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Mathematics is the art of giving the 
same name to different things.

 Jules Henri Poincaré (1854-1912)
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Part I: Convexity, Binary Experiments & Classification



Convexity



Convex Sets

• We say              is a convex set if it is 
closed under convex combination. 
That is, for any n, any                  
and weights                         such that

S ⊆ Rd

x1, . . . , xn ⊂ S
λ1, . . . ,λn ≥ 0

n∑

i=1

λixi ∈ S

∑n
i=1 λi = 1

x1

x2

x3
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Convex Sets

• We say              is a convex set if it is 
closed under convex combination. 
That is, for any n, any                  
and weights                         such that

• Suffices to show for all                 and      
                 that 

• Convex = “closed under expectation”

S ⊆ Rd

x1, . . . , xn ⊂ S
λ1, . . . ,λn ≥ 0

n∑

i=1

λixi ∈ S

λ ∈ [0, 1]
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x1, x2 ∈ S
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Convex
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Convex Functions

• The epigraph of a function is the set 
of points that lie above it:

• A function is convex if its epigraph is 
a convex set

‣ A convex function is necessarily 
continuous

epi(f ) := {(x, y) : x ∈ Rd , y ≥ f (x)}

epi(f )

f (x2)

x2x1

f (x1)

f (x)



Taylor’s Theorem

Integral Form of Taylor Expansion

• Let           be an interval on which f is twice differentiable. Then [t0, t]

f (t) = f (t0) + (t − t0)f ′(t0) +
∫ t

t0

(t − s) f ′′(s) ds



Taylor’s Theorem

Integral Form of Taylor Expansion

• Let           be an interval on which f is twice differentiable. Then 

Corollary

• Let f be twice differentiable on [a,b]. Then, for all t in [a,b],

where  

• Differentiability can be removed if f’ and f’’ are interpreted distributionally

[t0, t]

f (t) = f (t0) + (t − t0)f ′(t0) +
∫ t

t0

(t − s) f ′′(s) ds

f (t) = f (t0) + (t − t0)f ′(t0) +
∫ b

a
g(t, s) f ′′(s) ds

g(t, s) =






(t − s) t0 ≤ s < t
(s − t) t ≤ s < t0
0 otherwise



!p" =
{
1, p is true

0, otherwise

f (t) = f (t0) + (t − t0)f ′(t0) +
∫ b

a
g(t, s) f ′′(s) ds

Integral Form of the Taylor Expansion

where

g(t, s) = (t − s)!t0 ≤ s < t"+ (s − t)!t ≤ s < t0"



Bregman Divergence

Bf (t, t0) := f (t)− f (t0)− 〈t − t0,∇f (t0)〉

• A Bregman divergence is a general 
class of “distance” measures defined 
using convex functions

f (t) = t log(t)

Bf (t, t0)

f (t)

f (t0)

t0 t



Bregman Divergence

Bf (t, t0) := f (t)− f (t0)− 〈t − t0,∇f (t0)〉

• A Bregman divergence is a general 
class of “distance” measures defined 
using convex functions

• In 1-d case,               is the non-linear 
part of the Taylor expansion of f

f (t) = t log(t)

Bf (t, t0)

f (t)

f (t0)

t0 t
Bf (t, t0) :=

∫ t

t0

(t − s) f ′′(s) ds

Bf (t, t0)



Jensen’s Inequality

Jensen Gap

• For convex                   and 
distribution P define

f : R→ R

JP [f (x)] := EP [f (x)]− f (EP [x ])
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Jensen Gap

• For convex                   and 
distribution P define

Jensen’s Inequality

• The Jensen Gap is non-negative 
for all P if and only if f is convex

f : R→ R

JP [f (x)] := EP [f (x)]− f (EP [x ])
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Jensen’s Inequality

if and only if
 

f is convex

JP [f (x)] := EP [f (x)]− f (EP [x ]) ≥ 0

f (x1)

f (x2)

f (x3)

f (x4)

EP [f (x)]

f (EP [x ])

E[x ]x1 x2 x3 x4

JP [f (x)]



The Legendre-Fenchel Transform

• The LF Transform generalises the 
notion of a derivative to non-
differentiable functions

f ∗(t∗) = sup
t∈Rd
{〈t, t∗〉 − f (t)}

slope t*

t

f(t)



The Legendre-Fenchel Transform

• The LF Transform generalises the 
notion of a derivative to non-
differentiable functions

• The double LF transform or 
biconjugate

is involutive for convex f. That is,  

f ∗(t∗) = sup
t∈Rd
{〈t, t∗〉 − f (t)}

f ∗∗(t) = sup
t∗∈Rd

{〈t∗, t〉 − f ∗(t∗)}

f ∗∗(t) = f (t)

slope t*

t

f(t)



Representations of Convex Functions

Integral Representation

• Via Taylor’s Theorem

Variational Representation

• Via Fenchel Dual

Λf (t) = f (t0) + f
′(t0)(t − t0) f ∗(t) = sup

t∈R
{t.t∗ − f (t)}

where where

f (t) = Λf (t) +

∫ b

a
g(t, s) f ′′(s) ds f (t) = sup

t∗∈R
{t.t∗ − f ∗(t∗)}

g(t, s) =

{
(t − s)+ s ≥ t0
(s − t)+ s < t0
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Binary Experiments and Measures of Divergence



Binary Experiments

• A binary experiment is a pair of 
distributions (P,Q) over the same 
space 

• We will think of P as the positive and 
Q as the negative distribution
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Binary Experiments

• A binary experiment is a pair of 
distributions (P,Q) over the same 
space 

• We will think of P as the positive and 
Q as the negative distribution

• Given samples from    , how can we 
tell if they came from P or Q?

