Information, Divergence and Risk for Binary Classification

Mark Reid* [mark.reid@anu.edu.au]
Research School of Information Science and Engineering
The Australian National University, Canberra, ACT, Australia

Machine Learning Summer School

Thursday, 29 ${ }^{\text {th }}$ January 2009
the australian national university

Brooke Taylor
(1685-1731)

Taylor \mathcal{E} Jensen's

Most Excellent Adventure

through

Statistical Learning Theory

Introduction

The Blind Men \& The Elephant

The Blind Men \& The Elephant

Mathematics is the art of giving the same name to different things.

What's in it for me?

What to expect

- Definitions
- Relationships
- Representations
- Proofs

What's in it for me?

What to expect

- Definitions
- Relationships
- Representations
- Proofs

What not to expect

- Algorithms
- Models
- Data
- Technicalities

What's in it for me?

What to expect

- Definitions
- Relationships
- Representations
- Proofs

What not to expect

- Algorithms
- Models
- Data
- Technicalities

Practice

Terra Statistica

Terra Statistica

Terra Statistica

Terra Statistica

Part I: Convexity, Binary Experiments \& Classification

Convexity

Convex Sets

- We say $\mathcal{S} \subseteq \mathbb{R}^{d}$ is a convex set if it is closed under convex combination. That is, for any n , any $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n} \subset \mathcal{S}$ and weights $\lambda_{1}, \ldots, \lambda_{n} \geq 0$ such that $\sum_{i=1}^{n} \lambda_{i}=1$

$$
\sum_{i=1}^{n} \lambda_{i} x_{i} \in \mathcal{S}
$$

Convex Sets

- We say $\mathcal{S} \subseteq \mathbb{R}^{d}$ is a convex set if it is closed under convex combination.
That is, for any n, any $x_{1}, \ldots, x_{n} \subset \mathcal{S}$ and weights $\lambda_{1}, \ldots, \lambda_{n} \geq 0$ such that $\sum_{i=1}^{n} \lambda_{i}=1$

$$
\sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i} \in \mathcal{S}
$$

- Suffices to show for all $\lambda \in[0,1]$ and $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{S}$ that

$$
\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2} \in \mathcal{S}
$$

Convex Sets

- We say $\mathcal{S} \subseteq \mathbb{R}^{d}$ is a convex set if it is closed under convex combination.
That is, for any n , any $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n} \subset \mathcal{S}$ and weights $\lambda_{1}, \ldots, \lambda_{n} \geq 0$ such that $\sum_{i=1}^{n} \lambda_{i}=1$

$$
\sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i} \in \mathcal{S}
$$

- Suffices to show for all $\lambda \in[0,1]$ and $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{S}$ that

$$
\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2} \in \mathcal{S}
$$

- Convex = "closed under expectation"

Convex Functions

- The epigraph of a function is the set of points that lie above it: $\operatorname{epi}(f):=\left\{(\mathbf{x}, y): \mathbf{x} \in \mathbb{R}^{d}, y \geq f(\mathbf{x})\right\}$
- A function is convex if its epigraph is a convex set
- A convex function is necessarily continuous

Taylor's Theorem

Integral Form of Taylor Expansion

- Let $\left[t_{0}, t\right]$ be an interval on which f is twice differentiable. Then

$$
f(t)=f\left(t_{0}\right)+\left(t-t_{0}\right) f^{\prime}\left(t_{0}\right)+\int_{t_{0}}^{t}(t-s) f^{\prime \prime}(s) d s
$$

Taylor's Theorem

Integral Form of Taylor Expansion

- Let $\left[t_{0}, t\right]$ be an interval on which f is twice differentiable. Then

$$
f(t)=f\left(t_{0}\right)+\left(t-t_{0}\right) f^{\prime}\left(t_{0}\right)+\int_{t_{0}}^{t}(t-s) f^{\prime \prime}(s) d s
$$

Corollary

- Let f be twice differentiable on $[a, b]$. Then, for all t in $[a, b]$,

$$
f(t)=f\left(t_{0}\right)+\left(t-t_{0}\right) f^{\prime}\left(t_{0}\right)+\int_{a}^{b} g(t, s) f^{\prime \prime}(s) d s
$$

where

$$
g(t, s)= \begin{cases}(t-s) & t_{0} \leq s<t \\ (s-t) & t \leq s<t_{0} \\ 0 & \text { otherwise }\end{cases}
$$

- Differentiability can be removed if f^{\prime} and $f^{\prime \prime}$ are interpreted distributionally

Integral Form of the Taylor Expansion

$$
f(t)=f\left(t_{0}\right)+\left(t-t_{0}\right) f^{\prime}\left(t_{0}\right)+\int_{a}^{b} g(t, s) f^{\prime \prime}(s) d s
$$

where

$$
\begin{aligned}
g(t, s) & =(t-s) \llbracket t_{0} \leq s<t \rrbracket+(s-t) \llbracket t \leq s<t_{0} \rrbracket \\
\llbracket p \rrbracket & = \begin{cases}1, & p \text { is true } \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Bregman Divergence

- A Bregman divergence is a general class of "distance" measures defined using convex functions

$$
B_{f}\left(t, t_{0}\right):=f(t)-f\left(t_{0}\right)-\left\langle t-t_{0}, \nabla f\left(t_{0}\right)\right\rangle
$$

Bregman Divergence

- A Bregman divergence is a general class of "distance" measures defined using convex functions
$B_{f}\left(t, t_{0}\right):=f(t)-f\left(t_{0}\right)-\left\langle t-t_{0}, \nabla f\left(t_{0}\right)\right\rangle$
- In 1-d case, $B_{f}\left(t, t_{0}\right)$ is the non-linear part of the Taylor expansion of f

$$
B_{f}\left(t, t_{0}\right):=\int_{t_{0}}^{t}(t-s) f^{\prime \prime}(s) d s
$$

Jensen’s Inequality

Jensen Gap

- For convex $f: \mathbb{R} \rightarrow \mathbb{R}$ and distribution P define

$$
\mathbb{J}_{P}[f(x)]:=\mathbb{E}_{p}[f(x)]-f\left(\mathbb{E}_{P}[x]\right)
$$

Jensen's Inequality

Jensen Gap

- For convex $f: \mathbb{R} \rightarrow \mathbb{R}$ and distribution P define
$\mathbb{J}_{P}[f(x)]:=\mathbb{E}_{\rho}[f(x)]-f\left(\mathbb{E}_{\rho}[x]\right)$

Jensen's Inequality

- The Jensen Gap is non-negative for all P if and only if f is convex

Jensen's Inequality

Jensen Gap

- For convex $f: \mathbb{R} \rightarrow \mathbb{R}$ and distribution P define

$$
\mathbb{J}_{P}[f(x)]:=\mathbb{E}_{p}[f(x)]-f\left(\mathbb{E}_{P}[x]\right)
$$

Jensen's Inequality

- The Jensen Gap is non-negative for all P if and only if f is convex

Jensen's Inequality

$$
\mathbb{J}_{P}[f(x)]:=\mathbb{E}_{P}[f(x)]-f\left(\mathbb{E}_{P}[x]\right) \geq 0
$$

if and only if
f is convex

The Legendre-Fenchel Transform

- The LF Transform generalises the notion of a derivative to nondifferentiable functions

$$
f^{*}\left(t^{*}\right)=\sup _{t \in \mathbb{R}^{d}}\left\{\left\langle t, t^{*}\right\rangle-f(t)\right\}
$$

The Legendre-Fenchel Transform

- The LF Transform generalises the notion of a derivative to nondifferentiable functions

$$
f^{*}\left(t^{*}\right)=\sup _{t \in \mathbb{R}^{d}}\left\{\left\langle t, t^{*}\right\rangle-f(t)\right\}
$$

- The double LF transform or biconjugate

$$
f^{* *}(t)=\sup _{t^{*} \in \mathbb{R}^{d}}\left\{\left\langle t^{*}, t\right\rangle-f^{*}\left(t^{*}\right)\right\}
$$

is involutive for convex f. That is,

$$
f^{* *}(t)=f(t)
$$

Representations of Convex Functions

Integral Representation

- Via Taylor's Theorem

$$
f(t)=\Lambda_{f}(t)+\int_{a}^{b} g(t, s) f^{\prime \prime}(s) d s
$$

where

$$
\begin{aligned}
& \Lambda_{f}(t)=f\left(t_{0}\right)+f^{\prime}\left(t_{0}\right)\left(t-t_{0}\right) \\
& g(t, s)= \begin{cases}(t-s)_{+} & s \geq t_{0} \\
(s-t)_{+} & s<t_{0}\end{cases}
\end{aligned}
$$

Variational Representation

- Via Fenchel Dual

$$
f(t)=\sup _{t^{*} \in \mathbb{R}}\left\{t . t^{*}-f^{*}\left(t^{*}\right)\right\}
$$

where

$$
f^{*}(t)=\sup _{t \in \mathbb{R}}\left\{t . t^{*}-f(t)\right\}
$$

Terra Statistica

Terra Statistica

Binary Experiments and Measures of Divergence

Binary Experiments

- A binary experiment is a pair of distributions (P, Q) over the same space \mathcal{X}
- We will think of P as the positive and Q as the negative distribution

Discrete Space

Continuous Space

Binary Experiments

- A binary experiment is a pair of distributions (P, Q) over the same space \mathcal{X}
- We will think of P as the positive and Q as the negative distribution
- Given samples from \mathcal{X}, how can we tell if they came from P or Q ?
- Hypothesis Testing

Discrete Space

Continuous Space

Binary Experiments

- A binary experiment is a pair of distributions (P, Q) over the same space \mathcal{X}
- We will think of P as the positive and Q as the negative distribution
- Given samples from \mathcal{X}, how can we tell if they came from P or Q ?
- Hypothesis Testing
- The "further apart" P and Q are the easier this will be
- How do we define distance for distributions?

Discrete Space

Continuous Space

Test Statistics

- We would like our distances to not be dependent on the topology of the underlying space
τ
\mathcal{X}

Test Statistics

- We would like our distances to not be dependent on the topology of the underlying space
- A test statistic τ maps each point in \mathcal{X} to a point on the real line
- Usually a function of the distribution

Test Statistics

- We would like our distances to not be dependent on the topology of the underlying space
- A test statistic τ maps each point in \mathcal{X} to a point on the real line
- Usually a function of the distribution
- A statistical test can be obtained by thresholding a test statistic

$$
r(x)=\llbracket \tau(x) \geq \tau_{0} \rrbracket
$$

- Each threshold partitions space into
 positive and negative parts

Statistical Power and Size

Contingency Table

- True Positive Rate $P\left(\tau \geq \tau_{0}\right) \quad=$ "Power"
- False Positive Rate $Q\left(\tau \geq \tau_{0}\right)=$ "Size"
- True Negative Rate $Q\left(\tau<\tau_{0}\right)$
- False Negative Rate $P\left(\tau<\tau_{0}\right)$

		Actual Class	
		+	-
$\begin{aligned} & 0 \\ & \tilde{0} \\ & 0 \\ & 0 \\ & \hline 0 \\ & .0 \\ & \hline \mathbf{0} \\ & \hline 0 . \end{aligned}$	+		False Positives FP
	-	False Negatives FN	True Negatives TN

The Neyman-Pearson Lemma

Likelihood ratio

$$
\tau^{*}(x)=\frac{d P}{d Q}(x)
$$

The Neyman-Pearson Lemma

Likelihood ratio

$$
\tau^{*}(x)=\frac{d P}{d Q}(x)
$$

Neyman-Pearson Lemma (1933)

- The the likelihood ratio is the uniformly most powerful (UMP) statistical test
- Always has the largest TP Rate for any given FP rate

Csiszár f-Divergence

- f-divergence of \mathbf{P} from \mathbf{Q} is the Q-average of the likelihood ratio transformed by the function f

$$
\begin{aligned}
\mathbb{I}_{f}(P, Q) & =\mathbb{E}_{Q}\left[f\left(\tau^{*}\right)\right] \\
& =\int_{\mathcal{X}} f\left(\frac{d P}{d Q}\right) d Q
\end{aligned}
$$

- f can be seen as a penalty for $d P(x) \neq d Q(x)$

Csiszár f-Divergence

- f -divergence of \mathbf{P} from \mathbf{Q} is the Q-average of the likelihood ratio transformed by the function f
- f can be seen as a penalty for $d P(x) \neq d Q(x)$
- To be a divergence, we want
- $\mathbb{I}_{f}(P, Q) \geq 0$ for all P, Q
- $\mathbb{I}_{f}(Q, Q)=0$ for all Q

$$
\begin{aligned}
\mathbb{I}_{f}(P, Q) & =\mathbb{E}_{Q}\left[f\left(\tau^{*}\right)\right] \\
& =\int_{\mathcal{X}} f\left(\frac{d P}{d Q}\right) d Q
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{I}_{f}(P, Q) & =\mathbb{E}_{Q}\left[f\left(\frac{d P}{d Q}\right)\right] \\
& \geq f\left(\mathbb{E}_{Q}\left[\frac{d P}{d Q}\right]\right) \\
& =f(1)
\end{aligned}
$$

