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Mathematics is the art of giving the
same name to different things.

Jules Henri Poincaré (1854-1912)
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Part |I: Convexity,

Sinary

=xperiments & Classification



Convexity



Cconvex Sets

e We say S C R?is a convex set if it is
closed under convex combination.

That is, for any n, any x4, ..., X, CS
and weights A1, ..., An = 0 such that
27:1 A =1

Z AiX; €8
=1
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Cconvex Sets

e We say S C R?is a convex set if it is
closed under convex combination.

That is, for any n, any x4, ..., X, CS
and weights A1, ..., An = 0 such that
27:1 A =1

Z AiX; €S8
=1

e Suffices to show for all \ € [0, 1] and Convex Not Convex

X1+ (L=XA)x €S XJ/. -

® Convex = “closed under expectation”




Convex Functions

® The epigraph of a function is the set
of points that lie above it:

epi(f) = {(x,y) : x e RY, y > f(x)}

® A function is convex if its epigraph is
a convex set

» A convex function is necessarily
continuous




Taylor’s Theorem

Integral Form of Taylor Expansion

o Let [ty, t] be an interval on which f is twice differentiable. Then

f(t) = f(ty) + (t — to)f'(tg) + /t(t —s)f"(s)ds



Taylor’s Theorem

Integral Form of Taylor Expansion
e Let [ty, t] be an interval on which f is twice differentiable. Then
t
f(t) = f(tg) + (t — to)f'(to) + / (t —s)f"(s)ds
to
Corollary

e | et f be twice differentiable on [a,b]. Then, for all t in [a,b],

b
f(t) = f(t0)+(t—to)f’(to)—|—/ g(t,s)f"(s)ds

where (t—s) th<s<'t
g(t,s) = (s—t) t<s<t
0 otherwise

e Differentiability can be removed if f and f”’ are interpreted distributionally



Integral Form of the Taylor Expansion

b
f(t) = f(ty) + (t — to)f'(to) +/ g(t,s)"(s)ds

where

g(t,s)=(t—s)[to <s<t]+(s—t)|t <s < 1]

0, otherwise

o] = {1, p IS true




Bregman Divergence

e A Bregman divergence is a general
class of “distance” measures defined
using convex functions

f(t) =tlog(t)

Br(t, to) == f(t) — f(to) — (t — to, VI (o))




Bregman

Divergence

e A Bregman divergence is a general
class of “distance” measures defined
using convex functions

Br(t, to) == f(t) — f(to) — (t — to, VI (o))

* In 1-d case, B¢(t, ty) is the non-linear
part of the Taylor expansion of f

Be(t, to) = /t(t —s)f"(s)ds

to

f(t) =tlog(t)




Jensen’s Inequality

Jensen Gap

e Forconvex f - R — R and
distribution P define

Jplf(x)] :=Ep [f(x)] — f (Ep[x])



Jensen’s Inequality

Jensen Gap Jensen’s Inequality
e Forconvex f : R — R and e The Jensen Gap is non-negative
distribution P define for all P if and only if f is convex

Jplf(x)] :=Ep [f(x)] — f (Ep[x])



Jensen’s Inequality

Jensen Gap Jensen’s Inequality
e Forconvex f : R — R and e The Jensen Gap is non-negative
distribution P define for all P if and only if f is convex

Jplf(x)] :=Ep [f(x)] — f (Ep[x])

______________________ I (xa)
f(Xl) ——————————————————————— /// i

Ep[f(x)]

Telf ()] _/

f (Eplx])

A
\

)I(l XI2 E [X] )23 X:4



Jensen’s Inequality

Jplf(x)] =

p [F(x)] — 7 (
if and only If

f 1S convex

plx]) 20




The Legendre-Fenchel Transform

* The LF Transform generalises the it
notion of a derivative to non-
differentiable functions

fe(t*) = sup{(t, t7) — f(t)}

teRd




The Legendre-Fenchel Transform

* The LF Transform generalises the it
notion of a derivative to non-
differentiable functions

fA(t%) = sup {(t, t%) — F(1)}

teRd

e The double LF transform or
biconjugate
f*(t) = sup {(t*, t) — f*(t7)}

t*cRd

IS involutive for convex f. That is,

F(t) = F(t)



Representations of Convex Functions

Integral Representation Variational Representation
¢ Via Taylor’s Theorem ¢ VVia Fenchel Dual
b
f(t) = NAre(t) +/ g(t,s) f"(s)ds f(t) = sup{t.t* — f*(t*)}
a t*eR
where where
Ne(t) = f(ty) + f'(to)(t — to) f*(t) = sup{t.t* — f(t)}

teR

ot s) = {(t5)+ s >ty

(S—t)_|_ s <1
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Sinary

=Xperiments and Measures of

Divergence



Sinary Experiments

e A binary experiment is a pair of
distributions (P,Q) over the same
space X

e \We will think of P as the positive and
Q as the negative distribution

Discrete Space
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Probability
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- Continuous Space

Density
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dQ
dp




Sinary Experiments

e A binary experiment is a pair of
distributions (P,Q) over the same
space X

e \We will think of P as the positive and
Q as the negative distribution

e Given samples from X, how can we
tell if they came from P or Q7?

» Hypothesis Testing
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Sinary Experiments

e A binary experiment is a pair of
distributions (P,Q) over the same
space X

e \We will think of P as the positive and
Q as the negative distribution

e Given samples from X, how can we
tell if they came from P or Q7?

» Hypothesis Testing

e The “further apart” P and Q are the
easier this will be

» How do we define distance for
distributions?

Discrete Space

—_
(@)

o
0

o
o))

Probability
o
N

o
N

o

Continuous Space

Density
A

dQ
dpP




Test Statistics

e \We would like our distances to not be
dependent on the topology of the
underlying space

.
X




Test Statistics

e \We would like our distances to not be
dependent on the topology of the
underlying space

o A test statistic 7 maps each point in
X to a point on the real line

» Usually a function of the
distribution




Test Statistics

e \We would like our distances to not be
dependent on the topology of the
underlying space

o A test statistic 7 maps each point in
X to a point on the real line

» Usually a function of the
distribution

e A statistical test can be obtained by
thresholding a test statistic

r(x) = [7(x) = 7ol

e Each threshold partitions space into
positive and negative parts



Statistical Power and Size

Contingency Table

e True Positive Rate
¢ [alse Positive Rate
e True Negative Rate

e [False Negative Rate

“Power”
Size”
Actual Class
_I_ —
0 True False
@ | + | Positives | Positives
O TP FP
[®
L
'—(5) False True
D&_J — | Negatives | Negatives
FN TN




The Neyman-Pearson Lemma

Likelihood ratio

() = 55 ()



The Neyman-Pearson Lemma

Likelihood ratio

() = 55 ()

Neyman-Pearson Lemma (1933)

e The the likelihood ratio is the
uniformly most powerful (UMP)
statistical test

True Positive Rate (TP)

» Always has the largest TP Rate
for any given FP rate

False Positive Rate (FP)



Csiszar f-Divergence

e f-divergence of P from Q is the
Q-average of the likelihood ratio
transformed by the function f

» f can be seen as a penalty for
dP(x) = dQ(x)

I (P, Q)

