.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 6 / 98

Logics of Programs Kripke Structures

A Toy System

Over two propositions p1, p2

(
1
1

)

(
1
0

)

(
0
1

)

(
0
0

)

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 7 / 98

Logics of Programs Kripke Structures

Paths and Words

Let S = (S ,R , λ) be Kripke Structure over Prop

A path through (S, s) is a sequence s0, s1, s2, . . . where s0 = s and
(si , si+1) ∈ R for i ≥ 0

Its corresponding word (∈ (Bl n)ω) is λ(s0), λ(s1), λ(s2),

α =

(
1
1

)(
1
0

)(
0
1

)(
1
0

)(
0
0

)(
0
0

)

. . . in
(

1
1

)

(
1
0

)

(
0
1

)

(
0
0

)

If α = α(0)α(1) . . . ∈ (Bl n)ω,
1 αi stands for α(i)α(i + 1) . . . So α = α0.
2 (α(i))j is the jth component of α(i)

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 8 / 98

Logics of Programs Behavioral Properties

Linear Time Logic for Properties of Words

[Eme90] We use modalities

G denotes “Always”
F denotes “Eventually”
X denotes “Next”
U denotes “Until”

The syntax of the logic LTL is:

ϕ1, ϕ2(∋ LTL) ::= p |ϕ1 ∨ ϕ2 | ¬ϕ1 |Xϕ1 |ϕ1 Uϕ2

wher p ∈ Prop. Other Boolean connectives true, false, ϕ1 ∧ ϕ2,
ϕ1 ⇒ ϕ2, and ϕ1 ⇔ ϕ2 are defined via the usual abbreviations.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 9 / 98

Logics of Programs Behavioral Properties

Semantics of LTL

Define αi |= ϕ by induction over ϕ (where α is a word):

αi |= pj iff (α(i))j = 1

αi |= ϕ1 ∨ ϕ2 iff ...

αi |= ¬ϕ1 iff

αi |= Xϕ1 iff αi+1 |= ϕ1

αi |= ϕ1 Uϕ2 iff for some j ≥ i , αj |= ϕ2, and
for all k = i , . . . , j − 1, αk |= ϕ1

Let

Fϕ
def
= trueUϕ, hence αi |= Fϕ iff αj |= ϕ for some j ≥ i .

Gϕ
def
= ¬F¬ϕ, hence αi |= Gϕ1 iff αj |= ϕ1 for every j ≥ i .

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 10 / 98

Logics of Programs Behavioral Properties

Examples

Formulas over p1 and p2:

1 α |= GFp1 iff “in α, infinitely often 1 appears in the first component”.

2 α |= XX (p2 ⇒ Fp1) iff “if the second component of α(2) is 1, so
will be the first component of α(j) for some j ≥ 2”.

3 α |= F(p1 ∧ X (¬p2 U p1)) iff “α has two letters
(

1
⋆

)

such that in

between only letters
(
⋆
0

)

occur”.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 11 / 98

Logics of Programs Behavioral Properties

Augmenting LTL: the logic CTL∗

We want to specify that every word of (S, s) satisfies an LTL specification
ϕ, or that there exists a word in the Kripke Structure such that something
holds. We use CTL∗ [EH83] which extends LTL with quantfications over
words:

ψ1, ψ2(∋ CTL∗) ::= Eψ | p |ψ1 ∨ ψ2 | ¬ψ1 |Xψ1 |ψ1 Uψ2

Semantics: for a word α, a position i , and a rooted Kripke Structure (S, s):

αi |= Eψ iff α′i |= ψ for some α′ in (S, s) st. α[0, . . . , i] = α′[0, . . . , i]

Let Aψ
def
= ¬E¬ψ

CTL∗ is more expressive than LTL: A [Glife ⇒ GEX death]

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 12 / 98

Logics of Programs Behavioral Properties

Interpretation over Trees
We unravel S = (S ,R , λ) from s as a tree t(S,s).
Paths of S are retrieved in the tree t(S,s) as branches.

s0

s0s1

s0s1s1
s0s1s2

s0s1s1s1

s0s1s2

s0s1s1s2

s0s2
s0 s1

s2

t(S,s0) S

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 13 / 98

Logics of Programs Behavioral Properties

Σ-Labeled Full Binary Trees

For simplicity we assume that states have exactly two successors ⇒ we
consider (only) binary trees

The full binary tree Tω is the set {0, 1}∗ of finite words over a two
element alphabet.

The root is the empty word ǫ

A node w ∈ {0, 1}∗ has left son w0 and right son w1.

A Σ-labeled full binary tree is a function t : {0, 1}∗ → Σ

Trees(Σ) is the set of Σ-labeled full binary trees.

If the formulas are over the set Prop of propositions, then take Σ = 2Prop

(or equivalently Bl n)

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 14 / 98

Logics of Programs Behavioral Properties

Example

ǫ

0 1

00 01 10 11

Tω

a

a b

a b a b

t

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 15 / 98

The Mu-calculus

The Mu-calculus

Fundamental importance for several reasons, all related to its
expressiveness:

Uniform logical framework with great raw expressive power. It
subsumes most modal and temporal logic of programs (e.g. LTL,
CTL, CTL∗).

the Mu-calculus over binary trees coincide in expressive power with
alternating tree automata.

the semantic of the Mu-calculus is anchored in the Tarski-Knaster
theorem, giving a means to do iteration-basmodel-checking in an
efficient manner.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 16 / 98

The Mu-calculus

Smooth Introduction

Consider the CTL formula EFp: note that

EFp ≡ p ∨ EXEFp

so that EFp is a fix-point.

In fact it is the least fix-point, e.g. the least such that Z ≡ Z ∨ EFZ .

Not all modalities of e.g. CTL are needed as a “basis”

BYO modalities with fix-point definitions

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 17 / 98

The Mu-calculus

About Fix-points

A lattice (L,≤) consists of a set L and a partial order ≤ such that any pair
of elements has a greatest lower bound, the meet ⊓, and a least upper
bound, the join ⊔, with the following properties:

(associative law) (x ⊔ y) ⊔ z = x ⊔ (y ⊔ z)
(commutative law) x ⊔ y = y ⊔ x
(idempotency law) x ⊔ x = x
(absorption law) x ⊔ (x ⊓ y) = x

And similarly for ⊓.

For example, given a set S , the powerset of S , (P(S),⊆), is a lattice.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 18 / 98

The Mu-calculus

Monotonic Functions

f : L → L is monotonic (order preserving) if

∀x , y ∈ L, x ≤ y ⇒ f (x) ≤ f (y)

x is a fix-point of f if f (x) = x

Define f 0 is the identity function, and f n+1 = f n ◦ f .

Note: f monotonic ⇒ f n is monotonic. The identity function is
monotonic and composing two monotonic functions gives a
monotonic function.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 19 / 98

The Mu-calculus

Tarski-Knaster Fix-point Theorem

A lattice (L ≤, ,⊔,⊓) is complete if for all A ⊆ L, ⊔A and ⊓A are defined;
then there exist a minimum element ⊥= ⊓L and a maximum element
⊤ = ⊔L.
This is the case for (P(S),⊆): given a set A ⊆ P(S) of subsets,
⊔A =

⋃

S ′∈A S ′ and ⊓A =
⋂

S ′∈A S ′.