‣ Hypothesis Testing

• The “further apart” P and Q are the 
easier this will be

‣ How do we define distance for 
distributions?
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Test Statistics

• We would like our distances to not be 
dependent on the topology of the 
underlying space

τ
X

R

X

τ



Test Statistics
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Test Statistics

• We would like our distances to not be 
dependent on the topology of the 
underlying space

• A test statistic    maps each point in        
    to a point on the real line

‣ Usually a function of the 
distribution

• A statistical test can be obtained by 
thresholding a test statistic

• Each threshold partitions space into 
positive and negative parts

τ
X

r(x) = !τ(x) ≥ τ0"
R

X

τ

τ0



Statistical Power and Size

Contingency Table

• True Positive Rate  

• False Positive Rate  

• True Negative Rate  

• False Negative Rate  
+ –

+

–

True 
Positives

TP

False 
Positives

FP

False 
Negatives

FN

True 
Negatives

TN

Actual Class

P
re

di
ct

ed
 C

la
ss

P (τ ≥ τ0)

Q(τ ≥ τ0)

Q(τ < τ0)

P (τ < τ0)

= “Power”

= “Size”



The Neyman-Pearson Lemma

Likelihood ratio

τ∗(x) =
dP

dQ
(x)



The Neyman-Pearson Lemma

Likelihood ratio

Neyman-Pearson Lemma (1933) 

• The the likelihood ratio is the 
uniformly most powerful (UMP) 
statistical test

‣ Always has the largest TP Rate 
for any given FP rate

10

1

False Positive Rate (FP)
T
ru

e
 P

o
si

ti
v
e
 R

a
te

 (
T
P
)

τ

τ∗
τ∗(x) =

dP

dQ
(x)



Csiszár f-Divergence

• f-divergence of P from Q is the 
Q-average of the likelihood ratio 
transformed by the function f

‣ f can be seen as a penalty for 
dP(x) ≠ dQ(x)

If (P,Q) = EQ [f (τ∗)]

=

∫

X
f

(
dP

dQ

)
dQ
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Csiszár f-Divergence

• f-divergence of P from Q is the 
Q-average of the likelihood ratio 
transformed by the function f

‣ f can be seen as a penalty for 
dP(x) ≠ dQ(x)

• To be a divergence, we want

‣              ≥ 0 for all P, Q

‣              = 0 for all Q

• Jensen’s inequality requries

‣ f convex 

‣ f(1) = 0

If (P,Q)

If (Q,Q)

If (P,Q) = EQ
[
f

(
dP

dQ

)]

≥ f

(
EQ

[
dP

dQ

])

= f (1)

If (P,Q) = JQ
[
f

(
dP

dQ

)]
≥ 0

“Jensen Gap”

If (P,Q) = EQ [f (τ∗)]

=

∫

X
f

(
dP

dQ

)
dQ



Csiszár f-Divergence

If (P,Q) = EQ
[
f

(
dP

dQ

)]
− f

(
EQ

[
dP

dQ

])

= EQ
[
f

(
dP

dQ

)]

A Jensen Gap where f(1) = 0



Examples

• Variational

• KL-Divergence

• Hellinger

• Pearson 

• Triangular

χ2
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√
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f (t) = t ln t
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Classification and Probability Estimation



From Hypothesis Testing to Classification

Hypothesis Testing

• Instances are either drawn from 
P or Q exclusively

‣ The aim is to correctly decide 
which

• Assumed 

‣ Binary Experiment (P,Q)

• Imposed

‣ Measure of divergence



From Hypothesis Testing to Classification

Hypothesis Testing

• Instances are either drawn from 
P or Q exclusively

‣ The aim is to correctly decide 
which

• Assumed 

‣ Binary Experiment (P,Q)

• Imposed

‣ Measure of divergence

Classification / Prob. Estimation

• Instances are drawn from a 
mixture of P and Q

‣ The aim is to correctly decide 
which for each instance

• Assumed

‣ Binary Mixture (π,P,Q)

• Imposed

‣ Misclassification penalty 
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Generative and Discriminative Views

Discriminative Generative

(η,M) PX×Y (π, P,Q)

0

Density

X

dM

η

0

Density

X

πdP

(1− π)dQ

dQ

dP

Joint Distribution

dM = πdP + (1− π)dQ

π = EM [η]

dQ =
1− η
1− πdMdP =

η

π
dM

η = π
dP

dM



Generative and Discriminative Views

Bayes’ Rule

Discriminative Generative

(η,M) PX×Y (π, P,Q)
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Density

X

dM

η

0

Density

X

πdP

(1− π)dQ

dQ

dP

Joint Distribution

dM = πdP + (1− π)dQ

π = EM [η]

dQ =
1− η
1− πdMdP =

η

π
dM

η = π
dP

dM



Loss, Risk and Regret

Loss

• Penalty            for guessing     
when true class is y

‣ Classification

‣ Prob. Estimation

η̂!(y , η̂)

η̂ ∈ {0, 1}

η̂ ∈ [0, 1]
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Loss, Risk and Regret

Loss

• Penalty            for guessing     
when true class is y

‣ Classification

‣ Prob. Estimation

Point-wise Risk

• Expected point-wise loss

Risk

• Average point-wise risk

Bayes Risk

η̂!(y , η̂)

L : [0, 1]× [0, 1]→ R
L(η, η̂) = EY∼η["(Y, η̂)]

= (1− η)"(0, η̂) + η"(1, η̂)

η̂ ∈ {0, 1}

η̂ ∈ [0, 1]

L : [0, 1]X → R
L(η̂) = EM [L(η, η̂)]

L = inf
η̂∈[0,1]X

L(η̂)

L(η) = inf
η̂∈[0,1]

L(η, η̂)



Loss, Risk and Regret

Loss

• Penalty            for guessing     
when true class is y

‣ Classification

‣ Prob. Estimation

Point-wise Risk

• Expected point-wise loss

Risk

• Average point-wise risk

Bayes Risk

Regret

η̂!(y , η̂)

L : [0, 1]× [0, 1]→ R
L(η, η̂) = EY∼η["(Y, η̂)]

= (1− η)"(0, η̂) + η"(1, η̂)

η̂ ∈ {0, 1}

η̂ ∈ [0, 1]

L : [0, 1]X → R
L(η̂) = EM [L(η, η̂)]

B(η, η̂) = L(η, η̂)− L(η)

B(η̂) = L(η̂)− L

L = inf
η̂∈[0,1]X

L(η̂)

L(η) = inf
η̂∈[0,1]

L(η, η̂)



0 0.5 1

Loss Examples

0-1 Misclassification Loss

Square Loss

Log Loss

Hinge Loss

!(y , η̂) = (y − η̂)2

0 0.5 1

!(y , η̂) = !y != !η̂ > 0.5""

0 0.5 1

!(y , η̂) = −y log(η̂)− (1− y) log(1− η̂)