Csiszár f-Divergence

- \mathbf{f}-divergence of \mathbf{P} from \mathbf{Q} is the Q-average of the likelihood ratio transformed by the function f
- f can be seen as a penalty for $d P(x) \neq d Q(x)$
- To be a divergence, we want
- $\mathbb{I}_{f}(P, Q) \geq 0$ for all P, Q
- $\mathbb{I}_{f}(Q, Q)=0$ for all Q
- Jensen's inequality requries
- f convex
- $f(1)=0$

$$
\begin{aligned}
\mathbb{I}_{f}(P, Q) & =\mathbb{E}_{Q}\left[f\left(\tau^{*}\right)\right] \\
& =\int_{\mathcal{X}} f\left(\frac{d P}{d Q}\right) d Q
\end{aligned}
$$

$$
\mathbb{I}_{f}(P, Q)=\mathbb{E}_{Q}\left[f\left(\frac{d P}{d Q}\right)\right]
$$

$$
\geq f\left(\mathbb{E}_{Q}\left[\frac{d P}{d Q}\right]\right)
$$

$$
=f(1)
$$

$$
\mathbb{I}_{f}(P, Q)=\mathbb{J}_{Q}\left[f\left(\frac{d P}{d Q}\right)\right] \geq 0
$$

"Jensen Gap"

Csiszár f-Divergence

$$
\begin{aligned}
\mathbb{I}_{f}(P, Q) & =\mathbb{E}_{Q}\left[f\left(\frac{d P}{d Q}\right)\right]-f\left(\mathbb{E}_{Q}\left[\frac{d P}{d Q}\right]\right) \\
& =\mathbb{E}_{Q}\left[f\left(\frac{d P}{d Q}\right)\right]
\end{aligned}
$$

A Jensen Gap where $f(1)=0$

Examples

- Variational

$$
f(t)=|t-1|
$$

- KL-Divergence
- Hellinger

$$
f(t)=t \ln t
$$

$$
f(t)=(\sqrt{t}-1)^{2}
$$

- Pearson χ^{2}

$$
f(t)=(t-1)^{2}
$$

- Triangular

$$
f(t)=\frac{(t-1)^{2}}{t+1}
$$

Examples

Variational Divergence

$$
\begin{aligned}
& \sum_{x \in\{a, b, c\}}\left|\frac{P(x)}{Q(x)}-1\right| Q(x) \\
& =|.3-.1|+|.5-.2|+|.2-.7| \\
& =.2+.3+.5 \\
& =1
\end{aligned}
$$

Examples

Variational Divergence

$$
\begin{aligned}
& \sum_{x \in\{a, b, c\}}\left|\frac{P(x)}{Q(x)}-1\right| Q(x) \\
& \quad=|.3-.1|+|.5-.2|+|.2-.7| \\
& =.2+.3+.5 \\
& =1
\end{aligned}
$$

KL Divergence

$$
\begin{aligned}
& \sum_{x \in\{a, b, c\}} \frac{P(x)}{Q(x)} \ln \left(\frac{P(x)}{Q(x)}\right) Q(x) \\
& =.3 \ln (3)+.5 \ln (2.5)+.2 \ln (2 / 7) \\
& \approx .43
\end{aligned}
$$

Examples

Variational Divergence

$$
\begin{aligned}
& \sum_{x \in\{a, b, c\}}\left|\frac{P(x)}{Q(x)}-1\right| Q(x) \\
& \quad=|.3-.1|+|.5-.2|+|.2-.7| \\
& \quad=.2+.3+.5 \\
& \quad=1
\end{aligned}
$$

KL Divergence

$$
\begin{aligned}
& \sum_{x \in\{a, b, c\}} \frac{P(x)}{Q(x)} \ln \left(\frac{P(x)}{Q(x)}\right) Q(x) \\
& =.3 \ln (3)+.5 \ln (2.5)+.2 \ln (2 / 7) \\
& \approx .43
\end{aligned}
$$

Terra Statistica

Terra Statistica

Classification and Probability Estimation

From Hypothesis Testing to Classification

Hypothesis Testing

- Instances are either drawn from

P or Q exclusively

- The aim is to correctly decide which
- Assumed
- Binary Experiment (P, Q)
- Imposed
- Measure of divergence

From Hypothesis Testing to Classification

Hypothesis Testing

- Instances are either drawn from P or Q exclusively
- The aim is to correctly decide which
- Assumed
- Binary Experiment (P, Q)
- Imposed
- Measure of divergence

Classification / Prob. Estimation

- Instances are drawn from a mixture of P and Q
- The aim is to correctly decide which for each instance
- Assumed
- Binary Mixture (π, P, Q)
- Imposed
- Misclassification penalty

Generative and Discriminative Views

Joint Distribution

$$
(\eta, M) \longleftarrow \mathbb{P}_{\mathcal{X} \times \mathcal{Y}} \longrightarrow(\pi, P, Q)
$$

Discriminative

Generative

Generative and Discriminative Views

Joint Distribution

Generative and Discriminative Views

Joint Distribution

Loss, Risk and Regret

Loss

- Penalty $\ell(y, \hat{\eta})$ for guessing $\hat{\eta}$ when true class is y
- Classification $\hat{\eta} \in\{0,1\}$
- Prob. Estimation $\hat{\eta} \in[0,1]$

Loss, Risk and Regret

Loss

- Penalty $\ell(y, \hat{\eta})$ for guessing $\hat{\eta}$ when true class is y
- Classification $\hat{\eta} \in\{0,1\}$
- Prob. Estimation $\hat{\eta} \in[0,1]$

Point-wise Risk

- Expected point-wise loss
$L:[0,1] \times[0,1] \rightarrow \mathbb{R}$
$L(\eta, \hat{\eta})=\mathbb{E}_{\curlyvee \sim \eta \eta}[\ell(Y, \hat{\eta})]$

$$
=(1-\eta) \ell(0, \hat{\eta})+\eta \ell(1, \hat{\eta})
$$

Loss, Risk and Regret

Loss

- Penalty $\ell(y, \hat{\eta})$ for guessing $\hat{\eta}$ when true class is y
- Classification $\hat{\eta} \in\{0,1\}$
- Prob. Estimation $\hat{\eta} \in[0,1]$

Point-wise Risk

- Expected point-wise loss
$L:[0,1] \times[0,1] \rightarrow \mathbb{R}$
$L(\eta, \hat{\eta})=\mathbb{E}_{\curlyvee \sim \eta}[\ell(Y, \hat{\eta})]$

$$
=(1-\eta) \ell(0, \hat{\eta})+\eta \ell(1, \hat{\eta})
$$

Risk

- Average point-wise risk

$$
\mathbb{L}:[0,1]^{\mathcal{X}} \rightarrow \mathbb{R}
$$

$$
\mathbb{L}(\hat{\eta})=\mathbb{E}_{M}[L(\eta, \hat{\eta})]
$$

Loss, Risk and Regret

Loss

- Penalty $\ell(y, \hat{\eta})$ for guessing $\hat{\eta}$ when true class is y
- Classification $\hat{\eta} \in\{0,1\}$
- Prob. Estimation $\hat{\eta} \in[0,1]$

Point-wise Risk

- Expected point-wise loss
$L:[0,1] \times[0,1] \rightarrow \mathbb{R}$
$L(\eta, \hat{\eta})=\mathbb{E}_{Y \sim \eta \eta}[\ell(Y, \hat{\eta})]$

$$
=(1-\eta) \ell(0, \hat{\eta})+\eta \ell(1, \hat{\eta})
$$

Risk

- Average point-wise risk

$$
\begin{aligned}
& \mathbb{L}:[0,1]^{\mathcal{X}} \rightarrow \mathbb{R} \\
& \mathbb{L}(\hat{\eta})=\mathbb{E}_{M}[L(\eta, \hat{\eta})]
\end{aligned}
$$

Bayes Risk

$$
\begin{aligned}
\underline{L}(\eta) & =\inf _{\hat{\eta} \in[0,1]} L(\eta, \hat{\eta}) \\
\underline{L} & =\inf _{\hat{\eta} \in[0,1]^{x}} \mathbb{L}(\hat{\eta})
\end{aligned}
$$

Loss, Risk and Regret

Loss

- Penalty $\ell(y, \hat{\eta})$ for guessing $\hat{\eta}$ when true class is y
- Classification $\hat{\eta} \in\{0,1\}$
- Prob. Estimation $\hat{\eta} \in[0,1]$

Point-wise Risk

- Expected point-wise loss

$$
\begin{aligned}
& L:[0,1] \times[0,1] \rightarrow \mathbb{R} \\
& \begin{aligned}
L(\eta, \hat{\eta}) & =\mathbb{E}_{Y \sim \eta}[\ell(Y, \hat{\eta})] \\
& =(1-\eta) \ell(0, \hat{\eta})+\eta \ell(1, \hat{\eta})
\end{aligned}
\end{aligned}
$$

Risk

- Average point-wise risk

$$
\begin{aligned}
& \mathbb{L}:[0,1]^{\mathcal{X}} \rightarrow \mathbb{R} \\
& \mathbb{L}(\hat{\eta})=\mathbb{E}_{M}[L(\eta, \hat{\eta})]
\end{aligned}
$$

Bayes Risk

$$
\begin{aligned}
\underline{L}(\eta) & =\inf _{\hat{\eta} \in[0,1]} L(\eta, \hat{\eta}) \\
\underline{L} & =\inf _{\hat{\eta} \in[0,1]^{\mathcal{X}}} \mathbb{L}(\hat{\eta})
\end{aligned}
$$

Regret

$$
\begin{aligned}
B(\eta, \hat{\eta}) & =L(\eta, \hat{\eta})-\underline{L}(\eta) \\
\mathbb{B}(\hat{\eta}) & =\mathbb{L}(\hat{\eta})-\underline{\mathbb{L}}
\end{aligned}
$$

Loss Examples

0-1 Misclassification Loss

$$
\ell(y, \hat{\eta})=\llbracket y \neq \llbracket \hat{\eta}>0.5 \rrbracket \rrbracket
$$

Square Loss

$$
\ell(y, \hat{\eta})=(y-\hat{\eta})^{2}
$$

Log Loss

Hinge Loss

$$
\ell(y, \hat{\eta})=y(0.5-\hat{\eta})_{+}+(1-y)(\hat{\eta}-0.5)_{+}
$$

Fisher Consistency \& Proper Losses

Fisher Consistency

- Point-wise risk for a loss ℓ is minimised by true probability

$$
L(\eta, \eta)=\inf _{\hat{\eta} \in[0,1]} L(\eta, \hat{\eta})=\underline{L}(\eta)
$$

- Strict consistency requires η to be the unique minimiser

Fisher Consistency \& Proper Losses

Fisher Consistency

- Point-wise risk for a loss ℓ is minimised by true probability

$$
L(\eta, \eta)=\inf _{\hat{\eta} \in[0,1]} L(\eta, \hat{\eta})=\underline{L}(\eta)
$$

- Strict consistency requires η to be the unique minimiser

Proper Losses

- A loss ℓ is called (strictly) proper if it is (strictly) Fisher consistent
- In economics they are known as "proper scoring rules"
- Shuford et al. (1966)
- Savage (1971)
- Schervish (1989)
- Buja et al. (2005)
- Lambert et al. (2008)

Examples of Proper Losses

0-1 Misclassification Loss

$$
\ell(y, \hat{\eta})=\llbracket y \neq \llbracket \hat{\eta}>0.5 \rrbracket \rrbracket
$$

Proper

Square Loss

$$
\ell(y, \hat{\eta})=(y-\hat{\eta})^{2}
$$

Log Loss

Hinge Loss

$$
\ell(y, \hat{\eta})=y(0.5-\hat{\eta})_{+}+(1-y)(\hat{\eta}-0.5)_{+}
$$

Properties of Proper Losses

Concave Bayes Risk

- Lower envelope of lines

$$
\underline{L}(\eta)=\inf _{\hat{\eta}}(1-\eta) \ell(0, \hat{\eta})+\eta \ell(1, \hat{\eta})
$$

Properties of Proper Losses

Concave Bayes Risk

- Lower envelope of lines

$$
\underline{L}(\eta)=\inf _{\hat{\eta}}(1-\eta) \ell(0, \hat{\eta})+\eta \ell(1, \hat{\eta})
$$

Savage's Theorem

- Loss ℓ is proper iff its Bayes risk \underline{L} is concave
- Relates Bayes risk and risk without optimisation

$$
\begin{aligned}
L(\eta, \hat{\eta}) & =\underline{L}(\hat{\eta})-(\hat{\eta}-\eta) \underline{L}^{\prime}(\hat{\eta}) \\
& =\underline{L}(\hat{\eta})+(\eta-\hat{\eta}) \underline{L}^{\prime}(\hat{\eta})
\end{aligned}
$$

Savage's Theorem

A loss is proper if and only if its point-wise Bayes risk is concave

Furthermore

$$
L(\eta, \hat{\eta})=\underline{L}(\hat{\eta})+(\eta-\hat{\eta}) \underline{L}^{\prime}(\hat{\eta})
$$

Examples

0-1 Misclassification Loss

Log Loss
$\ell(y, \hat{\eta})=\llbracket y \neq \llbracket \hat{\eta}>0.5 \rrbracket \rrbracket$