Eq [f (77)]

o

ar
dQ

) o



Csiszar f-Divergence

e f-divergence of P from Q is the

I — i
Q-average of the likelihood ratio (P.Q) o lf (2;]
transformed by the function f — / f <_> dQ
x \dd
» f can be seen as a penalty for
dP(x) = dQ(x)
: dP
e To be a divergence, we want I:(P,Q) = Eo [f (%M
» I:(P,Q)=0forall P Q dP
> (B |5

» [:(Q, Q)= 0 for all Q



Csiszar f-Divergence

e f-divergence of P from Q is the
Q-average of the likelihood ratio
transformed by the function f

I (P, Q)

» f can be seen as a penalty for
dP(x) = dQ(x)

* To be a divergence, we want I:(P,Q)
» I:(P,Q)=0forall P Q
» I, (Q, Q)= 0 for all Q

¢ Jensen’s inequality requries
» f convex I (P, Q)

» f(1) =0

Eq [f (77)]

(G
34¢

™

f(1)

b

dP

d@

) o

R

“Jensen Gap”



Csiszar f-Divergence

"(q)| [
(%)

A Jensen Gap where f(1) =0




—Xamples

e Variational

e KL-Divergence
e Hellinger

e Pearson X’

e Triangular

f(t) = [t =1

f(t)=tInt

f(t) = (Vt—1)°

f(t) = (t—1)°

(t—1)7
t+1

f(t) =




—Xamples

Variational Divergence

P(x
3y ()

x€{a,b,c}
= |3—1+|5—-2/+]|2-.7
24+ .3+.5
= 1

- 1|Q(X)

Probability
o o -
o o O

O
N

o
N




—xamples

Variational Divergence

1.0

Z P(X) _ 1|Q(x) 30.8
x€{a,b,c} ;..
= |3—-1[+]5—-2[+[2—7] »
S 0.2

. 0

KL Divergence

) P(x) X
XG{;’C} QX) " (Q(X)) @)
= 3In(3)+ .5In(2.5) + .2In(2/7)

~ .43




—xamples

Variational Divergence

P(x
¥ [

xe{ab,c}
T e
2+.3+.5
= 1

- 1|Q(x)

KL Divergence

) P(x) X
XG{;’C} QX) " (Q(X)) @)
= 3In(3)+ .5In(2.5) + .2In(2/7)

~ .43

Probability
o o N
> oo O

o
N

O
N
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Classification and

Propability

—stimation



From Hypothesis Testing to Classification

Hypothesis Testing

¢ |nstances are either drawn from
P or Q exclusively

» The aim is to correctly decide
which

e Assumed

» Binary Experiment (P,Q)

* Imposed

» Measure of divergence



From Hypothesis Testing to Classification

Hypothesis Testing Classification / Prob. Estimation
¢ |nstances are either drawn from ¢ |nstances are drawn from a
P or Q exclusively mixture of P and Q
» The aim is to correctly decide » The aim is to correctly decide
which which for each instance
e Assumed e Assumed
» Binary Experiment (P,Q) » Binary Mixture (11,P,Q)
* Imposed ® Imposed

» Measure of divergence » Misclassification penalty



Generative and Discriminative Views

Joint Distribution

(n. M) < Prxy > (T P.Q)

Q)

dP

7]

\

Discriminative Generative



Generative and Discriminative Views

Joint Distribution

(n’ M) < ]P)XXJ} - (7(-1 P1 Q)
~dP By
=T T =Lm[T
U 1—mn
dM = mdP + (1 — m)dQ dP:%dl\// szl_ﬂdl\/I
A A 40

dP

7]

\

Discriminative Generative



Generative and Discriminative Views

Joint Distribution

(n’ M) < ]P)XXJ} - (7(-1 P1 Q)
_ 97 Bayes’ Rul = Eum[n]
n—ﬂdM ayes’ Rule T™=1mIM
U 1—mn
dM = mwdP + (1 —m)dQ dP:%dl\/I dQ = 1—7rdM
A A dQ

dP

7]

\

Discriminative Generative



Loss, Risk and Regret

Loss

e Penalty £(y, 1) for guessing 7)
when true class is y

» Classification n € {0,1}
» Prob. Estimation 7 € [0, 1]



Loss, Risk and Regret

Loss

e Penalty £(y, 1) for guessing 7)
when true class is y

» Classification n € {0,1}
» Prob. Estimation 7 € [0, 1]

Point-wise Risk

e Expected point-wise loss
[:]0,1] x[0,1] = R

L(n, %) = Eygll(Y,n)]
= (1 —mn)£(0,79) +né(1,7)



Loss, Risk and Regret

Loss Risk
e Penalty £(y, 1) for guessing 7) e Average point-wise risk
when true class is y L:[0, 1" =R
» Classification f € {0, 1} L(7) = Em[L(n, 7)]

» Prob. Estimation 7 € [0, 1]
Point-wise Risk

e Expected point-wise loss
[:]0,1] x[0,1] = R

L(n, %) = Eygll(Y,n)]
= (1 —mn)£(0,79) +né(1,7)



L 0SS,

Loss

Risk and

Regret

e Penalty £(y, 1) for guessing 7)
when true class is y

» Classification

Point-wise Risk

n € {0,1}
» Prob. Estimation 7 € [0, 1]

e Expected point-wise loss

[:]0,1] x[0,1] > R

L(n,N)

— EYNn [K(Y, 77)]

= (1 —mn)£(0,79) +né(1,7)

Risk
e Average point-wise risk
L:[0,1]* - R
L(7) = Em[L(n, N)]

Bayes Risk
L(n) = inf L(n,7)
Nel0,1]
L= inf L(79)
nelo,1]*



Loss, Risk and Regret

Loss Risk
e Penalty £(y, 1) for guessing 7) e Average point-wise risk
when true class is y L:[0, 1" =R
» Classification f € {0, 1} L(7) = Em[L(n, 7)]
» Prob. Estimation 7 € [0, 1] Bayes Risk
Point-wise Risk Lin) = _inf L(n.7)
e Expected point-wise loss L= ﬁei[g,fl]X IL(7)
L:]0,1] x[0,1] - R Regret
L(n,A) = Eyopll(Y,7)] B(n,7) = L(n, M) — L(n)

= (1 -n)£(0,n)+nt(1,9) B(A) = L(A) —

len



| OSS

—Xxamples

0-1 Misclassification Loss

Ly, n) =y #[n > 0.5]]

Square Loss

/\

Uy, M) = (y —N)°

Log Loss

Ly .N) = —ylog(ﬁ) — (1 —y)log(1—n)

Hinge Loss
{y,n)=y(05-17)++(1-y)H—-05)




Fisher Consistency & Proper Losses

Fisher Consistency

e Point-wise risk for a loss £ is

minimised by true probability

L(n.m) = _inf L(n %)= L(n)
7n€[0,1]

e Strict consistency requires 7
to be the unigue minimiser



Fisher Consistency & Proper Losses

Fisher Consistency Proper Losses
e Point-wise risk for a loss £ is e Aloss £ is called (strictly) proper
minimised by true probability if it is (strictly) Fisher consistent
| R * [n economics they are known as
L(n.m) = _inf L(n.7A)=L(n) “proper scoring rules”

e Strict consistency requires 7 » Shuford et al. (1966)
to be the unique minimiser » Savage (1971)

» Schervish (1989)

» Buja et al. (2005)

» Lambert et al. (2008)



—xamples of Proper Losses

0-1 Misclassification Loss Log Loss
Ly M) = [y # [ > 0.5]] €y, M) = —ylog(7) — (1 —y)log(1l — )
Proper Proper
Square Loss Hinge Loss
Uy, 1) = (y —1)° Ly, M) =y(0.5 1)+ + (1 - y)(H—05);
P roper “. Not