Theorem

[Tar55] Let f be a montonic function on (L,≤,⊔,⊓) a complete lattice.
Let A = {y | f (y) ≤ y}, and let x = ⊓A is the least fix-point of f .

(1) f (x) ≤ x : ∀y ∈ A, x ≤ y , therefore f (x) ≤ f (y) ≤ y . So
f (x) ≤ ⊓A = x .
(2) x ≤ f (x): by monotonicity applied to (1), f 2(x) ≤ f (x) so f (x) ∈ A,
and x ≤ f (x).
x is then a fix-point, and because all fix-point belong to A, x is the least.
And similarly for the greatest fix-point (with A = {y | f (y) ≥ y}).

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 20 / 98

The Mu-calculus

Another Characterization of Fix-points

(3) µz .f (z), the least fix-point of f is equal to ⊔i f
i(∅), where i ranges

over all ordinals of cardinality at most the state space L; when L is finite,
µz .f (z) is the union of the following ascending chain ⊥⊆ f (⊥) ⊆ f 2(⊥)...

(4) νz .f (z) = ⊓i f
i (⊤), where i ranges over all ordinals of cardinality at

most the state space L; when L is finite, νz .f (z) is the intersection of the
following descending chain ⊤ ⊇ f (⊤) ⊇ f 2(⊤)...

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 21 / 98

The Mu-calculus The Mu-calculus

Syntax of the Mu-calculus

Alphabet Σ and Propositions Prop = {Pa}a∈Σ

Variables Var = {Z ,Z ′,Y , . . . }

Formulas

β, β′ ∈ Lµ ::= Pa |Z | ¬β |β ∧ β′ | 〈0〉β | 〈1〉β |µZ .β

where Z ∈ Var .

Well-formed formulas: for every formula µZ .β, Z appears only under
the scope of an even number of ¬ symbols in β.

β is a sentence if all variables in β are bounded by a µ operator.

Write β′ ≤ β when β′ is a subformula of β.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 22 / 98

The Mu-calculus The Mu-calculus

Semantics

Assume given a tree t ∈ Trees(Σ) and a valuation val : Var → 2{0,1}∗

of the variables.

For every N ⊆ {0, 1}∗, we write val [N/Z] for val ′ defined as val
except that val ′(Z) = N

Given labeled tree t : {0, 1}∗ → Σ, we define [[β]]tval ⊆ {0, 1}∗ by:

[[Z]]tval = val(Z)
[[Pa]]tval = t−1(a)
[[¬β]]tval = {0, 1}∗ \ [[β]]tval
[[β ∧ β′]]tval = [[β]]tval ∩ [[β′]]tval
[[〈0〉β]]tval = {w ∈ {0, 1}∗ |w0 ∈ [[β]]tval}
[[〈1〉β]]tval = {w ∈ {0, 1}∗ |w1 ∈ [[β]]tval}
[[µZ .β]]tval =

⋂
{S ′ ∈ P({0, 1}∗) | [[β]]t

val [S ′/Z] ⊆ S ′}

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 23 / 98

The Mu-calculus The Mu-calculus

The meaning of µZ .β

µZ .β denotes the least fix-point of

f : 2{0,1}∗ → 2{0,1}∗

f (N) = [[β]]t
val [N/Z]

By the assumption on “positive” occurrences of Z in β, we can show
that f is monotonic (see the literature).
Henceforth, since (2{0,1}∗ , ∅, {0, 1}∗ ,⊆) is a complete lattice, by
[Tar55], the least fix-point (and the greatest fix-point) exists.

Let νZ .β
def
= ¬µZ .¬β[¬Z/Z]. It is a greatest fix-point.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 24 / 98

The Mu-calculus The Mu-calculus

Examples of formulas

We assume we have true and false in the syntax, with
[[true]]tval = {0, 1}∗ and [[false]]tval = ∅.

µZ .Z ≡ false

νZ .Z ≡ true

µZ .P ≡ νZ .P ≡ P

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 25 / 98

The Mu-calculus The Mu-calculus

Examples of formulas (cont.)

Write 〈 〉β for 〈0〉β ∨ 〈1〉β, and []β for 〈0〉β ∧ 〈1〉β.

What is “µZ .Pa ∨ 〈 〉Z” ?

We will see that it is equivalent to EFa, whereas
νZ .Pa ∨ 〈 〉Z ≡ true

µZ .Pa ∨ 〈 〉Z ≡ Pa ∨ 〈 〉(µZ .Pa ∨ 〈 〉Z)
≡ Pa ∨ 〈 〉(Pa ∨ 〈 〉(µZ .Pa ∨ 〈 〉Z))
≡ Pa ∨ 〈 〉(Pa ∨ 〈 〉(Pa ∨ 〈 〉(µZ .Pa ∨ 〈 〉Z)))
≡ ...

A node w ∈ [[µZ .Pa ∨ 〈 〉Z]]t if either it is in [[Pa]]t or it has a child
who is either in [[Pa]]t or who has a child who is in [[Pa]]t or who has
a child who ... The least set of nodes with this property is the set of
nodes having a path eventually hitting a descendant node labeled by
a. Hence the formula EF a

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 26 / 98

The Mu-calculus The Mu-calculus

A aU b ≡ µZ .Pb ∨ Pa ∧ []Z , since

µZ .Pb ∨ Pa ∧ []Z ≡ Pb ∨ Pa ∧ [](Pb ∨ Pa ∧ [](Pb ∨ Pa ∧ [](...)))

whereas νZ .Pb ∨ Pa ∧ []Z ≡ A aW b, the weak modality.

AG a ≡ νY .Pa ∧ []Y , since

νY .Pa ∧ []Y ≡ Pa ∧ [](Pa ∧ [](Pa ∧ [](...)))

whereas µZ .Pa ∧ []Y ≡ false

E
∞
F b ≡ νY .µZ .〈 〉(b ∧ Y ∨ Z)

Intuitively, µ (resp. ν) refers to finite (resp. infinite) prefixes of
computations.

νZ .Pa ∧ [][]Z is not expressible in CTL∗

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 27 / 98

The Mu-calculus The Mu-calculus

We push negation innermost in the formulas
⇒ formulas in positive normal form

Notice that ¬〈d〉β = 〈d〉¬β, for d ∈ {0, 1}.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 28 / 98

The Mu-calculus The Mu-calculus

Alternation Depth

Let β ∈ Lµ be in postive normal form.
We define ad(β), the alternation depth of β inductively by:

ad(Pa) = ad(¬Pa) = ad(Z) = 0

ad(β ∧ β′) = ad(β ∨ β′) = max{ad(β), ad(β′)}

ad(〈d〉β) = ad(β), for d ∈ {0, 1}

ad(µZ .β) = max({1, ad(β)} ∪ {ad(νZ ′.β′) + 1 | νZ ′.β′ ≤ β,Z ∈
free(νZ ′.β′)})

ad(νZ .β) = max({1, ad(β)} ∪ {ad(µZ ′.β′) + 1 |µZ ′.β′ ≤ β,Z ∈
free(µZ ′.β′)})

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 29 / 98

The Mu-calculus The Mu-calculus

Write Lk
µ = {β ∈ Lµ | ad(β) ≤ k}.