0 0.5 1

!(y , η̂) = y(0.5− η̂)+ + (1− y)(η̂ − 0.5)+



Fisher Consistency & Proper Losses

Fisher Consistency

• Point-wise risk for a lossℓis 

minimised by true probability

• Strict consistency requires    
to be the unique minimiser

η

L(η, η) = inf
η̂∈[0,1]

L(η, η̂) = L(η)



Fisher Consistency & Proper Losses

Fisher Consistency

• Point-wise risk for a lossℓis 

minimised by true probability

• Strict consistency requires    
to be the unique minimiser

Proper Losses

• A lossℓis called (strictly) proper 

if it is (strictly) Fisher consistent

• In economics they are known as 
“proper scoring rules”

‣ Shuford et al. (1966)

‣ Savage (1971)

‣ Schervish (1989)

‣ Buja et al. (2005)

‣ Lambert et al. (2008)

η

L(η, η) = inf
η̂∈[0,1]

L(η, η̂) = L(η)
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Examples of Proper Losses

0-1 Misclassification Loss

Square Loss

Log Loss

Hinge Loss

!(y , η̂) = (y − η̂)2

0 0.5 1

!(y , η̂) = !y != !η̂ > 0.5""

0 0.5 1

!(y , η̂) = −y log(η̂)− (1− y) log(1− η̂)

0 0.5 1

!(y , η̂) = y(0.5− η̂)+ + (1− y)(η̂ − 0.5)+

Proper Proper

Proper Not
Proper



Properties of Proper Losses

Concave Bayes Risk

• Lower envelope of lines

L(η) = inf
η̂
(1− η)"(0, η̂) + η"(1, η̂)

L



Properties of Proper Losses

Concave Bayes Risk

• Lower envelope of lines

Savage’s Theorem

• Loss ℓ is proper iff 

its Bayes risk L is concave

• Relates Bayes risk and risk 
without optimisation

L(η) = inf
η̂
(1− η)"(0, η̂) + η"(1, η̂)

L(η, η̂) = L(η̂)− (η̂ − η)L′(η̂)
= L(η̂) + (η − η̂)L′(η̂)

ηη̂

L(η, η̂)

L

L(η̂)

L



Savage’s Theorem

A loss is proper
if and only if

its point-wise Bayes risk is concave

Furthermore

L(η, η̂) = L(η̂) + (η − η̂)L′(η̂)

[Savage, 1971]
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Examples

0-1 Misclassification Loss Log Loss

0 0.5 1

!(y , η̂) = !y != !η̂ > 0.5""

0 0.5 1

!(y , η̂) = −y log(η̂)− (1− y) log(1− η̂)

L(η, η̂) =

{
(1− η) η̂ > .5
η η̂ ≤ .5

L(η) = L(η, η) =

{
(1− η) η > .5
η η ≤ .5

L′(η) =

{
−1 η > .5

1 η ≤ .5

L(η, η̂) = −η log(η̂)− (1− η) log(1− η̂)

L(η) = −η log(η)− (1− η) log(1− η)

L′(η) = −1− log(η) + 1 + log(1− η)

= log

(
1− η
η

)



Proper Point-wise Bayes Risks

Given a proper loss, 
its point-wise Bayes risk

is easy to compute 

L(η) = L(η, η)



Information



Where is the wisdom
   we have lost in knowledge?

Where is the knowledge
   we have lost in information?

 T.S. Eliot (1988-1965) 



Statistical Information

• Let U measure the “uncertainty” of a 
distribution ξ.

‣ When ξ is peaked its uncertainty 
is small

Low
Uncertainty

High
Uncertainty

[De Groot, 1962]



Statistical Information

• Let U measure the “uncertainty” of a 
distribution ξ.

‣ When ξ is peaked its uncertainty 
is small

• Assume π is a prior for ξ(x) — the  
posterior distribution after seeing x

‣ Reduction in uncertainty is 

Low
Uncertainty

High
Uncertainty

∆U(π, ξ(x)) = U(π)− U(ξ(x))

[De Groot, 1962]

Prior

Posteriors

x1

x2

x3



Statistical Information

• Let U measure the “uncertainty” of a 
distribution ξ.

‣ When ξ is peaked its uncertainty 
is small

• Assume π is a prior for ξ(x) — the  
posterior distribution after seeing x

‣ Reduction in uncertainty is 

• The statistical information is the 
expected reduction in uncertainty for 
ξ when X~ M and 

Low
Uncertainty

High
Uncertainty

∆U(π, ξ(x)) = U(π)− U(ξ(x))

[De Groot, 1962]

Prior

Posteriors

x1

x2

x3

∆U(ξ,M) = EM [U(π)− U(ξ(X))]

π := EM [ξ(X)]



Statistical Information

• Observations can “at worst, contain 
no information ... typically [do] 
contain some information”

∆U(ξ,M) ≥ 0

EM [U(π)− U(ξ(X))] ≥ 0

U(EM [ξ(X)]− EM [U(ξ(X))] ≥ 0

JM [−U(ξ(X))] ≥ 0



Statistical Information

• Observations can “at worst, contain 
no information ... typically [do] 
contain some information”

• By Jensen’s inequality, information is 
non-negative iff the uncertainty 
function U is concave  

∆U(ξ,M) ≥ 0

EM [U(π)− U(ξ(X))] ≥ 0

U(EM [ξ(X)]− EM [U(ξ(X))] ≥ 0

JM [−U(ξ(X))] ≥ 0



Statistical Information

• Observations can “at worst, contain 
no information ... typically [do] 
contain some information”

• By Jensen’s inequality, information is 
non-negative iff the uncertainty 
function U is concave  

• Very general definition of information

‣ e.g., Shannon information

U(p) = −
∑

i

pi log pi

∆U(ξ,M) ≥ 0

EM [U(π)− U(ξ(X))] ≥ 0

U(EM [ξ(X)]− EM [U(ξ(X))] ≥ 0

JM [−U(ξ(X))] ≥ 0



Statistical Information

(another Jensen Gap)

if and only if 

U is concave

[De Groot, 1962]

JM [−U(ξ(X))] = U(EM [ξ(X)])− EM [U(ξ(X))] ≥ 0
Prior Uncertainty Posterior Uncertainty



Bregman Information

• A recent, alternative formulation of 
information used to motivate 
clustering with Bregman divergences

‣ Given a random variable S, its 
Bregman information is the 
minimum expected divergence 
from a single point in its domain

‣ This single point is always the 
mean of S

[Banerjee et al., 2005]

Bf (S) := inf
s∈S
ES∼σ[Bf (S, s)]

= ES∼σ[Bf (S,Eσ[S])]

S



Mathematics is the art of giving the 
same name to different things.