Propér




Properties of Proper Losses

Concave Bayes Risk

e | ower envelope of lines
L(n) = ir%f(l —n)¢(0, 1) + né(1, M)



Properties of Proper Losses

Concave Bayes Risk Savage’s Theorem
e | ower envelope of lines e | oss £ is proper iff
L(n) =inf(1 —n)£(0,7) +nL(1, M) its Bayes risk L is concave
7

e Relates Bayes risk and risk
without optimisation




Savage’s Theorem

A loss Is proper
If and only If
ts point-wise Bayes risk Is concave

Furthermore

L(n. M) =L(7A) + (n—n)L(N)

[Savage, 1971]




—Xamples

0-1 Misclassification Loss Log Loss

Ly, n) =y #[n > 0.5]]
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0-1 Misclassification Loss Log Loss

Ly, n) =y #[n > 0.5]]




—Xamples

0-1 Misclassification Loss Log Loss

Ly, n) =y #[n > 0.5]]

R (1-mn) n>.5
L(n,7) = « X
WU n<.5
(1-n) n>.5
L(n)=L(Mmmn) =1
M n<.5



—Xamples

0-1 Misclassification Loss Log Loss

Ly, n) =y #I[n>0.5]]

N (1-7mn) n>.5
L(n, M) = .
WU n<.5
(1-n) n>.5
L(n)=L(n,n) =«
L(n)=L(n.n) ; n< 5



—Xamples

0-1 Misclassification Loss Log Loss
Ly M) = [y # [ > 0.5]] Ly, N) = —ylog(n) — (1 —y)log(1 —7)
~ (1 — n) n>.5
L(n,7) = « ( ) X
WU n<.5
(1-n) n>.5
L =L(n,n) =«
L(n)=L(n.n) ; n< 5




—Xamples

0-1 Misclassification Loss Log Loss

Ly, n) =y #[n > 0.5]] Ly, M) = —ylog(ﬁ) — (1 —y)log(1—1n)

b
-
.
e
-
.
e
~a
“ay
~a

( | P A o /\0-5 | e
Ly — =) 1 >5 0 (n,9) = —nlog(7) — (1 —n)log(1 - 7)
(M. 1) = 5 X
7 n<.5
(1-n) n>.5
L(n)=L(n,n) =
U] n<.5

\

—1 n>.b5
L'(n) —{
1 n<.5



—Xamples

0-1 Misclassification Loss Log Loss

Ly, n) =y #[n > 0.5]] Ly, M) = —ylog(ﬁ) — (1 —y)log(1—1n)

b
-
.
e
-
.
e
~a
“ay
~a

L(n,n) = <((1_"7) ’?> = L(n, 7)) = o—nlog(ﬁ;—(l—ﬁ) log(1 — 7))
Uy 7 <.5
: . . L(n) = —nlog(n) — (1 —n)log(1 —n)
L(n)ZL(n,n)=<( —non>
Ui n<.5

\

—1 n>.b5
L'(n) —{
1 n<.5



—Xamples

0-1 Misclassification Loss Log Loss

Ly, n) =y #[n > 0.5]] Ly, M) = —ylog(ﬁ) — (1 —y)log(1—1n)

b
-
.
e
-
.
e
~a
“ay
~a

L= [AM =5 L(n8) = —mlog(A) — (1~ m)log(1 1)
U <.
:(1 ) i L(n) = —nlog(n) — (1 —n)log(1 —n)
B _J@=mn) n>.
Lin)=Lin.m) =< M n<.5 L'(n) = —1-log(n)+1+log(l—mn)

\

1 —

, —-1 n>.5 = log (_n>

L'(n) = U
1 n<.5



Proper Point-wise Bayes Risks

Given a proper loss,

ts point-wise

Sayes risk

IS easy to compute

L(n)=L(n.n)




Information



Where Is the wisdom
we have |lost in knowledge”?

Where Is the know

we have |lost

N Ir

edge
formation®

I.S. Eliot (1988-1965)



Statistical Information

] Low High
e | et U measure the “uncertainty” of a Uncertainty Uncertainty
distribution &.
» When € is peaked its uncertainty A
is small ) g

[De Groot, 1962]
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e | et U measure the “uncertainty” of a
distribution &.

» When ¢ is peaked its uncertainty
IS small

e Assume Tt is a prior for E(x) — the
posterior distribution after seeing x

» Reduction in uncertainty is

AU(T, €(x)) = U(m) — U(£(x))
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Statistical Information

e | et U measure the “uncertainty” of a
distribution &.

» When ¢ is peaked its uncertainty
IS small

e Assume Tt is a prior for E(x) — the
posterior distribution after seeing x

» Reduction in uncertainty is

AU(T, €(x)) = U(m) — U(£(x))

e The statistical information is the
expected reduction in uncertainty for

¢ when X~ M and 7 := Ep[£(X)]
AU(E, M) = Ey[U(m) — U(E(X))]

Low
Uncertainty

High
Uncertainty

A

Posteriors

[De Groot, 1962]



Statistical Information

e Observations can “at worst, contain
no information ... typically [dO]
contain some information”

AU, M) >0

EmlU(m) — U(E(X))]
U(Em[E(X)] = Em[U(E(X))

Im[=U(&(X));

AVARR AVARR AV,



Statistical Information

e Observations can “at worst, contain
no information ... typically [dO]
contain some information”

AU, M) >0

e By Jensen’s inequality, information is
non-negative iff the uncertainty
function U is concave

EmlU(m) — U(E(X))]
U(Em[E(X)] = Em[U(E(X))
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Statistical Information

e Observations can “at worst, contain
no information ... typically [dO]
contain some information”

AU, M) >0

e By Jensen’s inequality, information is
non-negative iff the uncertainty
function U is concave

¢ \/ery general definition of information

» e.g., Shannon information

U(p) = —» pilogp

EmlU(m) — U(E(X))]
U(Em[E(X)] = Em[U(E(X))

Im[=U(&(X));

AVARR AVARR AV,



Statistical Information

Prior Uncertainty Posterior Uncertainty

Iml=U(&(X))] = UEMEX)]) — Em[UE(X))] =0

if and only If

U IS concave

(another Jensen Gap)

[De Groot, 1962]




Bregman Information

e A recent, alternative formulation of
information used to motivate
clustering with Bregman divergences

» Given a random variable S, its
Bregman information is the
minimum expected divergence
from a single point in its domain

» This single point is always the
mean of S

Br(S)

S'Q]; ESNU[Bf(Sv 5)]
ESNJ[Bf(S1 EO’[S])]

[Banerjee et al., 2005]



Mathematics is the art of giving the
same name to different things.

Jules Henri Poincaré (1854-1912)



Part II.

Relationships and

Representations
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The acts of the mind, wherein it exerts its power over
simple ideas, are chiefly these three:

1. Combining several simple ideas into one
compound one, and thus all complex ideas are made.

2. The second is bringing two ideas, whether simple or
complex, together, and setting them by one another so
as to take a view of them at once, without uniting
them into one, by which it gets all its ideas of relations.

3. The third is separating them from all other ideas
that accompany them in their real existence: this is called
abstraction, and thus all its general ideas are made.

John Locke (1632-1704)
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1. Combining several simple ideas into one
compound one, and thus all complex ideas are made.