Examples

0-1 Misclassification Loss

Log Loss

$$
\ell(y, \hat{\eta})=\llbracket y \neq \llbracket \hat{\eta}>0.5 \rrbracket \rrbracket
$$

Examples

0-1 Misclassification Loss
Log Loss
$\ell(y, \hat{\eta})=\llbracket y \neq \llbracket \hat{\eta}>0.5 \rrbracket \rrbracket$

$$
L(\eta, \hat{\eta})= \begin{cases}(1-\eta) & \hat{\eta}>.5 \\ \eta & \hat{\eta} \leq .5\end{cases}
$$

$$
\underline{L}(\eta)=L(\eta, \eta)= \begin{cases}(1-\eta) & \eta>.5 \\ \eta & \eta \leq .5\end{cases}
$$

Examples

0-1 Misclassification Loss
Log Loss

$$
\begin{aligned}
& \ell(y, \hat{\eta})=\llbracket y \neq \llbracket \hat{\eta}>0.5 \rrbracket \rrbracket \\
& L(\eta, \hat{\eta})= \begin{cases}(1-\eta) & \hat{\eta}>.5 \\
\eta & \hat{\eta} \leq .5\end{cases} \\
& \underline{L}(\eta)=L(\eta, \eta)= \begin{cases}(1-\eta) & \eta>.5 \\
\eta & \eta \leq .5\end{cases} \\
& \underline{L}^{\prime}(\eta)= \begin{cases}-1 & \eta>.5 \\
1 & \eta \leq .5\end{cases}
\end{aligned}
$$

Examples

0-1 Misclassification Loss

$$
\begin{aligned}
& \ell(y, \hat{\eta})=\llbracket y \neq \llbracket \hat{\eta}>0.5 \rrbracket \rrbracket \\
& L(\eta, \hat{\eta})= \begin{cases}(1-\eta) & \hat{\eta}>.5 \\
\eta & \hat{\eta} \leq .5\end{cases} \\
& \underline{L}(\eta)=L(\eta, \eta)= \begin{cases}(1-\eta) & \eta>.5 \\
\eta & \eta \leq .5\end{cases} \\
& \underline{L}^{\prime}(\eta)= \begin{cases}-1 & \eta>.5 \\
1 & \eta \leq .5\end{cases}
\end{aligned}
$$

Log Loss

$$
\ell(y, \hat{\eta})=-y \log (\hat{\eta})-(1-y) \log (1-\hat{\eta})
$$

Examples

0-1 Misclassification Loss

$$
\begin{aligned}
& \ell(y, \hat{\eta})=\llbracket y \neq \llbracket \hat{\eta}>0.5 \rrbracket \rrbracket \\
& L(\eta, \hat{\eta})= \begin{cases}(1-\eta) & \hat{\eta}>.5 \\
\eta & \hat{\eta} \leq .5\end{cases} \\
& \underline{L}(\eta)=L(\eta, \eta)= \begin{cases}(1-\eta) & \eta>.5 \\
\eta & \eta \leq .5\end{cases} \\
& \underline{L}^{\prime}(\eta)= \begin{cases}-1 & \eta>.5 \\
1 & \eta \leq .5\end{cases}
\end{aligned}
$$

Log Loss

$\ell(y, \hat{\eta})=-y \log (\hat{\eta})-(1-y) \log (1-\hat{\eta})$

$L(\eta, \hat{\eta})=-\eta \log (\hat{\eta})-(1-\eta) \log (1-\hat{\eta})$

Examples

0-1 Misclassification Loss

$$
\begin{aligned}
& \ell(y, \hat{\eta})=\llbracket y \neq \llbracket \hat{\eta}>0.5 \rrbracket \rrbracket \\
& L(\eta, \hat{\eta})= \begin{cases}(1-\eta) & \hat{\eta}>.5 \\
\eta & \hat{\eta} \leq .5\end{cases} \\
& \underline{\underline{L}(\eta)=L(\eta, \eta)}= \begin{cases}(1-\eta) & \eta>.5 \\
\eta & \eta \leq .5\end{cases} \\
& \underline{L}^{\prime}(\eta)= \begin{cases}-1 & \eta>.5 \\
1 & \eta \leq .5\end{cases}
\end{aligned}
$$

Log Loss

$$
\ell(y, \hat{\eta})=-y \log (\hat{\eta})-(1-y) \log (1-\hat{\eta})
$$

$$
\begin{aligned}
L(\eta, \hat{\eta}) & =-\eta \log (\hat{\eta})-(1-\eta) \log (1-\hat{\eta}) \\
\underline{L}(\eta) & =-\eta \log (\eta)-(1-\eta) \log (1-\eta)
\end{aligned}
$$

Examples

0-1 Misclassification Loss

$$
\begin{aligned}
& \ell(y, \hat{\eta})=\llbracket y \neq \llbracket \hat{\eta}>0.5 \rrbracket \rrbracket \\
& L(\eta, \hat{\eta})= \begin{cases}(1-\eta) & \hat{\eta}>.5 \\
\eta & \hat{\eta} \leq .5\end{cases} \\
& \underline{L}(\eta)=L(\eta, \eta)= \begin{cases}(1-\eta) & \eta>.5 \\
\eta & \eta \leq .5\end{cases} \\
& \underline{L}^{\prime}(\eta)= \begin{cases}-1 & \eta>.5 \\
1 & \eta \leq .5\end{cases}
\end{aligned}
$$

Log Loss

$L(\eta, \hat{\eta})=-\eta \log (\hat{\eta})-(1-\eta) \log (1-\hat{\eta})$

$$
\underline{L}(\eta)=-\eta \log (\eta)-(1-\eta) \log (1-\eta)
$$

$$
\underline{L}^{\prime}(\eta)=-1-\log (\eta)+1+\log (1-\eta)
$$

$=\log \left(\frac{1-\eta}{\eta}\right)$

Proper Point-wise Bayes Risks

Given a proper loss, its point-wise Bayes risk is easy to compute

$$
\underline{L}(\eta)=L(\eta, \eta)
$$

Information

Where is the wisdom
 we have lost in knowledge?

Where is the knowledge
we have lost in information?
T.S. Eliot (1988-1965)

Statistical Information

- Let U measure the "uncertainty" of a distribution ξ.
- When ξ is peaked its uncertainty is small

Statistical Information

- Let U measure the "uncertainty" of a distribution ξ.
- When ξ is peaked its uncertainty is small
- Assume π is a prior for $\xi(x)$ - the posterior distribution after seeing x
- Reduction in uncertainty is

$$
\Delta U(\pi, \xi(x))=U(\pi)-U(\xi(x))
$$

[De Groot, 1962]

Statistical Information

- Let U measure the "uncertainty" of a distribution ξ.
- When ξ is peaked its uncertainty is small
- Assume π is a prior for $\xi(x)$ - the posterior distribution after seeing x
- Reduction in uncertainty is

$$
\Delta U(\pi, \xi(x))=U(\pi)-U(\xi(x))
$$

- The statistical information is the expected reduction in uncertainty for ξ when $X \sim M$ and $\pi:=\mathbb{E}_{M}[\xi(X)]$

$$
\Delta \mathbb{U}(\xi, M)=\mathbb{E}_{M}[U(\pi)-U(\xi(X))]
$$

[De Groot, 1962]

Statistical Information

- Observations can "at worst, contain no information ... typically [do] contain some information"

$$
\Delta \mathbb{U}(\xi, M) \geq 0
$$

$$
\begin{aligned}
\mathbb{E}_{M}[U(\pi)-U(\xi(X))] & \geq 0 \\
U\left(\mathbb{E}_{M}[\xi(X)]-\mathbb{E}_{M}[U(\xi(X))]\right. & \geq 0 \\
\mathbb{I}_{M}[-U(\xi(X))] & \geq 0
\end{aligned}
$$

Statistical Information

- Observations can "at worst, contain no information ... typically [do] contain some information"

$$
\Delta \mathbb{U}(\xi, M) \geq 0
$$

$$
\begin{aligned}
\mathbb{E}_{M}[U(\pi)-U(\xi(X))] & \geq 0 \\
U\left(\mathbb{E}_{M}[\xi(X)]-\mathbb{E}_{M}[U(\xi(X))]\right. & \geq 0 \\
\mathbb{I}_{M}[-U(\xi(X))] & \geq 0
\end{aligned}
$$

- By Jensen's inequality, information is non-negative iff the uncertainty function U is concave

Statistical Information

- Observations can "at worst, contain no information ... typically [do] contain some information"

$$
\Delta \mathbb{U}(\xi, M) \geq 0
$$

$$
\begin{aligned}
\mathbb{E}_{M}[U(\pi)-U(\xi(X))] & \geq 0 \\
U\left(\mathbb{E}_{M}[\xi(X)]-\mathbb{E}_{M}[U(\xi(X))]\right. & \geq 0 \\
\mathbb{I}_{M}[-U(\xi(X))] & \geq 0
\end{aligned}
$$

- By Jensen's inequality, information is non-negative iff the uncertainty function U is concave
- Very general definition of information
- e.g., Shannon information

$$
U(p)=-\sum_{i} p_{i} \log p_{i}
$$

Statistical Information

Prior Uncertainty Posterior Uncertainty
 $\mathbb{J}_{M}[-U(\xi(X))]=U\left(\mathbb{E}_{M}[\xi(X)]\right)-\mathbb{E}_{M}[U(\xi(X))] \geq 0$

if and only if
U is concave
(another Jensen Gap)

Bregman Information

- A recent, alternative formulation of information used to motivate clustering with Bregman divergences
- Given a random variable S, its Bregman information is the minimum expected divergence from a single point in its domain
- This single point is always the mean of S

$$
\begin{aligned}
\mathbb{B}_{f}(S) & :=\inf _{s \in \mathcal{S}} \mathbb{E}_{S \sim \sigma}\left[B_{f}(S, s)\right] \\
& =\mathbb{E}_{S \sim \sigma}\left[B_{f}\left(S, \mathbb{E}_{\sigma}[S]\right)\right]
\end{aligned}
$$

Mathematics is the art of giving the same name to different things.

Part II: Relationships and Representations

Terra Statistica

Terra Statistica

The acts of the mind, wherein it exerts its power over simple ideas, are chiefly these three:

1. Combining several simple ideas into one compound one, and thus all complex ideas are made.
2. The second is bringing two ideas, whether simple or complex, together, and setting them by one another so as to take a view of them at once, without uniting them into one, by which it gets all its ideas of relations.
3. The third is separating them from all other ideas that accompany them in their real existence: this is called abstraction, and thus all its general ideas are made.

The acts of the mind, wherein it exerts its power over simple ideas, are chiefly these three:

1. Combining several simple ideas into one compound one, and thus all complex ideas are made.
2. The second is bringing two ideas, whether simple or complex, together, and setting them by one another so as to take a view of them at once, without uniting them into one, by which it gets all its ideas of relations.
3. The third is separating them from all other ideas that accompany them in their real existence: this is called abstraction, and thus all its general ideas are made.

The acts of the mind, wherein it exerts its power over simple ideas, are chiefly these three:

1. Combining several simple ideas into one compound one, and thus all complex ideas are made.
2. The second is bringing two ideas, whether simple or complex, together, and setting them by one another so as to take a view of them at once, without uniting them into one, by which it gets all its ideas of relations.
3. The third is separating them from all other ideas that accompany them in their real existence: this is called abstraction, and thus all its general ideas are made.