The hierarchy L0
µ,L

1
µ,L

2
µ . . . is strict [Bra96, Len96].

ad(AGEF a) =?: AGEF a ≡ νY .(µZ .Pa ∨ 〈 〉Z) ∧ []Y

νY .

0
︷ ︸︸ ︷

(µZ .Pa ∨ 〈 〉Z) ∧[]Y
and Y does not appear free in µZ .Pa ∨ 〈 〉Z

hence ad(νY .(µZ .Pa ∨ 〈 〉Z) ∧ []Y) = 1.

CTL ⊆ L1
µ the alternation free mu-calculus, and this is strict

(recall νZ .Pa ∧ [][]Z is not expressible in CTL)

ad(νY .µZ .(〈 〉Y ∧ Pa ∨ Z)) = 2, then E
∞
F a is in L2

µ.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 30 / 98

The Mu-calculus Fundamental Questions

Model-checking and Satisfiabilty

Write t |= β whenever ǫ ∈ [[β]]tval .

Define L(β)
def
= {t ∈ Trees(Σ) | t |= β}

The Model-checking Problem:
Given regular tree t and a sentence β ∈ Lµ, is it the case that t |= β?

The Satisfiability Problem:
Does there exist a tree t such that t |= β?
Does there exist a regular tree? (The finite model property)

Model-checking = Program Verification
Satisfiability = Program Synthesis

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 31 / 98

The Mu-calculus Fundamental Questions

Next lectures

Tree Automata: devices which recognize models of formulas:

β ∈ Lµ Aβ such that L(Aβ) = {t ∈ Trees(Σ) | t |= β}

The Model-checking Problem The Membership Problem

The Satisfiability Problem The Emptiness Problem

Games provide very powerful tools

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 32 / 98

Automata on Infinite Objects

Automata on Infinite Objects

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 33 / 98

Automata on Infinite Objects Generalities

Automata on Infinite Objects

We refer to [Tho90] and [GTW02, Chap. 1].

Automata on (meaning with inputs as) words, trees, and graphs.

ω-automata are automata on infinite words
◮ Acceptance conditions: Büchi, Muller, Rabin and Streett, Parity
◮ All coincide with ω-regular languages (L =

⋃

i KiR
ω

i)
◮ Connection with Logic LTL: LTL corresponds to star-free ω-regular

languages

Connection with Games

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 34 / 98

Automata on Infinite Objects Generalities

Automata on Infinite Trees

Acceptance conditions: Büchi, Muller, Rabin and Streett, Parity on
each branch of the run of the automaton on its input. We will focuse
on parity acceptance condition.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 35 / 98

Automata on Infinite Objects Non-deterministic Parity Tree Automata

Non-deterministic Parity Tree Automata

A (Σ-labeled full binary) tree t is input to an automaton.

In a current node in the tree, the automaton has to decide which
state to assume in each of the two successor nodes.

A = (Q,Σ, q0, δ, c) where
◮ Q(∋ q0) is a finite set of states (q0 the initial state)
◮ δ ⊆ Q × Σ × Q × Q is the transition relation
◮ c : Q → {0, . . . , k}, k ∈ IN is the coloring function which assigns the

index values (colors) to each states of A

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 36 / 98

Automata on Infinite Objects Non-deterministic Parity Tree Automata

Runs

A run of A = (Q,Σ, q0, δ, c) on an input tree t ∈ Trees(Σ) is a tree
ρ ∈ Trees(Q) satisfying

◮ ρ(ǫ) = q0, and
◮ for every node w ∈ {0, 1}∗ of t (and its sons w0 and w1), we have

(ρ(w0), ρ(w1)) ∈ δ(ρ(w), t(w))

Consider the automaton with states qa (initial) ,⊤, and transitions

δ(qa, a) = {(⊤,⊤)} δ(qa, b) = {(qa, qa)}
δ(⊤, a) = {(⊤,⊤)} δ(⊤, b) = {(⊤,⊤)}

with c(qa) = 1 and c(⊤) = 0.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 37 / 98

Automata on Infinite Objects Non-deterministic Parity Tree Automata

δ(qa, a) = {(⊤,⊤)} δ(qa, b) = {(qa, qa)}
δ(⊤, a) = {(⊤,⊤)} δ(⊤, b) = {(⊤,⊤)}

b

b b

b a b

b

a

baa
b b

bb

qa

qa qa

qa qa qa

qa

qa

qaqaqa

⊤ ⊤

⊤⊤

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 38 / 98

Automata on Infinite Objects Non-deterministic Parity Tree Automata

Acceptance

Given a run ρ, for a path γ in ρ write

Infc(γ)
def
= {j ∈ {0, . . . , k} | γ(i) = j for infinitely many i}

A run ρ is accepting (successful) iff for every path γ ∈ {0, 1}ω of the
tree ρ the parity acceptance condition is satisfied:

min Infc(γ) is even

A tree t is accepted by A iff there exists an accepting run of A on t.

The tree language recognized by A is

L(A)
def
= {t | t is accepted by A}

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 39 / 98

Automata on Infinite Objects Non-deterministic Parity Tree Automata

Example 1

Let L0 be the set of trees whose paths have an a (µZ .Pa ∨ []Z in Lµ)

It is characterized by

δ(qa, a) = {(⊤,⊤)} δ(qa, b) = {(qa, qa)}
δ(⊤, a) = {(⊤,⊤)} δ(⊤, b) = {(⊤,⊤)}

with qa initial, c(qa) = 1, and c(⊤) = 0.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 40 / 98

Automata on Infinite Objects Non-deterministic Parity Tree Automata

Example 2

Tree automata are nondeterministic, and cannot be determinized in
general.

Let L∞a ⊆ Trees({a, b}) be the set of trees having a path with
infinitely many a’s.

Consider the automaton with states qa, qb,⊤ and transitions
(∗ stands for either a or b).

δ(q∗, a) = {(qa,⊤), (⊤, qa)}
δ(q∗, b) = {(qb,⊤), (⊤, qb)}
δ(⊤, ∗) = {(⊤,⊤)}

and coloring c(qb) = 1 and c(qa) = c(⊤) = 0
(only 0 and 1 colors, this a Büchi condition)

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 41 / 98

Automata on Infinite Objects Non-deterministic Parity Tree Automata

Example 2 (Cont.)

δ(q∗, a) = {(qa,⊤), (⊤, qa)}, δ(q∗, b) = {(qb,⊤), (⊤, qb)}, δ(⊤, ∗) = {(⊤,⊤)}

From state ⊤, A accepts any tree.

Any run from qa consists in a tree with of a single path labeled with
states qa, qb, whereas the rest of the run tree is labeled with ⊤.
There are infinitely many states qa on this path iff there are infinitely
many vertices labeled by a.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 42 / 98

Automata on Infinite Objects Non-deterministic Parity Tree Automata

Other Acceptance Conditions

Büchi is specified by a set F ⊂ Q

Acc = {γ | Inf (γ) ∩ F 6= ∅}

Muller is specified by a set F ⊆ P(Q),

Acc = {γ | Inf (γ) ∈ F}

Rabin is specified by a set {(R1,G1), . . . , (Rk ,Gk)} where Ri ,Gj ⊆ Q,

Acc = {γ | ∀i , Inf (γ) ∩ Ri = ∅ and Inf (γ) ∩ Gi 6= ∅}

Streett is specified by a set {(R1,G1), . . . , (Rk ,Gk)} where
Ri ,Gj ⊆ Q,

Acc = {γ | ∀i , Inf (γ) ∩ Ri = ∅ or Inf (γ) ∩ Gi 6= ∅}

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 43 / 98

Automata on Infinite Objects Non-deterministic Parity Tree Automata

For the relationship between these conditions see [GTW02].