2. The second is bringing two ideas, whether simple or
complex, together, and setting them by one another so
as to take a view of them at once, without uniting
them into one, by which it gets all its ideas of relations.

3. The third is separating them from all other ideas
that accompany them in their real existence: this is called
abstraction, and thus all its general ideas are made.
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Relationships



Regret and Bregman Divergence

Binary Mixtures (Review)

e Positive/Negative class
distributions (P,Q)

e Mixture M =1iP + (1-)Q

e Conditional Positive Class
Probability n(x) = m dP/dM

[Buja et al., 2005]



Regret and Bregman Divergence

Binary Mixtures (Review)

e Positive/Negative class
distributions (P,Q)

e Mixture M =1iP + (1-)Q

e Conditional Positive Class
Probability n(x) = m dP/dM

Proper Losses (Review)

e Fisher consistent L(n) = L(n,Nn)

e | oss function is proper iff L is
concave (Savage’s Theorem)

L(n.7) = L(7) + (n—7)L' (D)

[Buja et al., 2005]



Regret and Bregman Divergence

Binary Mixtures (Review) Bregman Divergence (Review)

e Positive/Negative class e For convex f

distributions (P,Q) Be(t, to) = F(t) — f(to) — (t — to)f'(t)
e Mixture M =P + (1-m)Q

e Conditional Positive Class
Probability n(x) = m dP/dM

Proper Losses (Review)

e Fisher consistent L(n) = L(n,Nn)

e | oss function is proper iff L is
concave (Savage’s Theorem)

L(n.7) = L(7) + (n—7)L' (D)

[Buja et al., 2005]



Regret and

Sregman

Binary Mixtures (Review)

e Positive/Negative class
distributions (P,Q)

e Mixture M =1iP + (1-)Q

e Conditional Positive Class
Probability n(x) = m dP/dM

Proper Losses (Review)

Divergence

Bregman Divergence (Review)

e For convex f
Br(t, to) = f(t) — f(to) — (t — to)f'(t)
Bregman Divergence for Estimates

e Lletf=-L. Then fis convex and

Be(m.n) = —L(n)+L(H)+(n—n)L (D)

* Fisher consistent L(n) = L(n,n) = L(n.1)—Ln)

e | oss function is proper iff L is

concave (Savage’s Theorem)
L(n. 7)) = L(N) + (n—N)L'(A)

[Buja et al., 2005]



Point-wise Regret is a Bregman Divergence

Br(n, 1) = L(n. 1) — L(n)

for f = -L

[Buja et al., 2005]




Bregman and Statistical Information

Bregman Info = Statistical Info

e Binary mixture (1, P, Q) = (n, M)
Br(n(X)) = AU(n, M)
whenf=-U
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Bregman Info = Statistical Info

e Binary mixture (1, P, Q) = (n, M)
Br(n(X)) = AU(n, M)

when f = -U
Proof
Br(n(X)) = Em[Br(n(X), Em[n(X)])]

= Ewm[f(n(X)) —f(m)
—(n(X) — m)f'(m)]
Em[f(n(X))] = f(m) =0
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Bregman and Statistical Information

Bregman Info = Statistical Info

e Binary mixture (1, P, Q) = (n, M)
Br(n(X)) = AU(n, M)

when f = -U
Proof
Br(n(X)) = Em[Br(n(X), Em[n(X)])]

= Ewm[f(n(X)) —f(m)
—(n(X) — m)f'(m)]

= Ewmlf(n(X))] = f(m) -0

= U(m) = Em[U(n(X))]

= UEu[n(X)]) — Em[U(n(X))]
= AU(n, M)



Bregman and Statistical Information

Bregman Info = Statistical Info Information and Proper Losses
e Binary mixture (1, P, Q) = (n, M) e Savage’s Theorem implies L is
B/ (n(X)) = AU(n, M) concave for proper scoring rules
f = ,
o » Choosing U =L gives a
when 7= -U measure of information in the
Proof mixture (11, P, Q) = (n, M)
Be(n(X)) = Em[Br(n(X).Emn(x))]  ALnM) = EnlL(m)—L(n)]
= Eulf(n(x)) - f(m) -
—(n(X) —m)f'(m)] e Maximum reduction in risk
= En[f(n(X))] - f(m) -0 obtained by knowing posterior

= U(m) —Eml[U(n(X))]

= UEu[n(X)]) — Em[U(n(X))]
= AU(n, M)



Bregman Info = Statistical Info

Br(n(X)) = AU(n, M) = AL(n, M)

forf=-U=-L

Can be interpreted as
maximal reduction In risk




Statistical Information and f-Divergence

Binary Mixtures & Experiments f-Divergence to Information
e (P,Q)vs. (T, P, Q) =(n, M) o |f
then

e For each 1t there iIs a mapping

between dP/dQ and n for all binary mixtures (rt, P, Q)

B wdP
no= Information to f-Divergence
B wdP
- wdP+ (1 —m)dQ o
N then
+7T - for all binary mixtures (11, P, Q)
where )\ =
(1 —m)dQ

[Osterreicher & Vajda, 1993]



Statistical Information and f-Divergence

Binary Mixtures & Experiments f-Divergence to Information
e (P,Q)vs. (T, P, Q) =(n, M) o |f
then

e For each 1t there iIs a mapping

between dP/dQ and n for all binary mixtures (rt, P, Q)

~ mdP
[y Information to f-Divergence

B TdP

T TdP+ (1 —m)dQ oI

\ then
A +71T o for all binary mixtures (1, P, Q)
where )\ =
(1 —m)dQ

dP (1-m) n
dQ T (1—mn)

[Osterreicher & Vajda, 1993]



Statistical Information and f-

Binary Mixtures & Experiments

e (P,Q)vs. (T, P,Q)=(n, M)

e For each 1t there iIs a mapping
between dP/dQ and n

B wdP
T M

B wdP

- wdP+ (1 —m)dQ

B A

X +1

s dP
where )\ =

A (1 —7)dQ
dP_(1-m) n
dQ  m (1-mn)

f-

Divergence

Divergence to Information

Tt
mt+1—T7

o If F"(t)=L(n)—(mt+1—7)L (
then
e (P, Q) = AL(n, M)
for all binary mixtures (i, P, Q)

)

[Osterreicher & Vajda, 1993]



Statistical Information and f-Divergence

Binary Mixtures & Experiments

e (P,Q)vs. (T, P,Q)=(n, M)

e For each 1t there iIs a mapping
between dP/dQ and n

B wdP
T M
B wdP
- wdP+ (1 —m)dQ
B A
X +1
s dP
where )\ =
(1 —7)dQ
dP_(1-m) n
dQ  m (1-mn)

f-Divergence to Information

o If F"(t)=L(n)—(mt+1—7)L (wt _|_7T1t_ ﬂ)
then
I (P, Q) = AL(n, M)
for all binary mixtures (i, P, Q)

Information to f-Divergence

1 — 1 —
o If L“(n):—1_2f< - 1277)
then

Ir(P, Q) = AL"(n, M)
for all binary mixtures (i, P, Q)

[Osterreicher & Vajda, 1993]



f-Divergence = Statistical Info

(P, Q) = AL"(n, M)

for binary mixtures (11,P,Q)
when f = -L

(plus a map to/from [0,1])

[Osterreicher & Vajda, 1993]




The acts of the mind, wherein it exerts its power over
simple ideas, are chiefly these three:

1. Combining several simple ideas into one
compound one, and thus all complex ideas are made.

2. The second is bringing two ideas, whether simple or
complex, together, and setting them by one another so
as to take a view of them at once, without uniting
them into one, by which it gets all its ideas of relations.