Relationships

Regret and Bregman Divergence

Binary Mixtures (Review)

- Positive/Negative class distributions (P, Q)
- Mixture $M=\pi P+(1-\pi) Q$
- Conditional Positive Class

Probability $\eta(x)=\pi \mathrm{d} P / \mathrm{d} M$

Regret and Bregman Divergence

Binary Mixtures (Review)

- Positive/Negative class distributions (P, Q)
- Mixture $M=\pi P+(1-\pi) Q$
- Conditional Positive Class

Probability $\eta(x)=\pi \mathrm{d} P / \mathrm{d} M$

Proper Losses (Review)

- Fisher consistent $\underline{\underline{L}}(\eta)=L(\eta, \eta)$
- Loss function is proper iff \underline{L} is concave (Savage's Theorem)

$$
L(\eta, \hat{\eta})=\underline{L}(\hat{\eta})+(\eta-\hat{\eta}) \underline{L}^{\prime}(\hat{\eta})
$$

Regret and Bregman Divergence

Binary Mixtures (Review)

- Positive/Negative class distributions (P, Q)
- Mixture $M=\pi P+(1-\pi) Q$
- Conditional Positive Class

Probability $\eta(x)=\pi \mathrm{d} P / \mathrm{d} M$

Proper Losses (Review)

- Fisher consistent $\underline{L}(\eta)=L(\eta, \eta)$
- Loss function is proper iff \underline{L} is concave (Savage's Theorem)

$$
L(\eta, \hat{\eta})=\underline{L}(\hat{\eta})+(\eta-\hat{\eta}) \underline{L}^{\prime}(\hat{\eta})
$$

Bregman Divergence (Review)

- For convex f

$$
B_{f}\left(t, t_{0}\right)=f(t)-f\left(t_{0}\right)-\left(t-t_{0}\right) f^{\prime}(t)
$$

Regret and Bregman Divergence

Binary Mixtures (Review)

- Positive/Negative class distributions (P, Q)
- Mixture $M=\pi P+(1-\pi) Q$
- Conditional Positive Class

Probability $\eta(x)=\pi \mathrm{d} P / \mathrm{d} M$
Proper Losses (Review)

- Fisher consistent $\underline{L}(\eta)=L(\eta, \eta)$
- Loss function is proper iff \underline{L} is concave (Savage's Theorem) $L(\eta, \hat{\eta})=\underline{L}(\hat{\eta})+(\eta-\hat{\eta}) \underline{L}^{\prime}(\hat{\eta})$

Bregman Divergence (Review)

- For convex f

$$
B_{f}\left(t, t_{0}\right)=f(t)-f\left(t_{0}\right)-\left(t-t_{0}\right) f^{\prime}(t)
$$

Bregman Divergence for Estimates

- Let $f=-\underline{L}$. Then f is convex and

$$
\begin{aligned}
B_{f}(\eta, \hat{\eta}) & =-\underline{L}(\eta)+\underline{L}(\hat{\eta})+(\eta-\hat{\eta}) \underline{L}^{\prime}(\hat{\eta}) \\
& =L(\eta, \hat{\eta})-\underline{L}(\eta)
\end{aligned}
$$

Point-wise Regret is a Bregman Divergence

$$
\begin{gathered}
B_{f}(\eta, \hat{\eta})=L(\eta, \hat{\eta})-\underline{L}(\eta) \\
\text { for } f=-\underline{L}
\end{gathered}
$$

Bregman and Statistical Information

Bregman Info = Statistical Info

- Binary mixture $(\pi, P, Q)=(\eta, M)$

$$
\mathbb{B}_{f}(\eta(X))=\Delta \mathbb{U}(\eta, M)
$$

when $f=-U$

Bregman and Statistical Information

Bregman Info = Statistical Info

- Binary mixture $(\pi, P, Q)=(\eta, M)$

$$
\mathbb{B}_{f}(\eta(X))=\Delta \mathbb{U}(\eta, M)
$$

when $f=-U$
Proof

$$
\mathbb{B}_{f}(\eta(X))=\mathbb{E}_{M}\left[B_{f}\left(\eta(X), \mathbb{E}_{M}[\eta(X)]\right)\right]
$$

Bregman and Statistical Information

Bregman Info = Statistical Info

- Binary mixture $(\pi, P, Q)=(\eta, M)$

$$
\mathbb{B}_{f}(\eta(X))=\Delta \mathbb{U}(\eta, M)
$$

when $f=-U$
Proof

$$
\begin{aligned}
\mathbb{B}_{f}(\eta(X))= & \mathbb{E}_{M}\left[B_{f}\left(\eta(X), \mathbb{E}_{M}[\eta(X)]\right)\right] \\
= & \mathbb{E}_{M}[f(\eta(X))-f(\pi) \\
& \left.-(\eta(X)-\pi) f^{\prime}(\pi)\right]
\end{aligned}
$$

Bregman and Statistical Information

Bregman Info = Statistical Info

- Binary mixture $(\pi, P, Q)=(\eta, M)$

$$
\mathbb{B}_{f}(\eta(X))=\Delta \mathbb{U}(\eta, M)
$$

when $f=-U$
Proof

$$
\begin{aligned}
\mathbb{B}_{f}(\eta(X))= & \mathbb{E}_{M}\left[B_{f}\left(\eta(X), \mathbb{E}_{M}[\eta(X)]\right)\right] \\
= & \mathbb{E}_{M}[f(\eta(X))-f(\pi) \\
& \left.-(\eta(X)-\pi) f^{\prime}(\pi)\right] \\
= & \mathbb{E}_{M}[f(\eta(X))]-f(\pi)-0
\end{aligned}
$$

Bregman and Statistical Information

Bregman Info = Statistical Info

- Binary mixture $(\pi, P, Q)=(\eta, M)$

$$
\mathbb{B}_{f}(\eta(X))=\Delta \mathbb{U}(\eta, M)
$$

when $f=-U$

Proof

$$
\begin{aligned}
\mathbb{B}_{f}(\eta(X))= & \mathbb{E}_{M}\left[B_{f}\left(\eta(X), \mathbb{E}_{M}[\eta(X)]\right)\right] \\
= & \mathbb{E}_{M}[f(\eta(X))-f(\pi) \\
& \left.-(\eta(X)-\pi) f^{\prime}(\pi)\right] \\
= & \mathbb{E}_{M}[f(\eta(X))]-f(\pi)-0 \\
= & U(\pi)-\mathbb{E}_{M}[U(\eta(X))]
\end{aligned}
$$

Bregman and Statistical Information

Bregman Info = Statistical Info

- Binary mixture $(\pi, P, Q)=(\eta, M)$

$$
\mathbb{B}_{f}(\eta(X))=\Delta \mathbb{U}(\eta, M)
$$

when $f=-U$

Proof

$$
\begin{aligned}
\mathbb{B}_{f}(\eta(X))= & \mathbb{E}_{M}\left[B_{f}\left(\eta(X), \mathbb{E}_{M}[\eta(X)]\right)\right] \\
= & \mathbb{E}_{M}[f(\eta(X))-f(\pi) \\
& \left.-(\eta(X)-\pi) f^{\prime}(\pi)\right] \\
= & \mathbb{E}_{M}[f(\eta(X))]-f(\pi)-0 \\
= & U(\pi)-\mathbb{E}_{M}[U(\eta(X))] \\
= & U\left(\mathbb{E}_{M}[\eta(X)]\right)-\mathbb{E}_{M}[U(\eta(X))] \\
= & \Delta \mathbb{U}(\eta, M)
\end{aligned}
$$

Bregman and Statistical Information

Bregman Info = Statistical Info

- Binary mixture $(\pi, P, Q)=(\eta, M)$

$$
\mathbb{B}_{f}(\eta(X))=\Delta \mathbb{U}(\eta, M)
$$

when $f=-U$

Proof

$$
\begin{aligned}
\mathbb{B}_{f}(\eta(X))= & \mathbb{E}_{M}\left[B_{f}\left(\eta(X), \mathbb{E}_{M}[\eta(X)]\right)\right] \\
= & \mathbb{E}_{M}[f(\eta(X))-f(\pi) \\
& \left.-(\eta(X)-\pi) f^{\prime}(\pi)\right] \\
= & \mathbb{E}_{M}[f(\eta(X))]-f(\pi)-0 \\
= & U(\pi)-\mathbb{E}_{M}[U(\eta(X))] \\
= & U\left(\mathbb{E}_{M}[\eta(X)]\right)-\mathbb{E}_{M}[U(\eta(X))] \\
= & \Delta \mathbb{U}(\eta, M)
\end{aligned}
$$

Information and Proper Losses

- Savage's Theorem implies $\underline{\underline{L}}$ is concave for proper scoring rules
- Choosing $U=\underline{L}$ gives a measure of information in the mixture $(\pi, P, Q)=(\eta, M)$

$$
\begin{aligned}
\Delta \underline{\mathbb{L}}(\eta, M) & =\mathbb{E}_{M}[\underline{L}(\pi)-\underline{L}(\eta)] \\
& =\underline{\mathbb{L}}(\pi, M)-\underline{\mathbb{L}}(\eta, M)
\end{aligned}
$$

- Maximum reduction in risk obtained by knowing posterior

Bregman Info = Statistical Info

$$
\mathbb{B}_{f}(\eta(X))=\Delta \mathbb{U}(\eta, M)=\Delta \mathbb{L}(\eta, M)
$$

$$
\text { for } f=-U=-\underline{L}
$$

Can be interpreted as maximal reduction in risk

Statistical Information and f-Divergence

Binary Mixtures \& Experiments

- (P, Q) vs. $(\pi, P, Q)=(\eta, M)$
- For each π there is a mapping between $\mathrm{dP} / \mathrm{dQ}$ and η

$$
\eta=\frac{\pi d P}{d M}
$$

$$
=\frac{\pi d P}{\pi d P+(1-\pi) d Q}
$$

$$
=\frac{\lambda}{\lambda+1}
$$

where $\lambda=\frac{\pi}{(1-\pi)} \frac{d P}{d Q}$
f-Divergence to Information

- If then
for all binary mixtures (π, P, Q)
Information to f-Divergence
- If
then
for all binary mixtures (π, P, Q)

Statistical Information and f-Divergence

Binary Mixtures \& Experiments

- (P, Q) vs. $(\pi, P, Q)=(\eta, M)$
- For each π there is a mapping between $\mathrm{dP} / \mathrm{dQ}$ and η

$$
\begin{aligned}
\eta & =\frac{\pi d P}{d M} \\
& =\frac{\pi d P}{\pi d P+(1-\pi) d Q} \\
& =\frac{\lambda}{\lambda+1}
\end{aligned}
$$

where $\lambda=\frac{\pi}{(1-\pi)} \frac{d P}{d Q}$

$$
\frac{d P}{d Q}=\frac{(1-\pi)}{\pi} \frac{\eta}{(1-\eta)}
$$

f-Divergence to Information

- If then
for all binary mixtures (π, P, Q)
Information to f-Divergence
- If then
for all binary mixtures (π, P, Q)

Statistical Information and f-Divergence

Binary Mixtures \& Experiments

- (P, Q) vs. $(\pi, P, Q)=(\eta, M)$
- For each π there is a mapping between $\mathrm{d} P / \mathrm{dQ}$ and η

$$
\begin{aligned}
\eta & =\frac{\pi d P}{d M} \\
& =\frac{\pi d P}{\pi d P+(1-\pi) d Q} \\
& =\frac{\lambda}{\lambda+1}
\end{aligned}
$$

where $\lambda=\frac{\pi}{(1-\pi)} \frac{d P}{d Q}$

$$
\frac{d P}{d Q}=\frac{(1-\pi)}{\pi} \frac{\eta}{(1-\eta)}
$$

f-Divergence to Information

- If $f^{\pi}(t)=\underline{L}(\pi)-(\pi t+1-\pi) \underline{L}\left(\frac{\pi t}{\pi t+1-\pi}\right)$ then

$$
\mathbb{I}_{f \pi}(P, Q)=\Delta \underline{\mathbb{L}}(\eta, M)
$$

for all binary mixtures (π, P, Q)

Statistical Information and f-Divergence

Binary Mixtures \& Experiments

- (P, Q) vs. $(\pi, P, Q)=(\eta, M)$
- For each π there is a mapping between $\mathrm{dP} / \mathrm{dQ}$ and η

$$
\begin{aligned}
\eta & =\frac{\pi d P}{d M} \\
& =\frac{\pi d P}{\pi d P+(1-\pi) d Q} \\
& =\frac{\lambda}{\lambda+1}
\end{aligned}
$$

where $\lambda=\frac{\pi}{(1-\pi)} \frac{d P}{d Q}$

$$
\frac{d P}{d Q}=\frac{(1-\pi)}{\pi} \frac{\eta}{(1-\eta)}
$$

f-Divergence to Information

- If $f^{\pi}(t)=\underline{L}(\pi)-(\pi t+1-\pi) \underline{L}\left(\frac{\pi t}{\pi t+1-\pi}\right)$ then

$$
\mathbb{I}_{f \pi}(P, Q)=\Delta \underline{\mathbb{L}}(\eta, M)
$$

for all binary mixtures (π, P, Q)

Information to f-Divergence

- If $\underline{L}^{\pi}(\eta)=-\frac{1-\eta}{1-\pi} f\left(\frac{1-\pi}{\pi} \frac{\eta}{1-\eta}\right)$ then

$$
\mathbb{I}_{f}(P, Q)=\Delta \underline{\mathbb{L}}^{\pi}(\eta, M)
$$

for all binary mixtures (π, P, Q)

f-Divergence = Statistical Info

$$
\mathbb{I}_{f}(P, Q)=\Delta \underline{\mathbb{L}}^{\pi}(\eta, M)
$$

for binary mixtures (π, P, Q) when $f=-\underline{L}$
(plus a map to/from $[0,1])$

The acts of the mind, wherein it exerts its power over simple ideas, are chiefly these three:

1. Combining several simple ideas into one compound one, and thus all complex ideas are made.
2. The second is bringing two ideas, whether simple or complex, together, and setting them by one another so as to take a view of them at once, without uniting them into one, by which it gets all its ideas of relations.
3. The third is separating them from all other ideas that accompany them in their real existence: this is called abstraction, and thus all its general ideas are made.

The acts of the mind, wherein it exerts its power over simple ideas, are chiefly these three:

1. Combining several simple ideas into one compound one, and thus all complex ideas are made.
2. The second is bringing two ideas, whether simple or complex, together, and setting them by one another so as to take a view of them at once, without uniting them into one, by which it gets all its ideas of relations.
3. The third is separating them from all other ideas that accompany them in their real existence: this is called abstraction, and thus all its general ideas are made.