 Jules Henri Poincaré (1854-1912)



Part II: Relationships and Representations



Distributions

Binary 
Experiments

f-Divergence Statistical
Tests

Neyman-Pearson
Lemma

Terra Statistica

Bregman
InformationLoss 

Functions

Risk
Regret

Statistical
Information

Class Probability 
Estimation

ROC/AUC

Variational

Integral

Graphical

Representations

MMD
Pinsker 
Bounds

Surrogate
Regret Bounds

Probing 
Reduction

Applications

Convexity

Taylor’s
Theorem

Jensen’s
Inequality

Background

LF Dual
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The acts of the mind, wherein it exerts its power over 
simple ideas, are chiefly these three: 

1. Combining several simple ideas into one 
compound one, and thus all complex ideas are made. 

2. The second is bringing two ideas, whether simple or 
complex, together, and setting them by one another so 
as to take a view of them at once, without uniting 
them into one, by which it gets all its ideas of relations. 

3. The third is separating them from all other ideas 
that accompany them in their real existence: this is called 
abstraction, and thus all its general ideas are made.

John Locke (1632-1704)
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Relationships



Regret and Bregman Divergence

Binary Mixtures (Review)

• Positive/Negative class 
distributions (P,Q)

• Mixture M = πP + (1-π)Q

• Conditional Positive Class 
Probability η(x) = π dP/dM

[Buja et al., 2005]
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• Positive/Negative class 
distributions (P,Q)

• Mixture M = πP + (1-π)Q

• Conditional Positive Class 
Probability η(x) = π dP/dM

Proper Losses (Review)

• Fisher consistent L(η) = L(η,η)

• Loss function is proper iff L is 
concave (Savage’s Theorem)

[Buja et al., 2005]

L(η, η̂) = L(η̂) + (η − η̂)L′(η̂)
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Proper Losses (Review)

• Fisher consistent L(η) = L(η,η)

• Loss function is proper iff L is 
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Bregman Divergence (Review)

• For convex f
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Regret and Bregman Divergence

Binary Mixtures (Review)

• Positive/Negative class 
distributions (P,Q)

• Mixture M = πP + (1-π)Q

• Conditional Positive Class 
Probability η(x) = π dP/dM

Proper Losses (Review)

• Fisher consistent L(η) = L(η,η)

• Loss function is proper iff L is 
concave (Savage’s Theorem)

Bregman Divergence (Review)

• For convex f

Bregman Divergence for Estimates

• Let f = -L. Then f is convex and

Bf (t, t0) = f (t)− f (t0)− (t − t0)f ′(t)

[Buja et al., 2005]

L(η, η̂) = L(η̂) + (η − η̂)L′(η̂)

Bf (η, η̂) = −L(η) + L(η̂) + (η − η̂)L′(η̂)
= L(η, η̂)− L(η)



Point-wise Regret is a Bregman Divergence

[Buja et al., 2005]

Bf (η, η̂) = L(η, η̂)− L(η)

for f = -L



Bregman and Statistical Information

Bregman Info = Statistical Info

• Binary mixture (π, P, Q) = (η, M)

when f = -U

Bf (η(X)) = ∆U(η,M)



Bregman and Statistical Information

Bregman Info = Statistical Info

• Binary mixture (π, P, Q) = (η, M)

when f = -U

Proof

Bf (η(X)) = ∆U(η,M)

Bf (η(X)) = EM [Bf (η(X),EM [η(X)])]



Bregman and Statistical Information

Bregman Info = Statistical Info

• Binary mixture (π, P, Q) = (η, M)

when f = -U

Proof

Bf (η(X)) = ∆U(η,M)

Bf (η(X)) = EM [Bf (η(X),EM [η(X)])]

= EM [f (η(X))− f (π)
−(η(X)− π)f ′(π)]



Bregman and Statistical Information

Bregman Info = Statistical Info

• Binary mixture (π, P, Q) = (η, M)

when f = -U

Proof

Bf (η(X)) = ∆U(η,M)

Bf (η(X)) = EM [Bf (η(X),EM [η(X)])]

= EM [f (η(X))− f (π)
−(η(X)− π)f ′(π)]

= EM [f (η(X))]− f (π)− 0



Bregman and Statistical Information

Bregman Info = Statistical Info

• Binary mixture (π, P, Q) = (η, M)

when f = -U

Proof

Bf (η(X)) = ∆U(η,M)

Bf (η(X)) = EM [Bf (η(X),EM [η(X)])]

= EM [f (η(X))− f (π)
−(η(X)− π)f ′(π)]

= EM [f (η(X))]− f (π)− 0

= U(π)− EM [U(η(X))]



Bregman and Statistical Information

Bregman Info = Statistical Info

• Binary mixture (π, P, Q) = (η, M)

when f = -U

Proof

Bf (η(X)) = ∆U(η,M)

Bf (η(X)) = EM [Bf (η(X),EM [η(X)])]

= EM [f (η(X))− f (π)
−(η(X)− π)f ′(π)]

= EM [f (η(X))]− f (π)− 0

= U(π)− EM [U(η(X))]
= U(EM [η(X)])− EM [U(η(X))]
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Bregman and Statistical Information

Bregman Info = Statistical Info

• Binary mixture (π, P, Q) = (η, M)

when f = -U

Proof

Information and Proper Losses

• Savage’s Theorem implies L is 
concave for proper scoring rules

‣ Choosing U = L gives a 
measure of information in the 
mixture (π, P, Q) = (η, M)

• Maximum reduction in risk 
obtained by knowing posterior 

Bf (η(X)) = ∆U(η,M)

∆L(η,M) = EM [L(π)− L(η)]
= L(π,M)− L(η,M)

Bf (η(X)) = EM [Bf (η(X),EM [η(X)])]

= EM [f (η(X))− f (π)
−(η(X)− π)f ′(π)]