3. The third is separating them from all other ideas
that accompany them in their real existence: this is called
abstraction, and thus all its general ideas are made.

John Locke (1632-1704)
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Weighted Integral Representations



Representations of Functions

Functions as “Sums” of Points

e A function f can be described by
its values at each point

F(x) = fubu(x)

where 0,(x) = [u = X]

>

BAREE




Representations of Functions

Functions as “Sums” of Points Functions as Sums of Functions
e A function f can be described by e Can also describe f as a sum of
its values at each point “simple” functions
() =Y f6,(x) F(x) =Y widi(x)
where 0,4(x) = [u = x] (e.g., Fourier analysis)
> >

\\\\\\\\
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Integral Representation of f-Divergence

Taylor Integral Representation f-Divergence

f(t) = Ae(t) + /ab%(t) f"(s) ds Ir (P, Q) = Eq [f (Z//gﬂ

Linear Term Simple  Weights

gs(t) = [s = to] (t —s)+ + [s < to] (s — t)+



Integral Representation of f-Divergence

Taylor Integral Representation

b
f(t)—Af(t)+/ %S(t) f"(s)ds

Linear Term Simple  Weights

gs(t) = [s = to] (t —s)+ + [s < to] (s — t)+

Integral Representation |

1(P.Q) = Eo|[ a(55) s

_ /OOO Eq [gs (32)] £1(s) ds

L(PQ) - / T LL,.(P.Q) F(s) ds

f-Divergence

eo=sa[r (%)

[Liese & Vajda et al., 20006]



Integral Representation of f-Divergence

Taylor Integral Representation

b
f(t)—Af(t)+/ %S(t) f"(s)ds

Linear Term Simple  Weights

gs(t) = [s = to] (t —s)+ + [s < to] (s — t)+

Integral Representation |

w0 = Ea["a(22) Fioras

_ /OOO Eq [gs (Zg)] £1(s) ds

L(PQ) - / T LL,.(P.Q) F(s) ds

f-Divergence

)

Integral Representation |l
1
Ir(P,Q) = /HQM(P,Q)f”(l_T”)W_QdW
o
1
~ [ (P y(m dr
0

rY(W)— 1 f”(l 7r)

fr(t) =min(l —m,m) — min(1 — 7, 7t)

[Liese & Vajda et al., 20006]



Integral Representation of f-Divergence

L(P.Q) = /O It (P, Q) () dn

Weight Function ”Y(7T) — # f” (1_—7T)

T

Primitves ~ fr(t) = min(1 — m, ™) — min(1 — 7, t)

[Osterreicher & Vajda, 1993]




Integral Representation of f-Divergence

L(P.Q) = /O It (P, Q) () dn

Weight Function ”Y(7T) — # f” (1_—7T)

T

Primitves ~ fr(t) = min(1 — m, ™) — min(1 — 7, t)

j \_)
1—7
T 1—7
i

[Osterreicher & Vajda, 1993]




Integral Representation of Proper Losses

Taylor Integral Representation

b
f(t) = Ne(t) +/ gs(t, to) f"(s) ds
Linear Term aSim|o|e Weights

gs(t, to) =[s > to(t —s)+ +[s < to] (s — )+



Integral Representation of Proper Losses

Taylor Integral Representation

b
f(t) = Ne(2) +/ gs(t, to) f"(s) ds
Linear Term aSim|o|e Weights

gs(t, to) =[s > to(t —s)+ + [[s < to](s — t)+

Savage’s Theorem

e Given concave L the loss is

L(n. 1) = L(A) + (n —7)L'(7)

[Shuford et al., 1966] [Schervish, 1989] [Buja et al., 2005] [Lambert et al., 2008]



Integral Representation of Proper Losses

Taylor Integral Representation

b
f(t) = Ne(2) +/ gs(t, to) f"(s) ds
Linear Term aSim|o|e Weights

gs(t, to) =[s > to(t —s)+ + [[s < to](s — t)+

Savage’s Theorem

e Given concave L the loss is

L(n. 1) = L(A) + (n —7)L'(7)

Int. Representation of Bayes Risk

L) = L(A)+(n— L)+ /O ge(n. ) L"(c) de

- L(n,ﬁ)+/0 ge(n,n) L"(c)dc

[Shuford et al., 1966] [Schervish, 1989] [Buja et al., 2005] [Lambert et al., 2008]



Integral Representation of Proper Losses

Taylor Integral Representation Int. Representation of Risk

b 1
F(E) = Ar(t) + / (1) f1(s)ds L) = L+ [ L A)wle)de

- - Weight A ; A
Linear Term Simple eignts LemA)=[n>c>al(n—c)+[A>c>n](c—n)

gs(t, to) = [s > to] (t — )4 + [s < to] (s — )4 w(c) = —L"(c)

Savage’s Theorem

e Given concave L the loss is

L(n. 1) = L(A) + (n —7)L'(7)

Int. Representation of Bayes Risk

L) = L(A)+(n— L)+ /O ge(n. ) L"(c) de

- L(n,ﬁ)+/0 ge(n,n) L"(c)dc

[Shuford et al., 1966] [Schervish, 1989] [Buja et al., 2005] [Lambert et al., 2008]



Integral Representation of Proper Losses

Taylor Integral Representation Int. Representation of Risk
b 1
O =A©O+ [ gltw)()ds o) — L+ [ L e
a .
Linear Term  Simple  Weights Le(n.m) =[n>c>al(n—c)+[7>c>nl(c—n)
gs(t, to) =[s > to(t —s)+ + [[s < to](s — t)+ w(c) = —L"(c)
Savage’s Theorem Int. Representation of Loss

Ly, n) =L(y.n) for y € {0, 1}
e Assuming L(0) =L(1) =0

Uy, 7) = /O £(y, 7)) w(c) de

e Given concave L the loss is

L(n. 1) = L(A) + (n —7)L'(7)

Int. Representation of Bayes Risk

L) = L(A)+(n— L)+ /O ge(n. ) L"(c) de

- L(n,ﬁ)+/0 ge(n, M) L"(c) dc

[Shuford et al., 1966] [Schervish, 1989] [Buja et al., 2005] [Lambert et al., 2008]



Integral Representation of Proper Losses

Taylor Integral Representation Int. Representation of Risk
b 1
O =A©O+ [ gltw)()ds o) — L+ [ L e
a .
Linear Term  Simple  Weights Le(n.m) =[n>c>al(n—c)+[7>c>nl(c—n)
gs(t, to) =[s > to(t —s)+ + [[s < to](s — t)+ w(c) = —L"(c)
Savage’s Theorem Int. Representation of Loss

Ly, n) =L(y.n) for y € {0, 1}
e Assuming L(0) =L(1) =0
1
Wi = [ ey @) wie) de
0
Cost-Weighted Loss

be(y, 1) = (1 =)y =1][c =] + cly =07 > ]

e Given concave L the loss is

L(n. 1) = L(A) + (n —7)L'(7)

Int. Representation of Bayes Risk

L) = L(A)+(n— L)+ /O ge(n. ) L"(c) de

- L(n,ﬁ)+/0 ge(n,n) L"(c)dc

[Shuford et al., 1966] [Schervish, 1989] [Buja et al., 2005] [Lambert et al., 2008]



Integral Representation of Proper Losses

Ly, N) = /O Lc(y. M) w(c)dc

Weight Functon ~ w(c) = —L"(¢)
Primitives  £c(y, ) = (1 — ¢)[y = 1][c > 7] + c[y = O][7 > ]

1 !