Weighted Integral Representations

Representations of Functions

Functions as "Sums" of Points

- A function f can be described by its values at each point

$$
f(x)=\sum_{u} f_{u} \delta_{u}(x)
$$

where $\delta_{u}(x):=\llbracket u=x \rrbracket$

Representations of Functions

Functions as "Sums" of Points

- A function f can be described by its values at each point

$$
f(x)=\sum_{u} f_{u} \delta_{u}(x)
$$

where $\delta_{u}(x):=\llbracket u=x \rrbracket$

Functions as Sums of Functions

- Can also describe f as a sum of "simple" functions

$$
f(x)=\sum_{i} w_{i} \phi_{i}(x)
$$

(e.g., Fourier analysis)

Integral Representation of f-Divergence

Taylor Integral Representation

$$
\begin{gathered}
f(t)=\Lambda_{f}(t)+\int_{a}^{b} g_{s}(t) f^{\prime \prime}(s) d s \\
\text { Linear Term Simple Weights } \\
g_{s}(t)=\llbracket s \geq t_{0} \rrbracket(t-s)_{+}+\llbracket s<t_{0} \rrbracket(s-t)_{+}
\end{gathered}
$$

f-Divergence

$$
\mathbb{I}_{f}(P, Q)=\mathbb{E}_{Q}\left[f\left(\frac{d P}{d Q}\right)\right]
$$

Integral Representation of f-Divergence

Taylor Integral Representation

$$
\begin{aligned}
& g_{s}(t)=\llbracket s \geq t_{0} \rrbracket(t-s)_{+}+\llbracket s<t_{0} \rrbracket(s-t)_{+}
\end{aligned}
$$

Integral Representation I

$$
\begin{aligned}
\mathbb{I}_{f}(P, Q) & =\mathbb{E}_{Q}\left[\int_{0}^{\infty} g_{s}\left(\frac{d P}{d Q}\right) f^{\prime \prime}(s) d s\right] \\
& =\int_{0}^{\infty} \mathbb{E}_{Q}\left[g_{s}\left(\frac{d P}{d Q}\right)\right] f^{\prime \prime}(s) d s \\
\mathbb{I}_{f}(P, Q) & =\int_{0}^{\infty} \mathbb{I}_{g_{s}}(P, Q) f^{\prime \prime}(s) d s
\end{aligned}
$$

f-Divergence

$$
\mathbb{I}_{f}(P, Q)=\mathbb{E}_{Q}\left[f\left(\frac{d P}{d Q}\right)\right]
$$

Integral Representation of f-Divergence

Taylor Integral Representation

$$
\begin{gathered}
f(t)=\Lambda_{f}(t)+\int_{a}^{b} g_{s}(t) f^{\prime \prime}(s) d s \\
\text { Linear Term Simple Weights } \\
g_{s}(t)=\llbracket s \geq t_{0} \rrbracket(t-s)_{+}+\llbracket s<t_{0} \rrbracket(s-t)_{+}
\end{gathered}
$$

Integral Representation I

$$
\begin{aligned}
\mathbb{I}_{f}(P, Q) & =\mathbb{E}_{Q}\left[\int_{0}^{\infty} g_{s}\left(\frac{d P}{d Q}\right) f^{\prime \prime}(s) d s\right] \\
& =\int_{0}^{\infty} \mathbb{E}_{Q}\left[g_{s}\left(\frac{d P}{d Q}\right)\right] f^{\prime \prime}(s) d s \\
\mathbb{I}_{f}(P, Q) & =\int_{0}^{\infty} \mathbb{I}_{g_{s}}(P, Q) f^{\prime \prime}(s) d s
\end{aligned}
$$

f-Divergence

$$
\mathbb{I}_{f}(P, Q)=\mathbb{E}_{Q}\left[f\left(\frac{d P}{d Q}\right)\right]
$$

Integral Representation II

$$
\begin{aligned}
\mathbb{I}_{f}(P, Q) & =\int_{0}^{1} \mathbb{I}_{g_{\frac{1-\pi}{\pi}}}(P, Q) f^{\prime \prime}\left(\frac{1-\pi}{\pi}\right) \pi^{-2} d \pi \\
& =\int_{0}^{1} \mathbb{I}_{f_{\pi}}(P, Q) \gamma(\pi) d \pi \\
\gamma(\pi) & =\frac{1}{\pi^{3}} f^{\prime \prime}\left(\frac{1-\pi}{\pi}\right) \\
f_{\pi}(t) & =\min (1-\pi, \pi)-\min (1-\pi, \pi t)
\end{aligned}
$$

Integral Representation of f-Divergence

$$
\mathbb{I}_{f}(P, Q)=\int_{0}^{1} \mathbb{I}_{f_{\pi}}(P, Q) \gamma(\pi) d \pi
$$

Weight Function

$$
\gamma(\pi)=\frac{1}{\pi^{3}} f^{\prime \prime}\left(\frac{1-\pi}{\pi}\right)
$$

Primitives $\quad f_{\pi}(t)=\min (1-\pi, \pi)-\min (1-\pi, \pi t)$

Integral Representation of f-Divergence

$$
\mathbb{I}_{f}(P, Q)=\int_{0}^{1} \mathbb{I}_{f_{\pi}}(P, Q) \gamma(\pi) d \pi
$$

Weight Function

$$
\gamma(\pi)=\frac{1}{\pi^{3}} f^{\prime \prime}\left(\frac{1-\pi}{\pi}\right)
$$

Primitives $\quad f_{\pi}(t)=\min (1-\pi, \pi)-\min (1-\pi, \pi t)$

Integral Representation of Proper Losses

Taylor Integral Representation

$$
\begin{aligned}
& g_{s}\left(t, t_{0}\right)=\llbracket s \geq t_{0} \rrbracket(t-s)_{+}+\llbracket s<t_{0} \rrbracket(s-t)_{+}
\end{aligned}
$$

Integral Representation of Proper Losses

Taylor Integral Representation

$$
\begin{aligned}
& g_{s}\left(t, t_{0}\right)=\llbracket s \geq t_{0} \rrbracket(t-s)_{+}+\llbracket s<t_{0} \rrbracket(s-t)_{+}
\end{aligned}
$$

Savage's Theorem

- Given concave \underline{L} the loss is

$$
L(\eta, \hat{\eta})=\underline{L}(\hat{\eta})+(\eta-\hat{\eta}) \underline{L}^{\prime}(\hat{\eta})
$$

Integral Representation of Proper Losses

Taylor Integral Representation

$$
\begin{aligned}
& g_{s}\left(t, t_{0}\right)=\llbracket s \geq t_{0} \rrbracket(t-s)_{+}+\llbracket s<t_{0} \rrbracket(s-t)_{+}
\end{aligned}
$$

Savage's Theorem

- Given concave \underline{L} the loss is

$$
L(\eta, \hat{\eta})=\underline{L}(\hat{\eta})+(\eta-\hat{\eta}) \underline{L}^{\prime}(\hat{\eta})
$$

Int. Representation of Bayes Risk

$\underline{L}(\eta)=\underline{L}(\hat{\eta})+(\eta-\hat{\eta}) \underline{L}^{\prime}(\hat{\eta})+\int_{0}^{1} g_{c}(\eta, \hat{\eta}) \underline{L}^{\prime \prime}(c) d c$

$$
=L(\eta, \hat{\eta})+\int_{0}^{1} g_{c}(\eta, \hat{\eta}) \underline{L}^{\prime \prime}(c) d c
$$

Integral Representation of Proper Losses

Taylor Integral Representation

$$
\begin{aligned}
& \left.g_{s}\left(t, t_{0}\right)=\llbracket s \geq t_{0}\right](t-s)_{+}+\llbracket s<t_{0} \rrbracket(s-t)_{+}
\end{aligned}
$$

Int. Representation of Risk

$$
\begin{aligned}
L(\eta, \hat{\eta}) & =\underline{L}(\eta)+\int_{0}^{1} L_{c}(\eta, \hat{\eta}) w(c) d c \\
L_{c}(\eta, \hat{\eta}) & =\llbracket \eta>c \geq \hat{\eta} \rrbracket(\eta-c)+\llbracket \hat{\eta}>c \geq \eta \rrbracket(c-\eta) \\
w(c) & =-\underline{L}^{\prime \prime}(c)
\end{aligned}
$$

Savage's Theorem

- Given concave \underline{L} the loss is

$$
L(\eta, \hat{\eta})=\underline{L}(\hat{\eta})+(\eta-\hat{\eta}) \underline{L}^{\prime}(\hat{\eta})
$$

Int. Representation of Bayes Risk

$\underline{L}(\eta)=\underline{L}(\hat{\eta})+(\eta-\hat{\eta}) \underline{L}^{\prime}(\hat{\eta})+\int_{0}^{1} g_{c}(\eta, \hat{\eta}) \underline{L}^{\prime \prime}(c) d c$

$$
=L(\eta, \hat{\eta})+\int_{0}^{1} g_{c}(\eta, \hat{\eta}) \underline{L}^{\prime \prime}(c) d c
$$

Integral Representation of Proper Losses

Taylor Integral Representation

$$
\begin{aligned}
& \left.g_{s}\left(t, t_{0}\right)=\llbracket s \geq t_{0}\right](t-s)_{+}+\llbracket s<t_{0} \rrbracket(s-t)_{+}
\end{aligned}
$$

Savage's Theorem

- Given concave \underline{L} the loss is

$$
L(\eta, \hat{\eta})=\underline{L}(\hat{\eta})+(\eta-\hat{\eta}) \underline{L}^{\prime}(\hat{\eta})
$$

Int. Representation of Bayes Risk
$\underline{L}(\eta)=\underline{L}(\hat{\eta})+(\eta-\hat{\eta}) \underline{L}^{\prime}(\hat{\eta})+\int_{0}^{1} g_{c}(\eta, \hat{\eta}) \underline{L}^{\prime \prime}(c) d c$

$$
=L(\eta, \hat{\eta})+\int_{0}^{1} g_{c}(\eta, \hat{\eta}) \underline{L}^{\prime \prime}(c) d c
$$

Int. Representation of Risk

$$
\begin{aligned}
L(\eta, \hat{\eta}) & =\underline{L}(\eta)+\int_{0}^{1} L_{c}(\eta, \hat{\eta}) w(c) d c \\
L_{c}(\eta, \hat{\eta}) & =\llbracket \eta>c \geq \hat{\eta} \rrbracket(\eta-c)+\llbracket \hat{\eta}>c \geq \eta \rrbracket(c-\eta) \\
w(c) & =-\underline{L}^{\prime \prime}(c)
\end{aligned}
$$

Int. Representation of Loss

$$
\ell(y, \hat{\eta})=L(y, \hat{\eta}) \text { for } y \in\{0,1\}
$$

- Assuming $\underline{L}(0)=\underline{L}(1)=0$

$$
\ell(y, \hat{\eta})=\int_{0}^{1} \ell_{c}(y, \hat{\eta}) w(c) d c
$$

Integral Representation of Proper Losses

Taylor Integral Representation

$$
\begin{gathered}
f(t)=\Lambda_{f}(t)+\int_{a}^{a} g_{s}\left(t, t_{0}\right) f^{\prime \prime}(s) d s \\
\text { Lineat Term Simple Weights } \\
\left.\left.g_{s}\left(t, t_{0}\right)=\llbracket s \geq t_{0}\right](t-s)_{+}+\llbracket s<t_{0}\right](s-t)_{+}
\end{gathered}
$$

Savage's Theorem

- Given concave \underline{L} the loss is

$$
L(\eta, \hat{\eta})=\underline{L}(\hat{\eta})+(\eta-\hat{\eta}) \underline{L}^{\prime}(\hat{\eta})
$$

Int. Representation of Bayes Risk
$\underline{L}(\eta)=\underline{L}(\hat{\eta})+(\eta-\hat{\eta}) \underline{L}^{\prime}(\hat{\eta})+\int_{0}^{1} g_{c}(\eta, \hat{\eta}) \underline{L}^{\prime \prime}(c) d c$

$$
=L(\eta, \hat{\eta})+\int_{0}^{1} g_{c}(\eta, \hat{\eta}) \underline{L}^{\prime \prime}(c) d c
$$

Int. Representation of Risk

$$
\begin{aligned}
L(\eta, \hat{\eta}) & =\underline{L}(\eta)+\int_{0}^{1} L_{c}(\eta, \hat{\eta}) w(c) d c \\
L_{c}(\eta, \hat{\eta}) & =\llbracket \eta>c \geq \hat{\eta} \rrbracket(\eta-c)+\llbracket \hat{\eta}>c \geq \eta \rrbracket(c-\eta) \\
w(c) & =-\underline{L}^{\prime \prime}(c)
\end{aligned}
$$

Int. Representation of Loss

$$
\ell(y, \hat{\eta})=L(y, \hat{\eta}) \text { for } y \in\{0,1\}
$$

- Assuming $\underline{L}(0)=\underline{L}(1)=0$

$$
\ell(y, \hat{\eta})=\int_{0}^{1} \ell_{c}(y, \hat{\eta}) w(c) d c
$$

Cost-Weighted Loss

$$
\ell_{c}(y, \hat{\eta})=(1-c) \llbracket y=1 \rrbracket \llbracket c \geq \hat{\eta} \rrbracket+c \llbracket y=0 \rrbracket \llbracket \hat{\eta}>c \rrbracket
$$