= EM [f (η(X))]− f (π)− 0

= U(π)− EM [U(η(X))]
= U(EM [η(X)])− EM [U(η(X))]
= ∆U(η,M)



Bregman Info = Statistical Info

for f = -U = -L

Can be interpreted as 
maximal reduction in risk

Bf (η(X)) = ∆U(η,M) = ∆L(η,M)



Statistical Information and f-Divergence

Binary Mixtures & Experiments

• (P,Q) vs. (π, P, Q) = (η, M)

• For each π there is a mapping 
between dP/dQ and η

where 

f-Divergence to Information

• If 
then

for all binary mixtures (π, P, Q)

Information to f-Divergence

• If
then

for all binary mixtures (π, P, Q) 

η =
πdP

dM

=
πdP

πdP + (1− π)dQ

=
λ

λ+ 1

λ =
π

(1− π)
dP

dQ

[Österreicher & Vajda, 1993]
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Binary Mixtures & Experiments

• (P,Q) vs. (π, P, Q) = (η, M)

• For each π there is a mapping 
between dP/dQ and η

where 

f-Divergence to Information

• If 
then

for all binary mixtures (π, P, Q)
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πdP
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=
λ

λ+ 1

λ =
π

(1− π)
dP

dQ

dP

dQ
=
(1− π)
π

η

(1− η)
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Statistical Information and f-Divergence

Binary Mixtures & Experiments

• (P,Q) vs. (π, P, Q) = (η, M)

• For each π there is a mapping 
between dP/dQ and η

where 

f-Divergence to Information

• If 
then

for all binary mixtures (π, P, Q)

Information to f-Divergence

• If
then

for all binary mixtures (π, P, Q) 

η =
πdP

dM

=
πdP

πdP + (1− π)dQ

=
λ

λ+ 1

λ =
π

(1− π)
dP

dQ

dP

dQ
=
(1− π)
π

η

(1− η)

f π(t) = L(π)− (πt + 1− π)L
(

πt

πt + 1− π

)

If π(P,Q) = ∆L(η,M)

Lπ(η) = −
1− η
1− π f

(
1− π
π

η

1− η

)

If (P,Q) = ∆Lπ(η,M)

[Österreicher & Vajda, 1993]



f-Divergence = Statistical Info

[Österreicher & Vajda, 1993]

for binary mixtures (π,P,Q) 
when f = -L 

(plus a map to/from [0,1])

If (P,Q) = ∆Lπ(η,M)



The acts of the mind, wherein it exerts its power over 
simple ideas, are chiefly these three: 

1. Combining several simple ideas into one 
compound one, and thus all complex ideas are made. 

2. The second is bringing two ideas, whether simple or 
complex, together, and setting them by one another so 
as to take a view of them at once, without uniting 
them into one, by which it gets all its ideas of relations. 

3. The third is separating them from all other ideas 
that accompany them in their real existence: this is called 
abstraction, and thus all its general ideas are made.

John Locke (1632-1704)
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Weighted Integral Representations



Representations of Functions

Functions as “Sums” of Points

• A function f can be described by 
its values at each point

where δu(x) := !u = x"

f (x) =
∑

u

fu δu(x)

+ + + +



Representations of Functions

Functions as “Sums” of Points

• A function f can be described by 
its values at each point

where 

Functions as Sums of Functions 

• Can also describe f as a sum of 
“simple” functions

(e.g., Fourier analysis)δu(x) := !u = x"

f (x) =
∑

u

fu δu(x) f (x) =
∑

i

wi φi(x)

+ +
+ + + +



Integral Representation of f-Divergence

Taylor Integral Representation f-Divergence

Linear Term Simple Weights

If (P,Q) = EQ
[
f

(
dP

dQ

)]
f (t) = Λf (t) +

∫ b

a
gs(t) f

′′(s) ds

[Liese & Vajda et al., 2006]

gs(t) = !s ≥ t0"(t − s)+ + !s < t0"(s − t)+



Integral Representation of f-Divergence

Taylor Integral Representation f-Divergence
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Integral Representation of Proper Losses

Taylor Integral Representation

Linear Term Simple Weights

f (t) = Λf (t) +

∫ b

a
gs(t, t0) f

′′(s) ds

gs(t, t0) = !s ≥ t0"(t − s)+ + !s < t0"(s − t)+

[Schervish, 1989][Shuford et al., 1966] [Buja et al., 2005] [Lambert et al., 2008]
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Linear Term Simple Weights

L(η, η̂) = L(η̂) + (η − η̂)L′(η̂)

f (t) = Λf (t) +

∫ b

a
gs(t, t0) f

′′(s) ds

gs(t, t0) = !s ≥ t0"(t − s)+ + !s < t0"(s − t)+

[Schervish, 1989][Shuford et al., 1966] [Buja et al., 2005] [Lambert et al., 2008]



Integral Representation of Proper Losses

Taylor Integral Representation

Savage’s Theorem

• Given concave L the loss is

Int. Representation of Bayes Risk
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Taylor Integral Representation

Savage’s Theorem

• Given concave L the loss is

Int. Representation of Bayes Risk

Int. Representation of Risk
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• Assuming L(0) = L(1) = 0
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Integral Representation of Proper Losses

Weight Function

Primitives

!(y , η̂) =

∫ 1

0
!c(y , η̂)w(c) dc

w(c) = −L′′(c)
!c(y , η̂) = (1− c)!y = 1"!c ≥ η̂"+ c!y = 0"!η̂ > c"

Cost of 
False Negative

Cost of
False Positive

[Schervish, 1989]



Integral Representation Corollaries

Point-wise Risk

L(η, η̂) = Ey∼η
[∫ 1
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∫ 1
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Lc(η, η̂)w(c) dc
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Integral Representation Corollaries

Point-wise Risk

Point-wise Bayes Risk

Point-wise Regret

Risk

Bayes Risk

Statistical Information
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Cost-Weighted Misclassification Loss