Cost of Cost of
False Negative False Positive

[Schervish, 1989]




Integral Representation Corollaries

Point-wise Risk

L(n,7n) = Eyu Uoléc(y,ﬁ)W(C)dC

_ / Le(m ) w(c) dc



Integral Representation Corollaries
Point-wise Risk
1
L) = By | [ telr. M) wle) do
0
1
- | Letnyworde

Point-wise Bayes Risk

L(n) = / L (m) w(c) dc

L.(m)=min((1-n)c, (1 —c)n)



Integral Representation Corollaries

Point-wise Risk

Lin. 1) = Eyuy Uoléc(y,ﬁ)W(C)dC
-/ Loln, ) w(c) de
Point-wise Bayes Risk
1
L) = | Lomywle)de

L.(m)=min((1-n)c, (1 —c)n)

Point-wise Regret

max(n,7)
B(n.5) = / n — c| w(c) de

min(n,7)



Integral Representation Corollaries

Point-wise Risk Risk
1

Lm#) = Eye [/ (. W) de| Lima M) = Ew[L(n7)
0

1 ! ~
= /OLc(ﬂ,ﬁ)W(C)dc - /OLCW)W(C)O'C

Point-wise Bayes Risk
L) = [ Lemw(©)do
Lc(m) =min((1 =n)c, (1 —c)n)

Point-wise Regret

max(n,7)
BMJﬂz/‘ n —clw(c)dc
min(n,7)



Integral Representation Corollaries

Point-wise Risk Risk
L) = By | [ty de|  Ln A M) = EwlL(n.9)
1
1 o A

= /OLc(ﬂ,ﬁ)W(C)dc - /OLCW)W(C)O'C
Point-wise Bayes Risk Bayes Risk

1 1
L) = [ Lemw(©)do L) = [ Lo mywie)ac

L.(m)=min((1-n)c, (1 —c)n)

Point-wise Regret

max(n,7)
BMJﬂz/‘ n —clw(c)dc
min(n,7)



Integral Representation Corollaries

Point-wise Risk

Lin. 1) = Eyuy Uoléc(y,ﬁ)W(C)dC
- /Och(n,'ﬁ)W(C)dC
Point-wise Bayes Risk
1
L) = [ Lemw(©)do

L.(m)=min((1-n)c, (1 —c)n)

Point-wise Regret

A max(n,7)
B(n,N) =/ n —clw(c)dc
min(n,7)

Risk
L(n. 7. M) = Em[L(n n)]
1
- / Le(A) w(c) de
Bayes Risk
L(n, M) = /O L. (1, M) w(c) dc

Statistical Information

AL(n, M) = / AL (1, M) w(c) de



Cost-Weighted Misclassification Loss

Le(y, M) = (1 =)y =1][c =2 7] + cly = O [1 > ]




—xample - Square Loss

7\

Ly .n)=(y—mn)

2




—xample - Asymmetric Log Loss

Uy, M) = /Ol@c(y, 7)) (c))dc
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iInformation suggests that their N 0o T 0o $

weight functions are related Weights



Translating Weights

e The earlier connection between f-

divergence and statistical
iInformation suggests that their
weight functions are related

e Some straight-forward algebra
gives and explicit translation

» Dependence on prior 1t

» Cubic term due to mapping
from [0,e0) to [0,1]

Primitives
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Translating Weights

e The earlier connection between f-

divergence and statistical
iInformation suggests that their
weight functions are related

e Some straight-forward algebra
gives and explicit translation

» Dependence on prior 1t

» Cubic term due to mapping
from [0,e0) to [0,1]

e Cost-weighted loss relates to a
prior-sensitive variational
divergence

Primitives

Ly
]If Z/O ]Ifw")i(ﬂ') am

1
AL = / AL_.w(c)dc
0

I

Weights
m(l-m) ((1—o)m
@ =S5 (b )
m2(1 — )2 (1— o)
o) =" (G d )

v(m,c)=(1—-c)m+ (1 —m)c



Graphical Representations



ROC Curves

e A threshold t is applied to a test
statistic 7 to create a statistical test

» Contingency table for each test
T>1

e Plotting
(TP,FP)=(P(T>1),Q(T>1))

as t varies gives an ROC curve for 7

e NP Lemma implies that optimal ROC
curve is obtained when

_dP
- dQ

*

T

True Positive Rate (TP)

Predicted

Actual

—+

(TP

FP)

FN

TN

False Positive Rate (FP)



Area Under the ROC Curve (AUC)

e A natural measure of quality for a test
statistic is the area under the ROC
curve

e Ranking interpretation

» Probability of misranking instance
from Q ahead of one from P

True Positive Rate (TP)

» Equivalent to the Mann-Whitney-
Wilcoxon statistic

False Positive Rate (FP)



Area Under the ROC Curve (AUC)

e A natural measure of quality for a test
statistic is the area under the ROC
curve

e Ranking interpretation

» Probability of misranking instance
from Q ahead of one from P

True Positive Rate (TP)

» Equivalent to the Mann-Whitney-
Wilcoxon statistic

e |s maximal AUC an f-divergence?

False Positive Rate (FP)

» No...

» ...but it is V(PxQ, QxP)



Risk Curves

e A plot of cost-sensitive risk for each
value of the cost parameter

» Shape of curve dependent on
mixing probability m

[Drummond & Holte, 2000]



Risk Curves

e A plot of cost-sensitive risk for each
value of the cost parameter

» Shape of curve dependent on
mixing probability m

e \Weighted area between bottom curve
and “tent” is statistical information

» Divergence bounds

4 T
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Risk Curves

e A plot of cost-sensitive risk for each
value of the cost parameter

» Shape of curve dependent on
mixing probability m

e \Weighted area between bottom curve
and “tent” is statistical information

» Divergence bounds

e \Weighted area between two curves at
bottom is regret

» Surrogate loss bounds

[Drummond & Holte, 2000]



Risk Curves

,’A\ LC (ﬂ-)
\




ROC Curves to Risk Curves and Back

A 1 N 1T
AN\ L ()

True Positive Rate (TP)

! Lc(n. 1)

0 Yo 1 0 1
. False Positive Rate (FP)

(FP,TP)—L.,=(1—m)cFP+7m(1—¢c)(1—-TP)

1 — m)c — Le
Fp oy LZMC

(L) TP ="0r 1-on




Variational Representations



Variational Form of f-Divergence

e Convex functions are invariant under the LF bidual
f(t)=1f"(t) =sup{t .t — " (t7)}

t*eR

[Nguyen et al., 2005]



Variational Form of f-

Divergence

e Convex functions are invariant under the LF bidual
f(t)=1f"(t) =sup{t .t — " (t7)}

t*eR

e Substitute into f-divergence definition

I (P, Q)

. dP .
Eo [tsue[m)laa{t 90 Fr(t )}]

/ sup {t*dP — F*(+*)dQ}
X

t*eR

r:X—R

r:iuBREP[f] — Eolf™(r)]

sup / rdP — f*(r)dQ
X

[INguyen et al., 2005]



Variational Form of f-Divergence

e Convex functions are invariant under the LF bidual
f(t)=1f"(t) =sup{t .t — " (t7)}

t*eR

e Substitute into f-divergence definition

— / sup {t*dP — F*(£*)dQ)
X t*eR

= sup / rdP — f*(r)dQ
rX—RJX

= sup_ Ep[r] — Eolf(r)]
r:X—R

¢ Variational form does not use dP/dQ

» Easier estimation
[INguyen et al., 2005]



Variational Representation of f-Divergence

INguyen et al., 2005]




The acts of the mind, wherein it exerts its power over
simple ideas, are chiefly these three:

1. Combining several simple ideas into one
compound one, and thus all complex ideas are made.

2. The second is bringing two ideas, whether simple or
complex, together, and setting them by one another so
as to take a view of them at once, without uniting
them into one, by which it gets all its ideas of relations.