Integral Representation of Proper Losses

$$
\ell(y, \hat{\eta})=\int_{0}^{1} \ell_{c}(y, \hat{\eta}) w(c) d c
$$

Weight Function

$$
w(c)=-\underline{L}^{\prime \prime}(c)
$$

Primitives $\quad \ell_{c}(y, \hat{\eta})=(1-c) \llbracket y=1 \rrbracket \llbracket c \geq \hat{\eta} \rrbracket+c \llbracket y=0 \rrbracket \llbracket \hat{\eta}>c \rrbracket$

False Negative

False Positive

Integral Representation Corollaries

Point-wise Risk

$$
\begin{aligned}
L(\eta, \hat{\eta}) & =\mathbb{E}_{y \sim \eta}\left[\int_{0}^{1} \ell_{c}(y, \hat{\eta}) w(c) d c\right] \\
& =\int_{0}^{1} L_{c}(\eta, \hat{\eta}) w(c) d c
\end{aligned}
$$

Integral Representation Corollaries

Point-wise Risk

$$
\begin{aligned}
L(\eta, \hat{\eta}) & =\mathbb{E}_{y \sim \eta}\left[\int_{0}^{1} \ell_{c}(y, \hat{\eta}) w(c) d c\right] \\
& =\int_{0}^{1} L_{c}(\eta, \hat{\eta}) w(c) d c
\end{aligned}
$$

Point-wise Bayes Risk
$\underline{L}(\eta)=\int_{0}^{1} \underline{L}_{c}(\eta) w(c) d c$
$\underline{L}_{c}(\eta)=\min ((1-\eta) c,(1-c) \eta)$

Integral Representation Corollaries

Point-wise Risk

$$
\begin{aligned}
L(\eta, \hat{\eta}) & =\mathbb{E}_{y \sim \eta}\left[\int_{0}^{1} \ell_{c}(y, \hat{\eta}) w(c) d c\right] \\
& =\int_{0}^{1} L_{c}(\eta, \hat{\eta}) w(c) d c
\end{aligned}
$$

Point-wise Bayes Risk
$\underline{L}(\eta)=\int_{0}^{1} \underline{L}_{c}(\eta) w(c) d c$
$\underline{L}_{c}(\eta)=\min ((1-\eta) c,(1-c) \eta)$
Point-wise Regret
$B(\eta, \hat{\eta})=\int_{\min (\eta, \hat{\eta})}^{\max (\eta, \hat{\eta})}|\eta-c| w(c) d c$

Integral Representation Corollaries

Point-wise Risk

$$
\begin{aligned}
L(\eta, \hat{\eta}) & =\mathbb{E}_{y \sim \eta}\left[\int_{0}^{1} \ell_{c}(y, \hat{\eta}) w(c) d c\right] \\
& =\int_{0}^{1} L_{c}(\eta, \hat{\eta}) w(c) d c
\end{aligned}
$$

Point-wise Bayes Risk
$\underline{L}(\eta)=\int_{0}^{1} \underline{L}_{c}(\eta) w(c) d c$
$\underline{L}_{c}(\eta)=\min ((1-\eta) c,(1-c) \eta)$
Point-wise Regret
$B(\eta, \hat{\eta})=\int_{\min (\eta, \hat{\eta})}^{\max (\eta, \hat{\eta})}|\eta-c| w(c) d c$

Risk

$$
\begin{aligned}
\mathbb{L}(\eta, \hat{\eta}, M) & =\mathbb{E}_{M}[L(\eta, \hat{\eta})] \\
& =\int_{0}^{1} \mathbb{L}_{c}(\hat{\eta}) w(c) d c
\end{aligned}
$$

Integral Representation Corollaries

Point-wise Risk

$$
\begin{aligned}
L(\eta, \hat{\eta}) & =\mathbb{E}_{y \sim \eta}\left[\int_{0}^{1} \ell_{c}(y, \hat{\eta}) w(c) d c\right] \\
& =\int_{0}^{1} L_{c}(\eta, \hat{\eta}) w(c) d c
\end{aligned}
$$

Point-wise Bayes Risk
$\underline{L}(\eta)=\int_{0}^{1} \underline{L}_{c}(\eta) w(c) d c$
$\underline{L}_{c}(\eta)=\min ((1-\eta) c,(1-c) \eta)$
Point-wise Regret
$B(\eta, \hat{\eta})=\int_{\min (\eta, \hat{\eta})}^{\max (\eta, \hat{\eta})}|\eta-c| w(c) d c$

Risk

$$
\begin{aligned}
\mathbb{L}(\eta, \hat{\eta}, M) & =\mathbb{E}_{M}[L(\eta, \hat{\eta})] \\
& =\int_{0}^{1} \mathbb{L}_{c}(\hat{\eta}) w(c) d c
\end{aligned}
$$

Bayes Risk
$\underline{\mathbb{L}}(\eta, M)=\int_{0}^{1} \underline{\underline{L}}_{c}(\eta, M) w(c) d c$

Integral Representation Corollaries

Point-wise Risk

$$
\begin{aligned}
L(\eta, \hat{\eta}) & =\mathbb{E}_{y \sim \eta}\left[\int_{0}^{1} \ell_{c}(y, \hat{\eta}) w(c) d c\right] \\
& =\int_{0}^{1} L_{c}(\eta, \hat{\eta}) w(c) d c
\end{aligned}
$$

Point-wise Bayes Risk
$\underline{L}(\eta)=\int_{0}^{1} \underline{L}_{c}(\eta) w(c) d c$
$\underline{L}_{c}(\eta)=\min ((1-\eta) c,(1-c) \eta)$
Point-wise Regret
$B(\eta, \hat{\eta})=\int_{\min (\eta, \hat{\eta})}^{\max (\eta, \hat{\eta})}|\eta-c| w(c) d c$

Risk

$$
\begin{aligned}
\mathbb{L}(\eta, \hat{\eta}, M) & =\mathbb{E}_{M}[L(\eta, \hat{\eta})] \\
& =\int_{0}^{1} \mathbb{L}_{c}(\hat{\eta}) w(c) d c
\end{aligned}
$$

Bayes Risk
$\underline{\mathbb{L}}(\eta, M)=\int_{0}^{1} \underline{\underline{\mathbb{L}}}_{c}(\eta, M) w(c) d c$

Statistical Information

$$
\Delta \underline{\mathbb{L}}(\eta, M)=\int_{0}^{1} \Delta \underline{\underline{L}}_{c}(\eta, M) w(c) d c
$$

Cost-Weighted Misclassification Loss

$$
\ell_{c}(y, \hat{\eta})=(1-c) \llbracket y=1 \rrbracket \llbracket c \geq \hat{\eta} \rrbracket+c \llbracket y=0 \rrbracket \llbracket \hat{\eta}>c \rrbracket
$$

Example - Square Loss

$$
\ell(y, \hat{\eta})=(y-\hat{\eta})^{2}
$$

$$
\ell(y, \hat{\eta})=\int_{0}^{1} \ell_{c}(y, \hat{\eta}) w(c) d c
$$

Example - Asymmetric Log Loss

$$
\ell(y, \hat{\eta})=\int_{0}^{1} \ell_{c}(y, \hat{\eta}) w(c) d c
$$

$$
\downarrow w(c)=\frac{1}{c^{2}(1-c)}
$$

Translating Weights

- The earlier connection between fdivergence and statistical information suggests that their weight functions are related

Translating Weights

- The earlier connection between fdivergence and statistical information suggests that their weight functions are related

- Some straight-forward algebra gives and explicit translation

$$
w_{\pi}(c)=\frac{\pi(1-\pi)}{\nu(\pi, c)^{3}} \gamma\left(\frac{(1-c) \pi}{\nu(\pi, c)}\right)
$$

- Dependence on prior π
- Cubic term due to mapping from $[0, \infty)$ to $[0,1]$

$$
\nu(\pi, c)=(1-c) \pi+(1-\pi) c
$$

Translating Weights

- The earlier connection between fdivergence and statistical information suggests that their weight functions are related
- Some straight-forward algebra gives and explicit translation
- Dependence on prior π
- Cubic term due to mapping from $[0, \infty)$ to $[0,1]$

$$
w_{\pi}(c)=\frac{\pi(1-\pi)}{\nu(\pi, c)^{3}} \gamma\left(\frac{(1-c) \pi}{\nu(\pi, c)}\right)
$$

$$
\Delta \underline{\mathbb{L}}=\int_{0}^{1} \frac{\text { Primitives }}{\Delta \underline{\underline{L}}_{c} w(c) d c \quad \mathbb{I}_{f}=\int_{0}^{1}{\stackrel{\mathbb{I}}{f_{\pi}}}_{\underset{\sim}{\gamma}}^{\gamma}(\pi)} \text { Weights } d \pi
$$

$$
\gamma_{\pi}(c)=\frac{\pi^{2}(1-\pi)^{2}}{\nu(\pi, c)^{3}} w\left(\frac{(1-c) \pi}{\nu(\pi, c)}\right)
$$

$$
\nu(\pi, c)=(1-c) \pi+(1-\pi) c
$$

Translating Weights

- The earlier connection between fdivergence and statistical information suggests that their weight functions are related
- Some straight-forward algebra gives and explicit translation

$$
w_{\pi}(c)=\frac{\pi(1-\pi)}{\nu(\pi, c)^{3}} \gamma\left(\frac{(1-c) \pi}{\nu(\pi, c)}\right)
$$

- Dependence on prior π
- Cubic term due to mapping from $[0, \infty)$ to $[0,1]$

$$
\gamma_{\pi}(c)=\frac{\pi^{2}(1-\pi)^{2}}{\nu(\pi, c)^{3}} w\left(\frac{(1-c) \pi}{\nu(\pi, c)}\right)
$$

$$
\nu(\pi, c)=(1-c) \pi+(1-\pi) c
$$

- Cost-weighted loss relates to a prior-sensitive variational divergence

Graphical Representations

ROC Curves

- A threshold t is applied to a test statistic τ to create a statistical test
- Contingency table for each test

$$
\tau \geq t
$$

- Plotting

$$
(T P, F P)=(P(\tau \geq t), Q(\tau \geq t))
$$

as t varies gives an ROC curve for τ

- NP Lemma implies that optimal ROC curve is obtained when

$$
\tau^{*}=\frac{d P}{d Q}
$$

Area Under the ROC Curve (AUC)

- A natural measure of quality for a test statistic is the area under the ROC curve
- Ranking interpretation
- Probability of misranking instance from Q ahead of one from P
- Equivalent to the Mann-WhitneyWilcoxon statistic

Area Under the ROC Curve (AUC)

- A natural measure of quality for a test statistic is the area under the ROC curve
- Ranking interpretation
- Probability of misranking instance from Q ahead of one from P
- Equivalent to the Mann-WhitneyWilcoxon statistic
- Is maximal AUC an f-divergence?

- No...
- ...but it is $V(P \times Q, Q x P)$

Risk Curves

- A plot of cost-sensitive risk for each value of the cost parameter
- Shape of curve dependent on mixing probability π

Risk Curves

- A plot of cost-sensitive risk for each value of the cost parameter
- Shape of curve dependent on mixing probability π
- Weighted area between bottom curve and "tent" is statistical information
- Divergence bounds

Risk Curves

- A plot of cost-sensitive risk for each value of the cost parameter
- Shape of curve dependent on mixing probability π
- Weighted area between bottom curve and "tent" is statistical information
- Divergence bounds
- Weighted area between two curves at bottom is regret
- Surrogate loss bounds

Risk Curves

ROC Curves to Risk Curves and Back

$$
\begin{gathered}
(F P, T P) \mapsto \mathbb{L}_{c}=(1-\pi) c F P+\pi(1-c)(1-T P) \\
\quad\left(c, \mathbb{L}_{c}\right) \mapsto T P=\frac{(1-\pi) c}{(1-c) \pi} F P+\frac{(1-\pi) c-\mathbb{L}_{c}}{(1-c) \pi}
\end{gathered}
$$

Variational Representations

Variational Form of f-Divergence

- Convex functions are invariant under the LF bidual

$$
f(t)=f^{* *}(t)=\sup _{t^{*} \in \mathbb{R}}\left\{t^{*} \cdot t-f^{*}\left(t^{*}\right)\right\}
$$

Variational Form of f-Divergence

- Convex functions are invariant under the LF bidual

$$
f(t)=f^{* *}(t)=\sup _{t^{*} \in \mathbb{R}}\left\{t^{*} \cdot t-f^{*}\left(t^{*}\right)\right\}
$$

- Substitute into f-divergence definition

$$
\begin{aligned}
\mathbb{I}_{f}(P, Q) & =\mathbb{E}_{Q}\left[\sup _{t^{*} \in \mathbb{R}}\left\{t^{*} \cdot \frac{d P}{d Q}-f^{*}\left(t^{*}\right)\right\}\right] \\
& =\int_{\mathcal{X} t^{*} \in \mathbb{R}} \sup \left\{t^{*} d P-f^{*}\left(t^{*}\right) d Q\right\} \\
& =\sup _{r: \mathcal{X} \rightarrow \mathbb{R}} \int_{\mathcal{X}} r d P-f^{*}(r) d Q \\
& =\sup _{r: \mathcal{X} \rightarrow \mathbb{R}} \mathbb{E}_{P}[r]-\mathbb{E}_{Q}\left[f^{*}(r)\right]
\end{aligned}
$$

Variational Form of f-Divergence

- Convex functions are invariant under the LF bidual

$$
f(t)=f^{* *}(t)=\sup _{t^{*} \in \mathbb{R}}\left\{t^{*} \cdot t-f^{*}\left(t^{*}\right)\right\}
$$

- Substitute into f-divergence definition

$$
\begin{aligned}
\mathbb{I}_{f}(P, Q) & =\mathbb{E}_{Q}\left[\sup _{t^{*} \in \mathbb{R}}\left\{t^{*} \cdot \frac{d P}{d Q}-f^{*}\left(t^{*}\right)\right\}\right] \\
& =\int_{\mathcal{X} t^{*} \in \mathbb{R}} \sup _{t}\left\{t^{*} d P-f^{*}\left(t^{*}\right) d Q\right\} \\
& =\sup _{r: \mathcal{X} \rightarrow \mathbb{R}} \int_{\mathcal{X}} r d P-f^{*}(r) d Q \\
& =\sup _{r: \mathcal{X} \rightarrow \mathbb{R}} \mathbb{E}_{P}[r]-\mathbb{E}_{Q}\left[f^{*}(r)\right]
\end{aligned}
$$

- Variational form does not use $d P / d Q$
- Easier estimation

Variational Representation of f-Divergence

$$
\mathbb{I}_{f}(P, Q)=\sup _{r: \mathcal{X} \rightarrow \mathbb{R}} \mathbb{E}_{P}[r]-\mathbb{E}_{Q}\left[f^{*}(r)\right]
$$

The acts of the mind, wherein it exerts its power over simple ideas, are chiefly these three:

1. Combining several simple ideas into one compound one, and thus all complex ideas are made.
2. The second is bringing two ideas, whether simple or complex, together, and setting them by one another so as to take a view of them at once, without uniting them into one, by which it gets all its ideas of relations.
3. The third is separating them from all other ideas that accompany them in their real existence: this is called abstraction, and thus all its general ideas are made.