In the following, when the definition and results apply to any
acceptance conditions presented so far (including parity condition),
we simply denote by Acc this condition.

Büchi tree automata are less expressive than the others (which are
equivalent) [Rab70]: the complement of L∞a (finitely many a’s on
each branch) cannot be recognized by any Büchi tree automaton.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 44 / 98

Automata on Infinite Objects Non-deterministic Parity Tree Automata

Regular Tree Languages and Properties

A tree language L ⊆ Trees(Σ) is regular iff there exists a parity
(Muller, Rabin, Streett) tree automaton which recognizes L.

Tree automata are closed under sum, projection, and
complementation.

◮ Tree automata cannot be determinized: L∃
a ⊆ Trees({a, b}), the

language of trees having one node labeled by a, is not recognizable by
a deterministic tree automata (with any of the considered acceptance
conditions).

◮ The proof for complementation uses the determinization result for word
automata. Difficult proof [GTW02, Chap. 8], [Rab70]

We see how to solve the Membership Problem and the Emptiness
Problem for (nondeterministic) automata: we use Parity Games.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 45 / 98

Games Generalities

(Parity) Games

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 46 / 98

Games Generalities

(Parity) Games

Two-person games on directed graphs.

How are they played?

What is a strategy? What does it mean to say that a player wins the
game?

Determinacy, forgetful strategies, memoryless strategies

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 47 / 98

Games Generalities

Arena

An arena (or a game graph) is

G = (V0,V1,E)

V0 Player 0 positions, and V1 Player 1 positions (partition of V)

E ⊆ V × V is the edged-relation

write σ ∈ {0, 1} to designate a player, and σ = 1 − σ

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 48 / 98

Games Generalities

Plays

A token is placed on some initial vertex v ∈ V

When v is a σ-vertex, the Player σ moves the token from v to some
successor position v ′ ∈ vE .

This is repeated infinitely often or until a vertex v̄ without successor
is reached (v̄E = ∅)

Formally, a play in the arena G is either
◮ an infinite path π = v0v1v2 . . . ∈ V ω with vi+1 ∈ viE for all i ∈ ω, or
◮ a finite path π = v0v1v2 . . . vl ∈ V + with vi+1 ∈ viE for all i < l , but

vlE = ∅.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 49 / 98

Games Generalities

Games and Winning sets

Let be G an arena and Win ⊆ V ω be the winning condition

The pair G = (G ,Win) is called a game

Player 0 is declared the winner of a play π in the game G if
◮ π is finite and last(π) ∈ V1 and last(π)E = ∅, or
◮ π is infinite and π ∈ Win.

Player 1 wins π if Player 0 does not win π.

Initialized game (G, vI).

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 50 / 98

Games Parity Games

Parity Winning Conditions

We color vertices of the arena by χ : V → C where C is a finite set of
so-called colors; it extends to plays χ(π) = χ(v0)χ(v1)χ(v2)

C is a finite set of integers called priorities

Let Infχ(π) be the set of colors that occurs infinitely often in χ(π).

Win is the set of infinite paths π such that min(InfC (π)) is even.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 51 / 98

Games Parity Games

Example of a Parity Game

color 0 and the rest is colored 1

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 52 / 98

Games Parity Games

Strategies

A strategy for Player σ is a function fσ: V ∗Vσ → V

A prefix play π = v0v1v2 . . . vl is conform with fσ if for every i with
0 ≤ i < l and vi ∈ Vσ the function fσ is defined and we have
vi+1 = fσ(v0 . . . vi).

A play is conform with fσ if each of its prefix is conform with fσ.

fσ is a strategy for Player σ on U ⊆ V if it is defined for every prefix
of a play which is conform with it, starts in a vertex in U, and does
not end in a dead end of Player σ.

A strategy fσ is a winning strategy for Player σ on U if all plays which
are conform with fσ and start from a vertex in U are wins for Player σ.

Player σ wins a game G on U ⊆ V if he has a winning strategy on U.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 53 / 98

Games Parity Games

Winning Regions

The winning region for Player σ is the set Wσ(G) ⊆ V of all vertices
such that Player σ wins (G, v), i.e.Ṗlayer 0 wins G on {v}.

Hence, for any G, Player σ wins G on Wσ(G).

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 54 / 98

Games Parity Games

Example of Winning Regions

color 0 and the rest is colored 1W1

W0

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 55 / 98

Games Memoryless Determinacy of Parity Games

Determinacy of Parity Games

A game G = ((V ,E),Win) is determined when
the sets Wσ(G) and Wσ(G) form a partition of V .

Theorem

Every parity game is determined.

A strategy fσ is a positional (or memoryless) strategy whenever

fσ(πv) = fσ(π′v), for everyv ∈ Vσ

Theorem

[EJ91, Mos91] In every parity game, both players win memoryless.

See [GTW02, Chaps. 6 and 7]

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 56 / 98

Games Memoryless Determinacy of Parity Games

Games that are not Memoryless

Colors 0, 1, 2 must all occur infinitely often to win a play.
Player 0 must remember something (but the strategy is finite memory =
forgetful strategy).

01 2

Recall: In Muller games, we specify a sets of colors
F = {F1, . . . ,Fm} ⊆ 2C such that one Fi is “exactely” visited infinitely
often: Win = {π ∈ V ω|Infχ(π) ∈ F}

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 57 / 98

Games Memoryless Determinacy of Parity Games

Forgetful Determinacy of Regular Games

Muller games (and any other regular games, Rabin, Streett, Rabin
Chain, Buchi, ...) can be simulated by larger parity games.

Hence they are also determined (from the determinacy result from
[Mar75] for every game with Borel type).

Corollary

Regular games are forgetful determined.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 58 / 98

Games Solving Parity Games

Complexity Results

Theorem

Wins =
{(G, v) | G a finite parity game and v a winning position of Player 0}
is in NP ∩ co-NP

1 Guess a memoryless strategy f of Player 0

2 Check whether f is memoryless winning strategy

Step 2. can be carried out in polynomial time: Gf is a subgraph of G
where all edges (v , v”) where v” 6= f (v) have been eliminated. Given Gf ,
check existence of a vertex v ′ reachable from v such that (1) χ(v ′) is odd
and (2) v ′ lies on cycle in Gf containing only priorities greater than equal
to χ(v ′). Such v ′ does not exist iff Player 0 has a winning strategy. Hence,
Wins ∈ NP. By determinacy, deciding (G, v) /∈ Wins means to decide
whether v is a winning position for Player 1 (as above but 1’) χ(v ′) is
even), or use algorithm above on the dual game. Hence, Wins ∈ co-NP.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 59 / 98

Games Solving Parity Games

Algorithms for Computing Winning Regions

We will see simple winning conditions:

Reachability (and Safety) Games

Buchi Games (particular parity games with priorities 0, 1).