3. The third is separating them from all other ideas
that accompany them in their real existence: this is called
abstraction, and thus all its general ideas are made.

John Locke (1632-1704)



Part lll: Bounds and Applications



)Il’)a/‘l v e I Ae

d £>(/p6>/ 1 7D ; { Bt B A —
% £ ::' o i
: —Divergenc.e & e
o R 3 | SZ‘QZ‘/ Sf/ ca/ Ses
Tészs : 4

: &OZ‘QZ‘ISZ{w cal
5 Inf’ormaizon

LO‘S‘S Ihrp )‘/YIQZ‘ / on
ﬁ(nCLZ‘/ onég achiiit

/{’ egrez(

e -

y, g :
ijf’/;(,(/(( Oii\)

|

Pipsker
Borthds

“

.




PR S —— P —— - > - - T - 2 v » s ' v, - v, - s Tt

2

- Y

f v

. ‘ e

|

’

!

‘

]

212\ 4 ' L2 e ]

\4-’- 3& D
Y

‘ N B, . > APIRSH N
: NG i , 7y i3 x )\ \.:ﬁ/' 2SN Al NS
2 Dis Cributions ‘ i 3 '
. —DiVergence &
> St stical, R
Tésis : i
sl 21 "l v/

B b

: T Lrfe ormaz‘/ on |
5 : g' g' 3/}7&/7 ‘
' Zoss T _or/y/az‘/ on

N | | Functions, g' ’
i 4 | ' ( egrez(

Con\/eX/Zy& ' X 4y \
/f>aa/ Lo R e

jz'

' ' meorem N R R et Lk £




U

N Our t

nificatl

complicated and short, a
Nno mockery of honest ad

neories, we rightly search for
on, but real lite Is both

Nd we make

nockery.

l.J. Good (1916-)



Maximum Mean Discrepancy



Maximum Mean Discrepancy (MMD)

e A special case of the variational form
of f-divergence is when f(t) = |t - 1]

» Restriction to [-1,1] occurs due to
form of ()

e Assume r is from the unit ball in a
RKHS for the kernel k with feature
map ¢ and define

e Easy test statistic to estimate since

[Gretton et al., 2007]



Maximum Mean Discrepancy (MMD)

* A special case of the variational form V(P Q) = sup Ep[r] — Eg[r]
of f-divergence is when f(t) = |t - 1] rX—[-11]
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Maximum Mean Discrepancy (MMD)

* A special case of the variational form V(P Q)= sup Ep[r] — Eolr]
of f-divergence is when f(t) = |t - 1] rX—[-11]
» Restriction to [-1,1] occurs due to (1) = t te[—1,1]
form of () +o0o otherwise

e Assume r is from the unit ball in a V(P,Q) = [|u(P) — u(Q)|lx
RKHS for the kernel k with feature

map ¢ and define

ulP] = Ep|op(x)] = Eplk(x, )]

|Gretton et al., 2007]



Maximum Mean Discrepancy (MMD)

* A special case of the variational form V(P Q)= sup Ep[r] — Eolr]
of f-divergence is when f(t) = |t - 1] rX—[-11]
» Restriction to [-1,1] occurs due to (1) = t te[—1,1]
form of £*(t) +00 otherwise

e Assume r is from the unit ball in a V(P,Q) = ||u(P) — u(Q)]|x

RKHS for the kernel k with feature
map ¢ and define A
ulP] = Eplod(x)] = Eplk(x, )]

e Easy test statistic to estimate since

lu(P) — u(Q)lln = prpk(x x') + EQka(y y') = ZEPka(X y)

~m22k<x, ) + QZ/«M YYk(w

1,J=1 IJj=1 =1 j=1
|Gretton et al., 2007]
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Pinsker’s Inequality

Pinsker’s Inequality

e A lower bound on KL divergence
in terms of variational divergence

KL(P,Q)>2V?(P,Q)

¢ Information about the value of V
constraints the possible values
of KL

Better Pinsker Bounds

* The above inequality is not tight

e \What we really want is

L(V) = V(Pi,rc]pf):v KL(P, Q)

LV(P,Q))7?

0.0 0.5 1.0 1.5 2.0

V(P,Q)



Generalised Pinsker Inequalities

Primitive vs Composite
o \/is “primitive”
e KL Is “composite”
General Bound

e Can we get tight bounds for any
f-divergence given V/?

» Yes we can!

e |/ gives “partial information”
about separation of P and Q



Generalised Pinsker Inequalities

Primitive vs Composite

Divergence Variational Bound
o \/is “primitive”

Helinger h> > 2 — /4 — /2

e KL Is “composite”
24V
Jeffreys  J = 2V In (—>

General Bound 2 _\/
g\V/?
e Can we get tight bounds forany ~ Symmetric x° W > T—vE
f-divergence given V/? A
» Yes we can! AG Mean Tzln(\/4_\/2> —1In2
e |/ gives “partial information” V2V <]
about separation of P and Q Pearson X~ X~ =>4
v V=21



Generalised Pinsker Inequalities

Proof Sketch

e f-divergence is a weighted sum
of primitive statistical information

» This is just an area on a risk
diagram

¢ \/alue at one point bounds the
total area

Going Further

e This proof is amenable to
knowing multiple primitive values
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Generalised Pinsker Inequalities

Proof Sketch

e f-divergence is a weighted sum
of primitive statistical information

» This is just an area on a risk
diagram

¢ \alue at one point bounds the
total area

Going Further

e This proof is amenable to
knowing multiple primitive values




Surrogate Loss Bounds



Surrogate Loss

Surrogate Loss

e 0-1 loss is notoriously hard to
optimise directly

e One solution is to optimise a
surrogate - an upper bound on
0-1 loss

Surrogate Bounds

e \Want guarantees that minimising
the surrogate regret minimises
the 0-1 regret

[Bartlett et al., 2000]



Surrogate Loss Bounds

Main Result

e Suppose we know B, (7, 1) = a. Then for an arbitrary proper loss, its
regret satisfies

B(n,7) = min(¥(c, @), Y(co, —))
where ¥(c, @) = L(cp) — L(co — a) + aLl'(c)



Surrogate Loss Bounds

Main Result

e Suppose we know B, (7, 1) = a. Then for an arbitrary proper loss, its
regret satisfies

B(n,n) = min(y(co, o), P(co, —))
where ¥(c, @) = L(cp) — L(co — a) + aLl'(c)

Corollary

e For a symmetric loss where L(c-12) = L(¥2-c), then if B% (n,M) =«

B(n.n) = L(1/2) = L(1/2 — a)



Surrogate Bound Example

Exponential Loss
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Surrogate Bound