Part III: Bounds and Applications

Terra Statistica

Terra Statistica

In our theories, we rightly search for unification, but real life is both complicated and short, and we make no mockery of honest adhockery.
I.J. Good (1916-)

Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD)

- A special case of the variational form of f -divergence is when $f(t)=|t-1|$
- Restriction to $[-1,1]$ occurs due to form of $f^{*}(t)$
- Assume r is from the unit ball in a RKHS for the kernel k with feature map ϕ and define
- Easy test statistic to estimate since

Maximum Mean Discrepancy (MMD)

- A special case of the variational form $\quad V(P, Q)=\sup _{r: \mathcal{X} \rightarrow[-1,1]} \mathbb{E}_{P}[r]-\mathbb{E}_{Q}[r]$
of f-divergence is when $f(t)=|t-1|$
- Restriction to $[-1,1]$ occurs due to form of $f^{*}(t)$

$$
f^{*}(t)= \begin{cases}t & t \in[-1,1] \\ +\infty & \text { otherwise }\end{cases}
$$

- Assume r is from the unit ball in a RKHS for the kernel k with feature map ϕ and define
- Easy test statistic to estimate since

Maximum Mean Discrepancy (MMD)

- A special case of the variational form of f -divergence is when $f(t)=|t-1|$
- Restriction to $[-1,1]$ occurs due to form of $f^{*}(t)$

$$
V(P, Q)=\sup _{r: \mathcal{X} \rightarrow[-1,1]} \mathbb{E}_{P}[r]-\mathbb{E}_{Q}[r]
$$

$$
f^{*}(t)= \begin{cases}t & t \in[-1,1] \\ +\infty & \text { otherwise }\end{cases}
$$

- Assume r is from the unit ball in a RKHS for the kernel k with feature map ϕ and define

$$
\mu[P]:=\mathbb{E}_{p}[\phi(x)]=\mathbb{E}_{p}[k(x, \cdot)]
$$

Maximum Mean Discrepancy (MMD)

- A special case of the variational form $\quad V(P, Q)=\sup _{r: \mathcal{X} \rightarrow[-1,1]} \mathbb{E}_{P}[r]-\mathbb{E}_{Q}[r]$
of f-divergence is when $f(t)=|t-1|$
- Restriction to $[-1,1]$ occurs due to form of $f^{*}(t)$

$$
f^{*}(t)= \begin{cases}t & t \in[-1,1] \\ +\infty & \text { otherwise }\end{cases}
$$

- Assume r is from the unit ball in a RKHS for the kernel k with feature map ϕ and define

$$
\mu[P]:=\mathbb{E}_{P}[\phi(x)]=\mathbb{E}_{P}[k(x, \cdot)]
$$

$$
V(P, Q)=\|\mu(P)-\mu(Q)\|_{\mathcal{H}}
$$

- Easy test statistic to estimate since

$$
\begin{aligned}
\|\mu(P)-\mu(Q)\|_{\mathcal{H}} & =\mathbb{E}_{P \times P} k\left(x, x^{\prime}\right)+\mathbb{E}_{Q \times Q} k\left(y, y^{\prime}\right)-2 \mathbb{E}_{P \times Q} k(x, y) \\
& \approx \frac{1}{m^{2}} \sum_{i, j=1}^{m} k\left(x_{i}, x_{j}\right)+\frac{1}{n^{2}} \sum_{i, j=1}^{n} k\left(y_{i}, y_{j}\right)-\frac{2}{m n} \sum_{i=1}^{m} \sum_{j=1}^{n} k\left(x_{i}, y_{j}\right)
\end{aligned}
$$

Generalised Pinsker Bounds

Pinsker's Inequality

Pinsker's Inequality

- A lower bound on KL divergence in terms of variational divergence

$$
K L(P, Q) \geq 2 V^{2}(P, Q)
$$

- Information about the value of V constraints the possible values of KL

Better Pinsker Bounds

- The above inequality is not tight
- What we really want is

$$
L(V)=\inf _{V(P, Q)=V} K L(P, Q)
$$

Generalised Pinsker Inequalities

Primitive vs Composite

- V is "primitive"
- $K L$ is "composite"

General Bound

- Can we get tight bounds for any
f -divergence given V?
- Yes we can!
- V gives "partial information" about separation of P and Q

Generalised Pinsker Inequalities

Primitive vs Composite

- V is "primitive"
- KL is "composite"

General Bound

- Can we get tight bounds for any f-divergence given V ?
- Yes we can!
- V gives "partial information" about separation of P and Q

Divergence Variational Bound

Hellinger $\quad h^{2} \geq 2-\sqrt{4-V^{2}}$ Jeffreys $\quad J \geq 2 V \ln \left(\frac{2+V}{2-V}\right)$
Symmetric $\chi^{2} \quad \psi \geq \frac{8 V^{2}}{4-V^{2}}$
AG Mean $\quad T \geq \ln \left(\frac{4}{\sqrt{4-V^{2}}}\right)-\ln 2$
Pearson $\chi^{2} \quad \chi^{2} \geq \begin{cases}V^{2} & V<1 \\ \frac{V}{2-V} & V \geq 1\end{cases}$

Generalised Pinsker Inequalities

Proof Sketch

- f-divergence is a weighted sum of primitive statistical information
- This is just an area on a risk diagram
- Value at one point bounds the total area

Going Further

- This proof is amenable to knowing multiple primitive values

Generalised Pinsker Inequalities

Proof Sketch

- f-divergence is a weighted sum of primitive statistical information
- This is just an area on a risk diagram
- Value at one point bounds the total area

Going Further

- This proof is amenable to knowing multiple primitive values

Generalised Pinsker Inequalities

Proof Sketch

- f-divergence is a weighted sum of primitive statistical information
- This is just an area on a risk diagram
- Value at one point bounds the total area

Going Further

- This proof is amenable to knowing multiple primitive values

Generalised Pinsker Inequalities

Proof Sketch

- f-divergence is a weighted sum of primitive statistical information
- This is just an area on a risk diagram
- Value at one point bounds the total area

Going Further

- This proof is amenable to knowing multiple primitive values

Surrogate Loss Bounds

Surrogate Loss

Surrogate Loss

- 0-1 loss is notoriously hard to optimise directly
- One solution is to optimise a surrogate - an upper bound on 0-1 loss

Surrogate Bounds

- Want guarantees that minimising the surrogate regret minimises the 0-1 regret

Surrogate Loss Bounds

Main Result

- Suppose we know $B_{c_{0}}(\eta, \hat{\eta})=\alpha$. Then for an arbitrary proper loss, its regret satisfies

$$
B(\eta, \hat{\eta}) \geq \min \left(\psi\left(c_{0}, \alpha\right), \psi\left(c_{0},-\alpha\right)\right)
$$

where $\psi\left(c_{0}, \alpha\right)=\underline{L}\left(c_{0}\right)-\underline{L}\left(c_{0}-\alpha\right)+\alpha \underline{L}^{\prime}\left(c_{0}\right)$

Surrogate Loss Bounds

Main Result

- Suppose we know $B_{c_{0}}(\eta, \hat{\eta})=\alpha$. Then for an arbitrary proper loss, its regret satisfies

$$
B(\eta, \hat{\eta}) \geq \min \left(\psi\left(c_{0}, \alpha\right), \psi\left(c_{0},-\alpha\right)\right)
$$

where $\psi\left(c_{0}, \alpha\right)=\underline{L}\left(c_{0}\right)-\underline{L}\left(c_{0}-\alpha\right)+\alpha \underline{L}^{\prime}\left(c_{0}\right)$

Corollary

- For a symmetric loss where $\underline{L}(c-1 / 2)=\underline{L}(1 / 2-c)$, then if $B_{\frac{1}{2}}(\eta, \hat{\eta})=\alpha$

$$
B(\eta, \hat{\eta}) \geq \underline{L}(1 / 2)-\underline{L}(1 / 2-\alpha)
$$

Surrogate Bound Example

Exponential Loss

- Let $\ell(y, \hat{\eta})= \begin{cases}\sqrt{\frac{\hat{\eta}}{1-\hat{\eta}}} & y=0 \\ \sqrt{\frac{1-\hat{\eta}}{\hat{\eta}}} & y=1\end{cases}$

Surrogate Bound Example

Exponential Loss

- Let $\ell(y, \hat{\eta})= \begin{cases}\sqrt{\frac{\hat{\eta}}{1-\hat{\eta}}} & y=0 \\ \sqrt{\frac{1-\hat{\eta}}{\hat{\eta}}} & y=1\end{cases}$

Surrogate Bound Example

Exponential Loss

- Let $\quad \ell(y, \hat{\eta})= \begin{cases}\sqrt{\frac{\hat{\eta}}{1-\hat{\eta}}} & y=0 \\ \sqrt{\frac{1-\hat{\eta}}{\hat{\eta}}} & y=1\end{cases}$
- Then $L(\eta, \hat{\eta})=(1-\eta) \sqrt{\frac{\hat{\eta}}{1-\hat{\eta}}}+\eta \sqrt{\frac{1-\hat{\eta}}{\hat{\eta}}}$

Surrogate Bound Example

Exponential Loss

- Let $\quad \ell(y, \hat{\eta})= \begin{cases}\sqrt{\frac{\hat{\eta}}{1-\hat{\eta}}} & y=0 \\ \sqrt{\frac{1-\hat{\eta}}{\hat{\eta}}} & y=1\end{cases}$
- Then $L(\eta, \hat{\eta})=(1-\eta) \sqrt{\frac{\hat{\eta}}{1-\hat{\eta}}}+\eta \sqrt{\frac{1-\hat{\eta}}{\hat{\eta}}}$
- And so $\underline{L}(\eta)=2 \sqrt{\eta(1-\eta)}$ which is symmetric

Surrogate Bound Example

Exponential Loss

- Let $\quad \ell(y, \hat{\eta})= \begin{cases}\sqrt{\frac{\hat{\eta}}{1-\hat{\eta}}} & y=0 \\ \sqrt{\frac{1-\hat{\eta}}{\hat{\eta}}} & y=1\end{cases}$
- Then $L(\eta, \hat{\eta})=(1-\eta) \sqrt{\frac{\hat{\eta}}{1-\hat{\eta}}}+\eta \sqrt{\frac{1-\hat{\eta}}{\hat{\eta}}}$
- And so $\underline{L}(\eta)=2 \sqrt{\eta(1-\eta)}$ which is symmetric
- Thus, if $B_{\frac{1}{2}}(\eta, \hat{\eta})=\alpha$ then the exponential regret satisfies

$$
B(\eta, \hat{\eta}) \geq 1-\sqrt{1-4 \alpha^{2}}
$$

Surrogate Bound Example

Exponential Loss

- Let $\quad \ell(y, \hat{\eta})= \begin{cases}\sqrt{\frac{\hat{\eta}}{1-\hat{\eta}}} & y=0 \\ \sqrt{\frac{1-\hat{\eta}}{\hat{\eta}}} & y=1\end{cases}$
- Then $L(\eta, \hat{\eta})=(1-\eta) \sqrt{\frac{\hat{\eta}}{1-\hat{\eta}}}+\eta \sqrt{\frac{1-\hat{\eta}}{\hat{\eta}}}$
- And so $\underline{L}(\eta)=2 \sqrt{\eta(1-\eta)}$ which is symmetric
- Thus, if $B_{\frac{1}{2}}(\eta, \hat{\eta})=\alpha$ then the exponential regret satisfies

$$
B(\eta, \hat{\eta}) \geq 1-\sqrt{1-4 \alpha^{2}}
$$

- And so

$$
B_{\frac{1}{2}}(\eta, \hat{\eta}) \leq \frac{1}{2} \sqrt{(1-B(\eta, \hat{\eta}))^{2}-1}
$$