0 0.5 10 0.5 1 0 0.5 1

!c(y , η̂) = (1− c)!y = 1"!c ≥ η̂"+ c!y = 0"!η̂ > c"

c = 0.25 c = 0.5 c = 0.75



0 0.5 1

Example - Square Loss

0 0.5 1 0 0.5 1 0 0.5 1

!(y , η̂) =

∫ 1

0
!c(y , η̂)w(c) dc

!(y , η̂) = (y − η̂)2

0 0.5 1

w(c) = 1



Example - Asymmetric Log Loss

0 0.5 1 0 0.5 1 0 0.5 1

!(y , η̂) =

∫ 1

0
!c(y , η̂)w(c) dc

0 0.5 1

0 0.5 1

w(c) =
1

c2(1− c)



Translating Weights

• The earlier connection between f-
divergence and statistical 
information suggests that their 
weight functions are related

If =
∫ 1

0
Ifπ γ(π) dπ∆L =

∫ 1

0
∆Lc w(c) dc

Primitives

Weights



Translating Weights

• The earlier connection between f-
divergence and statistical 
information suggests that their 
weight functions are related

• Some straight-forward algebra 
gives and explicit translation

‣ Dependence on prior π
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Translating Weights

• The earlier connection between f-
divergence and statistical 
information suggests that their 
weight functions are related

• Some straight-forward algebra 
gives and explicit translation

‣ Dependence on prior π

‣ Cubic term due to mapping 
from [0,∞) to [0,1]

• Cost-weighted loss relates to a 
prior-sensitive variational 
divergence

wπ(c) =
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)
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Graphical Representations



ROC Curves

• A threshold t is applied to a test 
statistic    to create a statistical test

‣ Contingency table for each test 

• Plotting 

as t varies gives an ROC curve for 

• NP Lemma implies that optimal ROC 
curve is obtained when  

τ

(TP, FP ) = (P (τ ≥ t), Q(τ ≥ t))
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Area Under the ROC Curve (AUC)

• A natural measure of quality for a test 
statistic is the area under the ROC 
curve

• Ranking interpretation

‣ Probability of misranking instance 
from Q ahead of one from P

‣ Equivalent to the Mann-Whitney-
Wilcoxon statistic
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Area Under the ROC Curve (AUC)

• A natural measure of quality for a test 
statistic is the area under the ROC 
curve

• Ranking interpretation

‣ Probability of misranking instance 
from Q ahead of one from P

‣ Equivalent to the Mann-Whitney-
Wilcoxon statistic

• Is maximal AUC an f-divergence?

‣ No...

‣ ...but it is V(PxQ, QxP)
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Risk Curves

• A plot of cost-sensitive risk for each 
value of the cost parameter

‣ Shape of curve dependent on 
mixing probability π

Lc

c
10

!

"

Lc(η)

Lc(η, η̂)

[Drummond & Holte, 2006]



Risk Curves

• A plot of cost-sensitive risk for each 
value of the cost parameter

‣ Shape of curve dependent on 
mixing probability π

• Weighted area between bottom curve 
and “tent” is statistical information

‣ Divergence bounds

Lc

c
10

!

"

Lc(η)

Lc(η, η̂)

[Drummond & Holte, 2006]
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Risk Curves

• A plot of cost-sensitive risk for each 
value of the cost parameter

‣ Shape of curve dependent on 
mixing probability π

• Weighted area between bottom curve 
and “tent” is statistical information

‣ Divergence bounds

• Weighted area between two curves at 
bottom is regret 

‣ Surrogate loss bounds

Lc

c
10

!

"

Lc(η)

Lc(η, η̂)

[Drummond & Holte, 2006]

∆Lc(η,M)

Bc(η, η̂)



Risk Curves
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ROC Curves to Risk Curves and Back
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Variational Representations



Variational Form of f-Divergence

• Convex functions are invariant under the LF bidual

f (t) = f ∗∗(t) = sup
t∗∈R
{t∗.t − f ∗(t∗)}

[Nguyen et al., 2005]



Variational Form of f-Divergence

• Convex functions are invariant under the LF bidual

• Substitute into f-divergence definition

f (t) = f ∗∗(t) = sup
t∗∈R
{t∗.t − f ∗(t∗)}

[Nguyen et al., 2005]

If (P,Q) = EQ
[
sup
t∗∈R

{
t∗.
dP

dQ
− f ∗(t∗)

}]

=

∫

X
sup
t∗∈R
{t∗dP − f ∗(t∗)dQ}

= sup
r :X→R

∫

X
r dP − f ∗(r) dQ

= sup
r :X→R

EP [r ]− EQ[f ∗(r)]



Variational Form of f-Divergence

• Convex functions are invariant under the LF bidual

• Substitute into f-divergence definition

• Variational form does not use dP/dQ

‣ Easier estimation

f (t) = f ∗∗(t) = sup
t∗∈R
{t∗.t − f ∗(t∗)}

[Nguyen et al., 2005]

If (P,Q) = EQ
[
sup
t∗∈R

{
t∗.
dP

dQ
− f ∗(t∗)

}]

=

∫

X
sup
t∗∈R
{t∗dP − f ∗(t∗)dQ}

= sup
r :X→R

∫

X
r dP − f ∗(r) dQ

= sup
r :X→R

EP [r ]− EQ[f ∗(r)]



Variational Representation of f-Divergence

[Nguyen et al., 2005]

If (P,Q) = sup
r :X→R

EP [r ]− EQ[f ∗(r)]



The acts of the mind, wherein it exerts its power over 
simple ideas, are chiefly these three: 

1. Combining several simple ideas into one 
compound one, and thus all complex ideas are made. 

2. The second is bringing two ideas, whether simple or 
complex, together, and setting them by one another so 
as to take a view of them at once, without uniting 
them into one, by which it gets all its ideas of relations. 

3. The third is separating them from all other ideas 
that accompany them in their real existence: this is called 
abstraction, and thus all its general ideas are made.

John Locke (1632-1704)



Part III: Bounds and Applications
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In our theories, we rightly search for 
unification, but real life is both 
complicated and short, and we make 
no mockery of honest adhockery.