For the general case, there exists many algorithms, all exponential in the
number of priorities; see the literature, e.g. [GTW02, Chap. 7].
Recall the problem is in NP ∩ co-NP.

Fundamental Open Problem
Does there exists a polynomial algorithm to solve parity games?

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 60 / 98

Games Solving Parity Games

Reachability Games

Given an arena G = (V ,V0,E) and a set F ⊆ V , we consider the winning
condition

Player 0 wins the play π ⇔ ∃j , π(j) ∈ F

The winning regions W0 and W1 are computable.

Principle: compute the sets

Attri
0(F)

def
=

{v ∈ V | from v Player 0 can force a visit of F in ≤ i moves}

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 61 / 98

Games Solving Parity Games

F

1 step
2 steps
3 steps
4 steps

W0

W1

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 62 / 98

Games Solving Parity Games

Computing Attractors

Attr0
0(F) = F Attri+1

0 (F) =

Attri
0(F)

∪{v ∈ V0 | ∃vEv ′ and v ′ ∈ Attri
0(F)}

∪{v ∈ V1 | ∀v ′ s.t. vEv ′, v ′ ∈ Attri
0(F)}

Then Attr0
0(F) ⊆ Attr1

0(F) ⊆ Attr2
0(F) ⊆ . . . eventually stabilizes.

The 0-Attractor of F is Attr0(F)
def
= ∪

|V |
i Attri

0(F)

The 1-Attractor of F , Attr1(F), is defined analoguously.

Proposition

W0 = Attr0(F) and W1 = V \ Attr0(F)

Attr0(F) ⊆ W0: For v ∈ Attr0(F) ∩ V 0, the strategy is to choose
v ′ ∈ vE such that dist(v ′,F) < dist(v ,F).
W0 ⊆ Attr0(F): if not in Attr0(F) then Player 1 has a way to keep the
play away from Attr0(F), hence from F .
Attr0(F) can be computed in linear time: use bacward breath-first search.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 63 / 98

Games Solving Parity Games

Buchi Games

Given an arena G = (V ,V0,E) and a set F ⊆ V , we consider the winning
condition

Player 0 wins the play π ⇔ ∃ωj , π(j) ∈ F

that is Inf (π) ∩ F 6= ∅.

The winning regions W0 and W1 are computable.

Principle: compute the sets

Recuri
0(F)

def
= {v ∈ V | from v Player 0 can enforce at least i visits of F}

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 64 / 98

Games Solving Parity Games

Computing Recurrence Sets

Recur0
0(F) = F

Attr+
0 (R)

def
= {v ∈ V | from v Player 0 enforce visit of F in ≥ 1 moves}

Recuri+1
0 (F) = F ∩ Attr+

0 (Recuri
0(F)

F ⊇ Recur1
0(F) ⊇ Recur2

0(F) ⊇ . . .

Recur0(F)
def
= ∩i≥1Recur

i
0(F) = Recuri0

0 (F) for some i0.

Proposition

W0 = Attr0(Recur0(F)) and W1 = V \ Attr0(Recur0(F))

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 65 / 98

Membership and Emptiness Problems for NDPT Automata

Back to Decision Problems for ND Tree Automata

The Membership Problem: A GA,t

1 Given a tree t and an NDPT automaton A, we build a parity game
(GA,t , vI) s.t. vI is in W0(GA,t) iff t ∈ L(A).

Moreover, if t is regular (i.e. represented by a finite KS (S, s)), we
can build a finite game.

The Emptiness Problem: A A′
 GA′

1 For each parity automaton A, we build an Input Free automaton A′

such that L(A) 6= ∅ iff A′ admits a successful run.

2 From A′ we build a parity game GA′ such that (winning) strategies of
Player 0 and (successful) runs of A′ correspond.

Both problem reduce to solving parity games!

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 66 / 98

Membership and Emptiness Problems for NDPT Automata

The Membership Problem: The Game Graph GA,t

0-positions are of the form (w , t(w), q).
Moves from (w , t(w),), with
δ(q, t(w)) = {(q′

1, q”1), (q
′
2, q”2), . . . (q

′
m, q”m)} are:

(w , t(w), q)

(w , t(w), (q, t(w), q′
1, q”1))

(w , t(w), (q, t(w), q′
2, q”2))

(w , t(w), (q, t(w), q′
m, q”m))

.

.

.

Player 0 chooses the transition (q, t(w), q′, q”) from q for input t(w)

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 67 / 98

Membership and Emptiness Problems for NDPT Automata

The Game Graph GA,t

1-positions are of the form (w , t(w), (q, t(w), q′, q”)).
2 possible moves from (w , t(w), (q, t(w), q′, q”)):

(w , t(w), (q, t(w), q′, q”))

(w0, t(w0), q′)

(w1, t(w1), q”)

Player 1 chooses the branch in the run (left q′, or right q”)

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 68 / 98

Membership and Emptiness Problems for NDPT Automata

The Game Graph GA,t

A = (Q,Σ, q0, δ, c)

V0 = set of triples (w , t(w), q) ∈ {0, 1}∗ × Σ × Q

V1 = set of triples (w , t(w), τ) ∈ {0, 1}∗ × Σ × δ

Moves ...

Initial position in (ǫ, t(ǫ), q0) ∈ V0

Priorities:
χ((w , t(w), q)) = c(q)
χ((w , t(w), (q, t(w), q′, q”))) = c(q)

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 69 / 98

Membership and Emptiness Problems for NDPT Automata

The Game Graph GA,t

V0: (w , t(w), state q)

V1: (w , t(w), transition (q, t(w), q′, q”))

Moves from V0: from (w , t(w), q), Player 0 can move to
(w , t(w), (q, t(w), q′, q”)), for every (q, t(w), q′, q”) ∈ δ

Moves from V0: from (w , t(w), (q, t(w), q′, q”)), Player 1 can moves
to (w0, t(w0), q′) or to (w1, t(w1), q”).

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 70 / 98

Membership and Emptiness Problems for NDPT Automata

The Finite Game with a Regular Tree
s0

s1 s2

0

1

1

0 0, 1

b

a

b

With the automaton:

δ(q∗, a) = {(qa,⊤), (⊤, qa)}
δ(q∗, b) = {(qb,⊤), (⊤, qb)}
δ(⊤, ∗) = {(⊤,⊤)}

c(qa) = c(⊤) = 0
c(qb) = 1

b

a

a

b

b

a

s0

s1

s0

s1

s0

s1

bb

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 71 / 98

Membership and Emptiness Problems for NDPT Automata

Example of GA,t

s0, b, qa

s0, b, (qa, b, qb,⊤)

s0, b, (qa, b,⊤, qb)

s1, a, qb s2, b,⊤

s1, a, (qb, a, qa,⊤)

s1, a, (⊤, a,⊤, qa)

s2, b, (⊤, b,⊤⊤)

s1, a,⊤

s2, b, qb

s1, a, (⊤, a,⊤,⊤)

s2, b, (qb, b, qb,⊤) s2, b, (qb, b,⊤, qb)

s2, b, qb,

0

0

0

0

1

0

11

1 0

1
0

0

0

1

s2, b, qa

priorities

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 72 / 98

Membership and Emptiness Problems for NDPT Automata

The Emptiness Problem: Input-free Automata

An input-free (IF) automaton is A′ = (Q, δ, qI ,Acc) where
δ ⊆ Q × Q × Q.