Proof of Surrogate Loss Bound

- First recall that $B_{c_{0}}(\eta, \hat{\eta})=\left|\eta-c_{0}\right| \llbracket \min (\eta, \hat{\eta}) \leq c_{0}<\max (\eta, \hat{\eta}) \rrbracket$

Proof of Surrogate Loss Bound

- First recall that $B_{c_{0}}(\eta, \hat{\eta})=\left|\eta-c_{0}\right| \llbracket \min (\eta, \hat{\eta}) \leq c_{0}<\max (\eta, \hat{\eta}) \rrbracket$
- And so when $B_{c_{0}}(\eta, \hat{\eta})=\alpha$ we know that

$$
\eta= \begin{cases}c_{0}+\alpha, & \hat{\eta} \leq c_{0}<\eta \\ c_{0}-\alpha, & \eta \leq c_{0}<\hat{\eta}\end{cases}
$$

Proof of Surrogate Loss Bound

- First recall that $B_{c_{0}}(\eta, \hat{\eta})=\left|\eta-c_{0}\right| \llbracket \min (\eta, \hat{\eta}) \leq c_{0}<\max (\eta, \hat{\eta}) \rrbracket$
- And so when $B_{c_{0}}(\eta, \hat{\eta})=\alpha$ we know that

$$
\eta= \begin{cases}c_{0}+\alpha, & \hat{\eta} \leq c_{0}<\eta \\ c_{0}-\alpha, & \eta \leq c_{0}<\hat{\eta}\end{cases}
$$

- For a general proper loss, recall its regret can be expressed as

$$
B(\eta, \hat{\eta})=\int_{\min (\eta, \hat{\eta})}^{\max (\eta, \hat{\eta})}|\eta-c| w(c) d c
$$

Proof of Surrogate Loss Bound

- First recall that $B_{c_{0}}(\eta, \hat{\eta})=\left|\eta-c_{0}\right| \llbracket \min (\eta, \hat{\eta}) \leq c_{0}<\max (\eta, \hat{\eta}) \rrbracket$
- And so when $B_{c_{0}}(\eta, \hat{\eta})=\alpha$ we know that

$$
\eta= \begin{cases}c_{0}+\alpha, & \hat{\eta} \leq c_{0}<\eta \\ c_{0}-\alpha, & \eta \leq c_{0}<\hat{\eta}\end{cases}
$$

- For a general proper loss, recall its regret can be expressed as

$$
B(\eta, \hat{\eta})=\int_{\min (\eta, \hat{\eta})}^{\max (\eta, \hat{\eta})}|\eta-c| w(c) d c
$$

- In the first case, when $\hat{\eta} \leq c_{0}<\eta=c_{0}+\alpha$ we see

$$
\begin{aligned}
B(\eta, \hat{\eta}) & =\int_{\hat{\eta}}^{\eta}\left(c_{0}+\alpha-c\right) w(c) d c \\
& \geq \int_{c_{0}}^{c_{0}+\alpha}\left(c_{0}+\alpha-c\right) w(c) d c
\end{aligned}
$$

Proof of Surrogate Loss Bound (continued)

- Thus, using $w(c)=-\underline{L} "(c)$, and integrating by parts, we see

$$
\begin{aligned}
B(\eta, \hat{\eta}) & \geq \int_{c_{0}}^{c_{0}+\alpha}\left(c_{0}+\alpha-c\right) w(c) d c \\
& =-\int_{c_{0}}^{c_{0}+\alpha}\left(c_{0}+\alpha-c\right) \underline{L}^{\prime \prime}(c) d c \\
& =-\left[\left(c_{0}+\alpha-c\right) \underline{L}^{\prime}(c)\right]_{c_{0}}^{c_{0}+\alpha}-\int_{c_{0}}^{c_{0}+\alpha} \underline{L}^{\prime}(c) d c \\
& =\alpha \underline{L}^{\prime}\left(c_{0}\right)-\underline{L}\left(c_{0}+\alpha\right)+\underline{L}\left(c_{0}\right)
\end{aligned}
$$

- The case when $c_{0}-\alpha=\eta \leq c_{0}<\hat{\eta}$ is almost identical

It is the snobbishness of the young to suppose that a theorem is trivial because the proof is trivial

f-Divergence Estimation

f-Divergence Estimation

f-Divergence and Bayes Risk

f-Divergence Estimation

f-Divergence and Bayes Risk

- Recall that $\mathbb{I}_{f}(P, Q)=\underline{\mathbb{L}}(\pi, M)-\underline{\mathbb{L}}(\eta, M)$

f-Divergence Estimation

f-Divergence and Bayes Risk

- Recall that $\mathbb{I}_{f}(P, Q)=\underline{\mathbb{L}}(\pi, M)-\underline{\mathbb{L}}(\eta, M)$
- For good estimators $\mathbb{L}(\eta, \hat{\eta}, M) \approx \underline{\mathbb{L}}(\eta, M)$ and so

$$
\mathbb{I}_{f}(P, Q) \approx K-\mathbb{L}(\eta, \hat{\eta}, M)
$$

f-Divergence Estimation

f-Divergence and Bayes Risk

- Recall that $\mathbb{I}_{f}(P, Q)=\underline{\mathbb{L}}(\pi, M)-\underline{\mathbb{L}}(\eta, M)$
- For good estimators $\mathbb{L}(\eta, \hat{\eta}, M) \approx \mathbb{L}(\eta, M)$ and so

$$
\mathbb{I}_{f}(P, Q) \approx K-\mathbb{L}(\eta, \hat{\eta}, M)
$$

- Furthermore,

$$
\begin{aligned}
& \text { Furthermore, } \\
& \begin{aligned}
\mathbb{L}(\eta, \hat{\eta}, M) & =\int_{0}^{1} \mathbb{L}_{c}(\eta, \hat{\eta}, M) w(c) d c \\
& \approx \sum_{i=1}^{n} \mathbb{L}_{c_{i}}(\eta, \hat{\eta}, M)
\end{aligned}
\end{aligned}
$$

where the c_{i} are importance sampled using w

f-Divergence Estimation

f-Divergence and Bayes Risk

- Recall that $\mathbb{I}_{f}(P, Q)=\underline{\mathbb{L}}(\pi, M)-\underline{\mathbb{L}}(\eta, M)$
- For good estimators $\mathbb{L}(\eta, \hat{\eta}, M) \approx \mathbb{L}(\eta, M)$ and so

$$
\mathbb{I}_{f}(P, Q) \approx K-\mathbb{L}(\eta, \hat{\eta}, M)
$$

- Furthermore,

$$
\begin{aligned}
& \text { Furthermore, } \\
& \begin{aligned}
\mathbb{L}(\eta, \hat{\eta}, M) & =\int_{0}^{1} \mathbb{L}_{c}(\eta, \hat{\eta}, M) w(c) d c \\
& \approx \sum_{i=1}^{n} \mathbb{L}_{c_{i}}(\eta, \hat{\eta}, M)
\end{aligned}
\end{aligned}
$$

where the c_{i} are importance sampled using w

In theory, there is no difference between theory and practice. But, in practice, there is.

Jan L. A. van de Snepscheut (1953-1994)

Summary and Conclusions

Integral Form of the Taylor Expansion

$$
\begin{aligned}
& f(t)=f\left(t_{0}\right)+\left(t-t_{0}\right) f^{\prime}\left(t_{0}\right)+\int_{a}^{b} g(t, s) f^{\prime \prime}(s) d s \\
& \text { where } \quad g(t, s)= \begin{cases}(t-s) & t_{0} \leq s<t \\
(s-t) & t \leq s<t_{0}\end{cases}
\end{aligned}
$$

$$
\mathbb{J}_{P}[f(x)]:=\mathbb{E}_{P}[f(x)]-f\left(\mathbb{E}_{P}[x]\right) \geq 0
$$

if and only if
f is convex

Summary - The Problems

Hypothesis Testing

- Given samples from P or Q decide whether samples were drawn from P or Q
- Divergence / MMD

Summary - The Problems

Hypothesis Testing

- Given samples from P or Q decide whether samples were drawn from P or Q
- Divergence / MMD

Classification

- Given samples from a п-mixture of P and Q decide, for each instance x, whether x was drawn from P or Q
- 0-1 Misclassification Loss

Summary - The Problems

Hypothesis Testing

- Given samples from P or Q decide whether samples were drawn from P or Q
- Divergence / MMD

Classification

- Given samples from a π-mixture of P and Q decide, for each instance x, whether x was drawn from P or Q
- 0-1 Misclassification Loss

Probability Estimation

- Given samples from a π-mixture of P and Q estimate, for each instance x, the probability x was drawn from P (or Q)
- Proper Scoring Rules

Summary - The Problems

Hypothesis Testing

- Given samples from P or Q decide whether samples were drawn from P or Q
- Divergence / MMD

Classification

- Given samples from a π-mixture of P and Q decide, for each instance x, whether x was drawn from P or Q
- 0-1 Misclassification Loss

Probability Estimation

- Given samples from a π-mixture of P and Q estimate, for each instance x, the probability x was drawn from P (or Q)
- Proper Scoring Rules

Bipartite Ranking

- Given samples from a π-mixture of P and Q sort instances drawn from P ahead of those from Q
- Area under ROC curve

Summary - The Representations

Weighted Integral Representation

- Taylor's Theorem
$f(t)=\Lambda_{f}(t)+\int_{a}^{b} g_{s}(t) f^{\prime \prime}(s) d s$
- f-Divergences
$\mathbb{I}_{f}(P, Q)=\int_{0}^{1} \mathbb{I}_{f_{\pi}}(P, Q) \gamma(\pi) d \pi$

Variational Representation

- Legendre-Fenchel Dual
$f(t)=f^{* *}(t)=\sup _{t^{*} \in \mathbb{R}}\left\{t^{*} \cdot t-f^{*}\left(t^{*}\right)\right\}$
- f-Divergence
$\mathbb{I}_{f}(P, Q)=\sup _{r: \mathcal{X} \rightarrow \mathbb{R}} \mathbb{E}_{P}[r]-\mathbb{E}_{Q}\left[f^{*}(r)\right]$
- Proper Scoring Rules

$$
\ell_{c}(y, \hat{\eta})=\int_{0}^{1} \ell_{c}(y, \hat{\eta}) w(c) d c
$$

Summary - The Relationships

Information

- Bregman Info = Stat Info
- Information is a Jensen gap

Divergence

- f-divergence is a Jensen gap

Risk and Regret

- Regret for proper losses is a Bregman divergence

Risk and Information

- $\operatorname{Info}=$ Max. reduction in risk

Information \& Divergence

- Statistical Info = f-divergence (given mixing prior π)
- Explicit mapping of weights

Divergence and AUC

- Maximal AUC is not an fdivergence

Conclusions

Conclusions

Convexity and Expectations

- Convexity = Closure under expectation
- For Jensen Gaps
- convexity => non-negativity

Conclusions

Convexity and Expectations

- Convexity = Closure under expectation
- For Jensen Gaps
- convexity => non-negativity

Point-wise Bayes Risk

- Fundamental function in representation results
- Simple to derive from loss

Conclusions

Convexity and Expectations

- Convexity = Closure under expectation
- For Jensen Gaps
- convexity => non-negativity

Point-wise Bayes Risk

- Fundamental function in representation results
- Simple to derive from loss

Divergence and Risk

- Two sides of the same coin

Conclusions

Convexity and Expectations

- Convexity = Closure under expectation
- For Jensen Gaps
- convexity => non-negativity

Point-wise Bayes Risk

- Fundamental function in representation results
- Simple to derive from loss

Divergence and Risk

- Two sides of the same coin

Taylor Integral Expansion

- Implies weighted integral of piece-wise linear functions
- Convexity => positive weights
- Piece-wise linear = primitives

Conclusions

Convexity and Expectations

- Convexity = Closure under expectation
- For Jensen Gaps
- convexity => non-negativity

Point-wise Bayes Risk

- Fundamental function in representation results
- Simple to derive from loss

Divergence and Risk

- Two sides of the same coin

Taylor Integral Expansion

- Implies weighted integral of piece-wise linear functions
- Convexity => positive weights
- Piece-wise linear = primitives

Problems, not just Techniques

- Insight by abstracting away from samples and understanding relationships

Fundamental progress has to do with the reinterpretation of basic ideas

Alfred North Whitehead (1961-1947)

Terra Statistica

Thank You

Selected References

1. Reid and Williamson, Information, Divergence and Risk for Binary Classification, arXiv, 2009
2. Österreicher and Vajda, Statistical Information and Divergence, Journal of Something or Other, 1993
3. L. Savage, On Measures of Uncertainty, Journal of Something

Colophon

- Keynote 4 (with LinkBack plugin) using a modified Modern Portfolio theme
- OmniGraffle 5 for diagrams
- R for plots
- LaTeXiT for equations
- Text set in Helvetica Neue and equations in Computer Modern Bright e\{cmbright\}]undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