 I.J. Good (1916-)



Maximum Mean Discrepancy 



Maximum Mean Discrepancy (MMD)

• A special case of the variational form 
of f-divergence is when f(t) = |t - 1|

‣ Restriction to [-1,1] occurs due to 
form of f*(t)

• Assume r is from the unit ball in a 
RKHS for the kernel k with feature 
map ϕ and define

• Easy test statistic to estimate since

[Gretton et al., 2007]
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• A special case of the variational form 
of f-divergence is when f(t) = |t - 1|

‣ Restriction to [-1,1] occurs due to 
form of f*(t)

• Assume r is from the unit ball in a 
RKHS for the kernel k with feature 
map ϕ and define

• Easy test statistic to estimate since

f ∗(t) =

{
t t ∈ [−1, 1]
+∞ otherwise

[Gretton et al., 2007]
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r :X→[−1,1]

EP [r ]− EQ[r ]



Maximum Mean Discrepancy (MMD)

• A special case of the variational form 
of f-divergence is when f(t) = |t - 1|

‣ Restriction to [-1,1] occurs due to 
form of f*(t)

• Assume r is from the unit ball in a 
RKHS for the kernel k with feature 
map ϕ and define

f ∗(t) =

{
t t ∈ [−1, 1]
+∞ otherwise

[Gretton et al., 2007]

V (P,Q) = sup
r :X→[−1,1]

EP [r ]− EQ[r ]

µ[P ] := EP [φ(x)] = EP [k(x, ·)]

V (P,Q) = ‖µ(P )− µ(Q)‖H

0

Density

X
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H
µ
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Maximum Mean Discrepancy (MMD)

• A special case of the variational form 
of f-divergence is when f(t) = |t - 1|

‣ Restriction to [-1,1] occurs due to 
form of f*(t)

• Assume r is from the unit ball in a 
RKHS for the kernel k with feature 
map ϕ and define

• Easy test statistic to estimate since

f ∗(t) =

{
t t ∈ [−1, 1]
+∞ otherwise

[Gretton et al., 2007]

V (P,Q) = sup
r :X→[−1,1]

EP [r ]− EQ[r ]

µ[P ] := EP [φ(x)] = EP [k(x, ·)]

V (P,Q) = ‖µ(P )− µ(Q)‖H

0

Density

X

dQ

dP

H
µ

P

Q

V

≈
1

m2

m∑

i ,j=1

k(xi , xj) +
1

n2

n∑

i ,j=1

k(yi , yj)−
2

mn

m∑

i=1

n∑

j=1

k(xi , yj)

‖µ(P )− µ(Q)‖H = EP×P k(x, x ′) + EQ×Qk(y , y ′)− 2EP×Qk(x, y)
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Pinsker’s Inequality

Pinsker’s Inequality

• A lower bound on KL divergence 
in terms of variational divergence

• Information about the value of V 
constraints the possible values 
of KL

Better Pinsker Bounds

• The above inequality is not tight

• What we really want is

KL(P,Q) ≥ 2V 2(P,Q)

L(V ) = inf
V (P,Q)=V

KL(P,Q)

0.0 0.5 1.0 1.5 2.0

0
2

4
6

8

V(P,Q)

K
L
(P
,Q
)

2V2(P,Q)

L(V(P,Q))?
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Primitive vs Composite

• V is “primitive”

• KL is “composite”

General Bound

• Can we get tight bounds for any 
f-divergence given V?

‣ Yes we can!

• V gives “partial information” 
about separation of P and Q
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Primitive vs Composite

• V is “primitive”

• KL is “composite”

General Bound

• Can we get tight bounds for any 
f-divergence given V?

‣ Yes we can!

• V gives “partial information” 
about separation of P and Q

h2 ≥ 2−
√
4− V 2

J ≥ 2V ln
(
2 + V

2− V

)

Ψ ≥
8V 2

4− V 2

T ≥ ln
(

4√
4− V 2

)
− ln 2

χ2 ≥

{
V 2 V < 1
V
2−V V ≥ 1

Hellinger

Jeffreys

Symmetric   χ2

AG Mean

Pearson   χ2

Divergence Variational Bound
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Proof Sketch

• f-divergence is a weighted sum 
of primitive statistical information

‣ This is just an area on a risk 
diagram

• Value at one point bounds the 
total area

Going Further

• This proof is amenable to 
knowing multiple primitive values
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Generalised Pinsker Inequalities

Proof Sketch

• f-divergence is a weighted sum 
of primitive statistical information

‣ This is just an area on a risk 
diagram

• Value at one point bounds the 
total area

Going Further

• This proof is amenable to 
knowing multiple primitive values
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Surrogate Loss

Surrogate Loss

• 0-1 loss is notoriously hard to 
optimise directly

• One solution is to optimise a 
surrogate - an upper bound on 
0-1 loss

Surrogate Bounds

• Want guarantees that minimising 
the surrogate regret minimises 
the 0-1 regret

[Bartlett et al., 2006]
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Main Result

• Suppose we know                      . Then for an arbitrary proper loss, its 
regret satisfies

where

Bc0(η, η̂) = α

B(η, η̂) ≥ min(ψ(c0,α),ψ(c0,−α))

ψ(c0,α) = L(c0)− L(c0 − α) + αL′(c0)



Surrogate Loss Bounds

Main Result

• Suppose we know                      . Then for an arbitrary proper loss, its 
regret satisfies

where

Corollary

• For a symmetric loss where L(c-½) = L(½-c), then if

Bc0(η, η̂) = α

B(η, η̂) ≥ min(ψ(c0,α),ψ(c0,−α))

ψ(c0,α) = L(c0)− L(c0 − α) + αL′(c0)

B(η, η̂) ≥ L(1/2)− L(1/2− α)

B 1
2
(η, η̂) = α



Surrogate Bound Example

Exponential Loss

• Let 

[Bartlett et al., 2006]

!(y , η̂) =
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η̂
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√
1−η̂
η̂ y = 1
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Surrogate Bound Example

Exponential Loss

• Let 

• Then

[Bartlett et al., 2006]

!(y , η̂) =






√
η̂
1−η̂ y = 0

√
1−η̂
η̂ y = 1

L(η, η̂) = (1− η)

√
η̂

1− η̂ + η

√
1− η̂
η̂



Surrogate Bound Example

Exponential Loss

• Let 

• Then

• And so                                   which is symmetric

[Bartlett et al., 2006]

!(y , η̂) =






√
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√
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η̂ y = 1

L(η, η̂) = (1− η)

√
η̂

1− η̂ + η

√
1− η̂
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L(η) = 2
√
η(1− η)



Surrogate Bound Example

Exponential Loss

• Let 

• Then

• And so                                   which is symmetric

• Thus, if                        then the exponential regret satisfies

[Bartlett et al., 2006]
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Surrogate Bound Example