Lemma

For each parity automaton A there exists an IF automaton A′ such that
L(A) 6= ∅ iff A′ admits a successful run.

A = (Q,Σ, q0, δ, c) and define A′ = (Q × Σ, {qI} × Σ, δ′, c ′).
A′ will guess non-deterministically the second component of its
states, i.e. the labeling of a model. Formally,

◮ for each (q, a, q′, q”) ∈ δ, we generate ((q, a), (q′, x), (q”, y)) ∈ δ′, if
(q′, x , p, p′), (q”, y , r , r ′) ∈ δ for some p, p′, q, q′ ∈ Q

◮ c ′(q, a) = c(q)

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 73 / 98

Membership and Emptiness Problems for NDPT Automata

Example IF Automaton

A A′

(qa, a, qa,⊤), (qa, a,⊤, qa) ((qa, a), (qa, a), (⊤, a)), ((qa, a), (⊤, a), (qa, a))
((qa, a), (qa, b), (⊤, a)), ((qa, a), (⊤, b), (qa, a))
((qa, a), (qa, a), (⊤, b)), ((qa, a), (⊤, a), (qa, b))
((qa, a), (qa, b), (⊤, b)), ((qa , a), (⊤, b), (qa, b))

(qa, b, qb,⊤), (qa, b,⊤, qb) ((qa, b), (qb, a), (⊤, a)), ((qa, a), (⊤, a), (qb , a))
((qa, b), (qb, b), (⊤, a)), ((qa , a), (⊤, b), (qb, a))
((qa, b), (qb, a), (⊤, b)), ((qa , a), (⊤, a), (qb, b))
((qa, b), (qb, b), (⊤, b)), ((qa , a), (⊤, b), (qb , b))

(qb, a, qa,⊤), (qb, a,⊤, qa) . . . (qb, b, qb,⊤), (qb, b,⊤, qb) . . .

(⊤, a,⊤,⊤) ((⊤, a), (⊤, a), (⊤, a))
((⊤, a), (⊤, b), (⊤, a))
((⊤, a), (⊤, a), (⊤, b))
((⊤, a), (⊤, b), (⊤, b))

(⊤, b,⊤,⊤) . . .

c ′((qa, ∗)) = c(qa) = 0, c ′((⊤, ∗)) = c(⊤) = 0, c ′((qb, ∗)) = c(qb) = 1

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 74 / 98

Membership and Emptiness Problems for NDPT Automata

From IF Automata to Parity Games

A an IF automaton a parity game GA

Positions V0 = Q and V1 = δ

Moves for all (q, q′, q′′) ∈ δ
◮ (q, (q, q′, q”)) ∈ E
◮ ((q, q′, q”), q′), ((q, q′, q”), q”) ∈ E

Priorities χ(q) = c(q) = χ((q, q′, q”))

Lemma

(Winning) Strategies of Player 0 and (successful) runs of A correspond.

Notice that GA has a finite number of positions.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 75 / 98

Membership and Emptiness Problems for NDPT Automata

Example of GA

⊤, aqa, a

qa, a

⊤, aqa, b

qa, a

⊤, bqa, b

qa, a

⊤, a⊤, a

⊤, a

⊤, a⊤, b

⊤, a

⊤, b⊤, b

⊤, a

qa, a

⊤, a

0

0

00

0

0

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 76 / 98

Membership and Emptiness Problems for NDPT Automata

Decidability of Emptiness for NDPT Automata

Theorem

For parity tree automata it is decidable whether their recognized language
is empty or not.

A A′
 GA′ , and combined previous results.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 77 / 98

Membership and Emptiness Problems for NDPT Automata

Finite Model Property

Corollary

If L(A) 6= ∅ then L(A) contains a regular tree.

Use the memoryless winning strategy in GA′ .

Formally, Take A and its corresponding IF automatan A′. Assume a
successful run of A′ and a memoryless strategy f for Player 0 in GA′ from
some position (qI , a).
The subgraph GA′

f
induces a deteministic IF automaton A” (without acc):

extract the transitions out of GAf
from positions in V1. A” is a

subautomaton of A′.
A” generates a regular tree t in the second component of its states. Now,
t ∈ L(A) because A′ behaves like A.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 78 / 98

Membership and Emptiness Problems for NDPT Automata

Complexity Issues

Corollary

The Emptiness Problem for NDPT automata is in NP ∩ co-NP.

Notice that the size of GA′ is polynomial in the size of A
(see [GTW02, p. 150, Chap. 8]).
Important remark: the universality problem is EXPTIME-complete
(already for finite trees).

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 79 / 98

Membership and Emptiness Problems for NDPT Automata Alternating Tree Automata

Mu-Calculus and Parity Tree Automata

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 80 / 98

Membership and Emptiness Problems for NDPT Automata Alternating Tree Automata

Mu-calculus Syntax for this lecture

we use L and R as the directions for successors:

Alphabet Σ and Propositions Prop = {Pa}a∈Σ

Variables Var = {Z ,Z ′,Y , . . . }

Formulas

β, β′ ∈ Lµ ::= Pa |Z | ¬β |β ∧ β′ | 〈L〉β | 〈R〉β |µZ .β

where Z ∈ Var .

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 81 / 98

Membership and Emptiness Problems for NDPT Automata Alternating Tree Automata

Recall

a tree t

a KS (S, s0)

×

×

A

GA,t

GA,(S,s0)

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 82 / 98

Membership and Emptiness Problems for NDPT Automata Alternating Tree Automata

s0

s1 s2

L

R

R

L L,R

b

a

b

state(LRLL) = s2
hence the label b

b

a b

b b

a b

b b

ǫ

L

LR LR

LRRLRL

LRLRLRLL

R

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 83 / 98

Membership and Emptiness Problems for NDPT Automata Alternating Tree Automata

Automaton for the Formula EF a

Or equivalently, for the Mu-calculus formula µZ .Pa〈 〉Z

〈L〉Z

Pa

1

⊤

11
input not a

input a

11

1

1

〈 〉Z

〈R〉Z

µZ .Pa ∨ 〈 〉Z

Pa ∨ 〈 〉Z

⊥

Z

1

1

L

R

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 84 / 98

Membership and Emptiness Problems for NDPT Automata Alternating Tree Automata

1

Z , s0

Z , s0

Z , s1

Pa, s0

1

1
as input not a

11

1

1

〈 〉Z , s0

〈L〉Z , s0

Pa ∨ 〈 〉Z , s0

⊥

〈R〉Z , s0

µZ .Pa ∨ 〈 〉Z , s0

1

Pa, s1

1

⊤

1

as input a

11

1

1

〈 〉Z , s1

〈R〉Z , s1

〈L〉Z , s1

µZ .Pa ∨ 〈 〉Z , s1

Pa ∨ 〈 〉Zs1

Pa, s2

1

1
as input not a

11

1

1

〈 〉Z , s2

〈L〉Z , s2

〈L〉Z , s2

µZ .Pa ∨ 〈 〉Z , s2

Pa ∨ 〈 〉Z , s2

⊥

1
1

R

L

L

R

1

1

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 85 / 98

Membership and Emptiness Problems for NDPT Automata Alternating Tree Automata

The Game G(A(EFa), (S, s0))

〈L〉Z

Pa

1

⊤

11
input not a

input a

11

1

1

〈 〉Z

〈R〉Z

µZ .Pa ∨ 〈 〉Z

Pa ∨ 〈 〉Z

⊥

Z

1

1

L

R

×

s0

s1 s2

L

R

R

L L,R

b

a

b

On the board ...