Exponential Loss

• Let 

• Then

• And so                                   which is symmetric

• Thus, if                        then the exponential regret satisfies

• And so

[Bartlett et al., 2006]

!(y , η̂) =






√
η̂
1−η̂ y = 0

√
1−η̂
η̂ y = 1

L(η, η̂) = (1− η)

√
η̂

1− η̂ + η

√
1− η̂
η̂

L(η) = 2
√
η(1− η)

B(η, η̂) ≥ 1−
√
1− 4α2

B 1
2
(η, η̂) = α

B 1
2
(η, η̂) ≤

1

2

√
(1− B(η, η̂))2 − 1
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• And so when                        we know that 

• For a general proper loss, recall its regret can be expressed as 
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Proof of Surrogate Loss Bound

• First recall that

• And so when                        we know that 

• For a general proper loss, recall its regret can be expressed as 

• In the first case, when                                   we see 

Bc0(η, η̂) = |η − c0|!min(η, η̂) ≤ c0 < max(η, η̂)"

B(η, η̂) =

∫ max(η,η̂)

min(η,η̂)
|η − c |w(c) dc

Bc0(η, η̂) = α

η =

{
c0 + α, η̂ ≤ c0 < η
c0 − α, η ≤ c0 < η̂

η̂ ≤ c0 < η = c0 + α

B(η, η̂) =

∫ η

η̂
(c0 + α− c)w(c) dc

≥
∫ c0+α

c0

(c0 + α− c)w(c) dc



Proof of Surrogate Loss Bound (continued)

• Thus, using w(c) = -L’’(c), and integrating by parts, we see

• The case when                                   is almost identical 

B(η, η̂) ≥
∫ c0+α

c0

(c0 + α− c)w(c) dc

= −
∫ c0+α

c0

(c0 + α− c)L′′(c) dc

= −[(c0 + α− c)L′(c)]c0+αc0 −
∫ c0+α

c0

L′(c) dc

= αL′(c0)− L(c0 + α) + L(c0)

c0 − α = η ≤ c0 < η̂



It is the snobbishness of the young to 
suppose that a theorem is trivial 
because the proof is trivial

 Henry Whitehead (1904-1960)
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f-Divergence and Bayes Risk

• Recall that 

• For good estimators
and so

If (P,Q) = L(π,M)− L(η,M)
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If (P,Q) ≈ K − L(η, η̂,M)
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f-Divergence Estimation

f-Divergence and Bayes Risk

• Recall that 

• For good estimators
and so

• Furthermore, 

where the ci are importance 
sampled using w

If (P,Q) = L(π,M)− L(η,M)

L(η, η̂,M) ≈ L(η,M)

If (P,Q) ≈ K − L(η, η̂,M)
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0
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In theory, there is no difference 
between theory and practice. But, in 
practice, there is.

 Jan L. A. van de Snepscheut (1953-1994)
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f (t) = f (t0) + (t − t0)f ′(t0) +
∫ b

a
g(t, s) f ′′(s) ds

Integral Form of the Taylor Expansion

where g(t, s) =

{
(t − s) t0 ≤ s < t
(s − t) t ≤ s < t0

Jensen’s Inequality

if and only if
 

f is convex

JP [f (x)] := EP [f (x)]− f (EP [x ]) ≥ 0
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Summary - The Problems

Hypothesis Testing

• Given samples from P or Q 
decide whether samples were 
drawn from P or Q

‣ Divergence / MMD

Classification

• Given samples from a π-mixture 
of P and Q decide, for each 
instance x, whether x was 
drawn from P or Q

‣ 0-1 Misclassification Loss

Probability Estimation

• Given samples from a π-mixture 
of P and Q estimate, for each 
instance x, the probability x 
was drawn from P (or Q)

‣ Proper Scoring Rules

Bipartite Ranking

• Given samples from a π-mixture 
of P and Q sort instances drawn 
from P ahead of those from Q

‣ Area under ROC curve



Summary - The Representations

Weighted Integral Representation

• Taylor’s Theorem

• f-Divergences

• Proper Scoring Rules

Variational Representation

• Legendre-Fenchel Dual

• f-Divergence

f (t) = Λf (t) +

∫ b

a
gs(t) f

′′(s) ds

!c(y , η̂) =

∫ 1

0
!c(y , η̂)w(c) dc

If (P,Q) =
∫ 1

0
Ifπ(P,Q) γ(π) dπ If (P,Q) = sup

r :X→R
EP [r ]− EQ[f ∗(r)]

f (t) = f ∗∗(t) = sup
t∗∈R
{t∗.t − f ∗(t∗)}



Summary - The Relationships

Information

• Bregman Info = Stat Info 

• Information is a Jensen gap

Divergence

• f-divergence is a Jensen gap

Risk and Regret

• Regret for proper losses is a 
Bregman divergence

Risk and Information

•  Info = Max. reduction in risk

Information & Divergence

• Statistical Info = f-divergence 
(given mixing prior π)

• Explicit mapping of weights

Divergence and AUC

• Maximal AUC is not an f-
divergence
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Conclusions

Convexity and Expectations

• Convexity = Closure under 
expectation

• For Jensen Gaps

‣ convexity => non-negativity

Point-wise Bayes Risk

• Fundamental function in 
representation results

• Simple to derive from loss

Divergence and Risk

• Two sides of the same coin

Taylor Integral Expansion

• Implies weighted integral of 
piece-wise linear functions

‣ Convexity => positive weights

‣ Piece-wise linear = primitives

Problems, not just Techniques

• Insight by abstracting away from 
samples and understanding 
relationships



Fundamental progress has to do with 
the reinterpretation of basic ideas

 Alfred North Whitehead (1961-1947)



Distributions

Binary 
Experiments

f-Divergence Statistical
Tests

Neyman-Pearson
Lemma

Terra Statistica

Bregman
InformationLoss 

Functions

Risk
Regret

Statistical
Information

Class Probability 
Estimation

ROC/AUC

Variational

Integral

Graphical

Representations

MMD
Pinsker 
Bounds

Surrogate
Regret Bounds

Probing 
Reduction

Applications

Convexity

Taylor’s
Theorem

Jensen’s
Inequality

Background

LF Dual

Thank You!
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