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 86 / 98

Membership and Emptiness Problems for NDPT Automata Alternating Tree Automata

Automaton for the Formula E
∞

F a

Or equivalently, for the Mu-calculus formula νY .µZ .〈 〉(Pa ∧ Y ∨ Z)

0

Pa ∧ Y ∨ Z

1

µZ .〈 〉(Pa ∧ Y ∨ Z)

〈 〉(Pa ∧ Y ∨ Z)

1

1

νY µZ .〈 〉(Pa ∧ Y ∨ Z)

11

1

1
if input not a

if input a

〈L〉(Pa ∧ Y ∨ Z)

1

L R

1

1

〈R〉(Pa ∧ Y ∨ Z)

Y Pa

ZPa ∧ Y

⊤

⊥

1

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 87 / 98

Membership and Emptiness Problems for NDPT Automata Alternating Tree Automata

The Game G(A(E
∞

F a), (S, s0))

0

Pa ∧ Y ∨ Z

1

µZ .〈 〉(Pa ∧ Y ∨ Z)

〈 〉(Pa ∧ Y ∨ Z)

1

1

νY µZ .〈 〉(Pa ∧ Y ∨ Z)

11

1

1
if input not a

if input a

〈L〉(Pa ∧ Y ∨ Z)

1

L R

1

1

〈R〉(Pa ∧ Y ∨ Z)

Y Pa

ZPa ∧ Y

⊤

⊥

1 ×

s0

s1 s2

L

R

R

L L,R

b

a

b

On the board ...

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 88 / 98

Membership and Emptiness Problems for NDPT Automata Alternating Tree Automata

Automaton for the Formula AGEF a

Or equivalently, for the Mu-calculus formula νY .[]Y ∧ (µZ .Pa ∨ 〈 〉Z)

1

[]Y

0

ǫ

1

1

νY .[]Y ∧ EF a

[]Y ∧ EF a

EF a

〈L〉Y

1 1

〈R〉Y

Use UNIVERSAL states
ALTERNATION

Y

L R
R

Pa

1

1

⊤

11
input not a

input a

11

1

1

〈 〉Z

〈R〉Z

µZ .Pa ∨ 〈 〉Z

Pa ∨ 〈 〉Z

⊥
〈L〉Z

Z

1

L

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 89 / 98

Membership and Emptiness Problems for NDPT Automata Alternating Tree Automata

Alternating Tree Automata

For NDPT automata

δ(q, a) = {(q′
1, q”1), (q

′
2, q”2)}

means: From state q on input labeled by a,
(1) non-deterministically choose between the two “disjuncts”
(q′

1, q”1) and (q′
2, q”2), and

(2) proceed accordingly to the Left and Right sons of w in t.

Notice: (q′
1, q”1) and (q′

2, q”2)] are disjuncts, e.g.
(q′

1, q”1) is the instruction:
“Proceed left with q′

1 and proceed right with q”1”
(q′

1,L) ∧ (q”1,R)
We then write,

δ(q, a) = (q′
1,L) ∧ (q”1,R) ∨ (q′

2,L) ∧ (q”2,R)

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 90 / 98

Membership and Emptiness Problems for NDPT Automata Alternating Tree Automata

Formal Definition of ATA

Universal moves, similar to alternating Turing machines extend
non-deterministic Turing machines.

An alternating tree automaton is A = (Q,Q∃,Q∀,Σ, q0, δ,Acc)
◮ {Q∃,Q∀} is a partition of Q
◮ δ : Q × Σ → P(Q × {L,R , ǫ}) is a function and ǫ-transitions are

allowed.

δ(q, a) = (q′, ǫ) ∧ (q1,L) ∧ (q2,L) ∧ (q3,R) ∨ ...

Alternating Tree Automata extend NDPT Automata

Notice that different “copies” of the automaton can proceed along
the same subtree, e.g. A, q1 and A, q′

1 on the left subtree of nodes
labeled by a.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 91 / 98

Membership and Emptiness Problems for NDPT Automata Alternating Tree Automata

Semantics of ATA

see [GTW02, Chap. 9]

Parity games provide a natural way to define L(A) for every ATA A.

Determinacy of games gives the closure by complemention, and the
construction is easy:
Dualize “Players” and shift the colors.

δ(q, a) = [(q′, ǫ) ∧ (q1,L) ∧ (q2,L) ∧ (q3,R)] ∨ . . .

δ̄(q, a) = [(q′, ǫ) ∨ (q1,L) ∨ (q2,L) ∨ (q3,R)] ∧ . . .

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 92 / 98

Membership and Emptiness Problems for NDPT Automata Alternating Tree Automata

Properties of Alternating Tree Automata

Closed under disjunction and conjunction

Closed under negation (complementation), see proof next slide

Unfortunately, it is difficult to show that alternating automata are
closed under projection. [MS95] showed that any alternating
automaton is equivalent to a non-deterministic automaton
(exponential number of states).

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 93 / 98

Membership and Emptiness Problems for NDPT Automata Alternating Tree Automata

Complementation of Alternating Parity Tree Automata

Lemma

For every alternating parity tree automaton A there is a dual parity tree
automaton Ā such that L(Ā) = Trees(Σ) \ L(A). Moreover, regarding
size, |Ā| = |A|

A = (Q,Q∃,Q∀,Σ, q0, δ,Acc) Ā = (Q,Q∀,Q∃,Σ, q0, δ̄, c̄) where
c̄(q) = c(q) + 1 for every q ∈ Q. Now, compare G(A, t) and G(Ā, t)

Same graph but positions of Player 0 become positions of Player 1,
and vice versa.

For every infinite play π, π is winning for Player 0 in G(A, t) iff π is
winning for Player 1 in G(Ā, t).
Hence Player 0 has a winning strategy in G(A, t) iff Player 1 has a
winning strategy in G(Ā, t) (same strategy).

So, t ∈ L(A) iff t /∈ L(Ā)

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 94 / 98

Membership and Emptiness Problems for NDPT Automata Decision Problems

Decision Problems

Membership Problem for ATA
A = (Q,Q∃,Q∀,Σ, q0, δ, c), k colors, and t ∈ Trees(Σ), does
t ∈ L(A)?

◮ t is regular, as the unravelling of some finite Kripke Structure (S, s0).
◮ Build the finite parity game G(A, (S, s0)) and solve it (decidable).
◮ The size of G(A, (S, s0)): |Q| × |S | positions and k priorities
◮ Complexity in NP ∩ co-NP (as for parity games)

Emptiness Problem for ATA
A = (Q,Q∃,Q∀,Σ, q0, δ, c), is L(A) = ∅?

◮ See [GTW02, Chap. 9]
◮ Alternatively, transform A into a non-deterministic tree automaton B,

and solve emptiness of non-deterministic tree automata
◮ Complexity: EXPTIME-complete

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 95 / 98

Membership and Emptiness Problems for NDPT Automata Mu-calculus and Alternating Parity Tree Automata

Mu-calculus and Alternating Parity Tree Automata

From the Mu-calculus to Alternating Tree Automata: Given a
sentence β ∈ Lµ (in positive normal form), we construct in
polynomial time an ATA Aβ such that

L(β) = L(Aβ)

The automaton has |β| states and O(|ad(β|) colors.

From Alternating Tree Automata to the Mu-calculus: given an AT
Automaton A we can build a formula βA “equivalent” to A.
The translation from Alternating Parity Tree Automata to the
Mu-calculus uses vectorial Mu-calulus, see [AN01].

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 96 / 98

Membership and Emptiness Problems for NDPT Automata Mu-calculus and Alternating Parity Tree Automata

Summary about the Mu-Calculus

The Mu-calculus ≡ Alternating Parity Tree Automata (≡ NDPT
Automata)

They all characterize regular languages of infinite trees.

The Mu-calculus ≡ MSO on trees

More generally: The Mu-calculus ≡ bisimulation invariant properties
of MSO [JW95]

Complexity results:
◮ Satisfiability is EXPTIME-complete ([SE89, EJ88]).
◮ Model-checking is NP ∩ co-NP; it is open whether it is in P.

The Mu-calculus subsumes every temporal logics.
◮ CTL translates into the alternation free fragment of the Mu-calculus.

It has a polynomial time model-checking procedure (retrieve why
according to previous results).

◮ CTL∗ can be translated into the Mu-calculus [Dam94], but there is an
exponential blow-up.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 97 / 98

Membership and Emptiness Problems for NDPT Automata Mu-calculus and Alternating Parity Tree Automata

Importance of Games

Useful for fundamental problems on automata

henceforth for the Satisfiability and Model-checking Problem of
modal and temporal logics.

A “reversed” reduction:

A parity game G,V0,V1,E) with a priority function
χ : V → {0, . . . , k − 1} (k priorities) can be seen as a Kripke
Structure (V ,E , λ) where λ maps states onto the set of propositions
{V0,V1,P0, . . . ,Pk} where Pi = {v |χ(v) = i}.
The formula

Wink
def
= νZ0.µZ1. . . . θZk−1

k−1∨

j=0

((V0 ∧Pj ∧ (〈.〉Zj)∨ (V1 ∧Pj ∧ ([.]Zj))

(where θ = ν if k is odd, and θ = µ if k is even)
characterizes the winning region W0 of Player 0 in any parity game
with priorities 0, . . . , k − 1.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 98 / 98

Membership and Emptiness Problems for NDPT Automata Mu-calculus and Alternating Parity Tree Automata

A. Arnold and D. Niwinski.
Rudiments of mu-calculus.
North-Holland, 2001.

J. C. Bradfield.
The modal mu-calculus alternation hierarchy is strict.
In Proc. Concurrency Theory, 7th International Conference,
CONCUR’96, Pisa, Italy, LNCS1119, pages 233–246, 1996.

M. Dam.
CTL⋆ and ECTL⋆ as fragments of the modal µ-calculus.
Theoretical Computer Science, 126(1):77–96, 1994.

E. A. Emerson and J. Y. Halpern.
“Sometimes” and “Not Never” revisited: On branching versus linear
time.
In Proc. 10th ACM Symp. Principles of Programming Languages,
Austin, Texas, pages 127–140, January 1983.

E. A. Emerson and C. S. Jutla.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 98 / 98

Membership and Emptiness Problems for NDPT Automata Mu-calculus and Alternating Parity Tree Automata

The complexity of tree automata and logics of programs.
In Proc. 29th IEEE Symp. Foundations of Computer Science, White
Plains, New York, pages 328–337, October 1988.

E. A. Emerson and C. S. Jutla.
Tree automata, mu-calculus and determinacy.
In Proceedings 32nd Annual IEEE Symp. on Foundations of Computer
Science, FOCS’91, San Jose, Puerto Rico, 1–4 Oct 1991, pages
368–377. IEEE Computer Society Press, Los Alamitos, California,
1991.

E. A. Emerson.
Temporal and modal logic.
In J. van Leeuwen, editor, Handbook of Theoretical Computer Science,
vol. B, chapter 16, pages 995–1072. Elsevier Science Publishers, 1990.

E. Grädel, W. Thomas, and T. Wilke, editors.
Automata, Logics, and Infinite Games: A Guide to Current Research
[outcome of a Dagstuhl seminar, February 2001], volume 2500 of
Lecture Notes in Computer Science.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 98 / 98

Membership and Emptiness Problems for NDPT Automata Mu-calculus and Alternating Parity Tree Automata

Springer, 2002.

D. Janin and I. Walukiewicz.
Automata for the modal mu-calculus and related results.
In Jiŕı Wiedermann and Petr Hájek, editors, Mathematical
Foundations of Computer Science 1995, 20th International
Symposium, volume 969 of lncs, pages 552–562, Prague, Czech
Republic, 1 September– 28 August 1995. Springer.

Giacomo Lenzi.
A hierarchy theorem for the µ-calculus.
In F. Meyer auf der Heide and B. Monien, editors, Proceedings 23rd
Int. Coll. on Automata, Languages and Programming, ICALP’96,
Paderborn, Germany, 8–12 July 1996, volume 1099 of Lecture Notes
in Computer Science, pages 87–97. Springer-Verlag, Berlin, 1996.

D. Martin.
Borel determinacy.
Annales of Mathematics, 102:363–371, 1975.

A. W. Mostowski.
Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 98 / 98

Membership and Emptiness Problems for NDPT Automata Mu-calculus and Alternating Parity Tree Automata

Games with forbidden positions.
Research Report 78, Univ. of Gdansk, 1991.

David E. Muller and Paul E. Schupp.
Simulating alternating tree automata by nondeterministic automata:
New results and new proofs of the theorems of Rabin, McNaughton
and Safra.
Theoretical Computer Science, 141(1–2):69–107, 17 April 1995.

M. O. Rabin.
Weakly definable relations and special automata.
In Symp. Math. Logic and Foundations of Set Theory, pages 1–23,
1970.

R. S. Streett and E. A. Emerson.
An automata theoretic decision procedure for the propositional
mu-calculus.
Information and Computation, 81(3):249–264, 1989.

A. Tarski.
A lattice-theoretical fixpoint theorem and its applications.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 98 / 98

Membership and Emptiness Problems for NDPT Automata Mu-calculus and Alternating Parity Tree Automata

Pacific J. Math., 5:285–309, 1955.

W. Thomas.
Automata on infinite objects.
In J. van Leeuwen, editor, Handbook of Theoretical Computer Science,
vol. B, chapter 4, pages 133–191. Elsevier Science Publishers, 1990.

Sophie Pinchinat (IRISA) Logic, Automata, and Games Logic Summer School 2009 98 / 98

	Logics of Programs
	Introductory Example
	Kripke Structures
	Behavioral Properties

	The Mu-calculus
	The Mu-calculus
	Fundamental Questions

	Automata on Infinite Objects
	Generalities
	Non-deterministic Parity Tree Automata

	Games
	Generalities
	Parity Games
	Memoryless Determinacy of Parity Games
	Solving Parity Games

	Membership and Emptiness Problems for NDPT Automata
	Alternating Tree Automata
	Decision Problems
	Mu-calculus and Alternating Parity Tree Automata