Exponential Loss

o Let Ly, 7)) =4 "' —
—T1
T

—Xample

[Bartlett et al., 20006]



Surrogate Bound Example

Exponential Loss

o Let £(y.7) = {

 Then L(n.) = (1 - n)

~+ M —
1= U

e And so L(n) =2+v/n(1 —n) which is symmetric

[Bartlett et al., 20006]



Surrogate Bound Example

Exponential Loss

o Let £(y.7) = {

>
||

0
1

3>

1—
1—

:’»

*Then L(n,7)=(1-mn)

e And so L(n) =2+v/n(1 —n) which is symmetric
e Thus, if B% (mn, ) = a then the exponential regret satisfies

B(n, %) >1—+1—4a2

[Bartlett et al., 2000]



Surrogate Bound Example

Exponential Loss

o Let £(y.7) = {

>
||

0
1

3>

1—
1—

:’»

*Then L(n,7)=(1-mn)

e And so L(n) =2+v/n(1 —n) which is symmetric
e Thus, if B% (mn, ) = a then the exponential regret satisfies

B(n, %) >1—+1—4a2

e And so

By (n.7) < 51— B A 1

[Bartlett et al., 2000]
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e First recall that B, (n,7) = |m — co|[min(n, 1) < co < max(n, )]
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e And so when Bg, (1, 1) = a we know that

<(Co—|—Oé, N<co<n
n = .
Co—a, M=C <7

e For a general proper loss, recall its regret can be expressed as
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B(n,N) =/ n —clw(c)dc
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Proof of Surrogate Loss Bound

e First recall that B, (n, M) = |m — co|[min(n, 1) < co < max(n, N)]

e And so when Bg, (1, 1) = a we know that

<(CQ—|—OC, N<co<n
N = N
Co—a, M=C <7

e For a general proper loss, recall its regret can be expressed as

A max(n,1)
B(n,N) =/ n —clw(c)dc
min(n,7)

e In the first case, when 11 < g <1 = ¢ + a we see

s = [ (o + o — ¢) w(c) de

> /C0+a(co +a—c)w(c)de

Co



Proof of Surrogate Loss Bound (continued)
e Thus, using w(c) = -L”(c), and integrating by parts, we see

B(n, )

IV

Co+o
/ (co+a—c)w(c)dc

Co+o
—/ (co+a—c)L"(c)dc
Co

Co+o
= —[(q+a—c)L'(c))@re — / L'(c)dc

al'(co) — L(co+a) + L(co)

e The case when ¢coc —a =1 < ¢y < 17 is almost identical



't Is the snobbishness of the young to
suppose that a theorem is trivial
because the proof is trivial

Henry Whitehead (1904-1960)
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f-Divergence Estimation

f-Divergence and Bayes Risk
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f-Divergence and Bayes Risk

e Recall that T;(P, Q) = L(m, M) — L(n, M)

14 T
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f-Divergence Estimation

f-Divergence and Bayes Risk

e Recall that T;(P, Q) = L(m, M) — L(n, M)

* For good estimators IL.(n, 1, M) =~ L(n, M)
and so

Is(P,Q) = K —L(n,7 M)

¢ Furthermore, ]
L(n,H M) = /Lc(n,ﬁ,M)W(C)dC

&
]
$
)
3>
s

where the ¢; are importance
sampled using w




In theory, there Is no difference
between theory and practice. But, In
oractice, there iIs.

Jan L. A. van de Snepscheut (1953-1994)



Summary and Conclusions



Integral Form of the Taylor Expansion

b
f(t)="~(ty) + (t — to)f’(to)+/ g(t,s)f"(s)ds

(t—s) tg<s<t
(s—t) t<s<t

where  9g(t,s) = {

Jensen’s Inequality

Jplf(x)] = Ep [f(x)] = f (Ep[x]) = 0

if and only if

fis convex
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decide whether samples were
drawn from P or Q

» Divergence / MMD



Summary - The Problems

Hypothesis Testing

e Given samples from P or Q
decide whether samples were
drawn from P or Q

» Divergence / MMD

Classification

e Given samples from a mt-mixture
of P and Q decide, for each
Instance x, whether x was
drawn from P or Q

» 0-1 Misclassification Loss



Summary - The Problems

Hypothesis Testing Probability Estimation
e Given samples from P or Q e Given samples from a mt-mixture
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Summary - The Problems

Hypothesis Testing

e Given samples from P or Q
decide whether samples were
drawn from P or Q

» Divergence / MMD
Classification

e Given samples from a mt-mixture
of P and Q decide, for each
Instance x, whether x was
drawn from P or Q

» 0-1 Misclassification Loss

Probability Estimation

e Given samples from a mt-mixture
of P and Q estimate, for each
iInstance X, the probability x
was drawn from P (or Q)

» Proper Scoring Rules
Bipartite Ranking

e Given samples from a mt-mixture
of P and Q sort instances drawn
from P ahead of those from Q

» Area under ROC curve



Summary - The Representations

Weighted Integral Representation Variational Representation
e Taylor’s Theorerrg ¢ | egendre-Fenchel Dual
o /"
f(t) = NAe(2) +/a gs(t) f7(s) ds f(t) = F"(t) = sup{t*.t — F*(t")}
t*€R
e f-Divergences e f-Divergence
1
11(P.Q) = [ T1(P.Q)(m) dr I¢(P.Q) = sup Ep[r] — Eq[f*(r)
0 r:X—R

e Proper Scoring Rules

Lc(y. D) =/O L(y.N)w(c)dc



Summary - The Relationships

Information

e Bregman Info = Stat Info

e Information is a Jensen gap
Divergence

e f-divergence is a Jensen gap
Risk and Regret

e Regret for proper losses is a
Bregman divergence

Risk and Information
¢ Info = Max. reduction in risk
Information & Divergence

e Statistical Info = f-divergence
(given mixing prior 1)

e Explicit mapping of weights
Divergence and AUC

e Maximal AUC is not an f-
divergence



Conclusions



Conclusions

Convexity and Expectations

e Convexity = Closure under
expectation

e For Jensen Gaps

» convexity => non-negativity



Conclusions

Convexity and Expectations

e Convexity = Closure under
expectation

e For Jensen Gaps

» convexity => non-negativity
Point-wise Bayes Risk

e Fundamental function in
representation results

e Simple to derive from loss



Conclusions

Convexity and Expectations

e Convexity = Closure under
expectation

e For Jensen Gaps

» convexity => non-negativity
Point-wise Bayes Risk

e Fundamental function in
representation results

e Simple to derive from loss
Divergence and Risk

e Two sides of the same coin



Conclusions

Convexity and Expectations

e Convexity = Closure under
expectation

e For Jensen Gaps

» convexity => non-negativity
Point-wise Bayes Risk

e Fundamental function in
representation results

e Simple to derive from loss
Divergence and Risk

e Two sides of the same coin

Taylor Integral Expansion

e Implies weighted integral of
piece-wise linear functions

» Convexity => positive weights

» Piece-wise linear = primitives



Conclusions

Convexity and Expectations

e Convexity = Closure under
expectation

e For Jensen Gaps

» convexity => non-negativity
Point-wise Bayes Risk

e Fundamental function in
representation results

e Simple to derive from loss
Divergence and Risk

e Two sides of the same coin

Taylor Integral Expansion

e Implies weighted integral of
piece-wise linear functions

» Convexity => positive weights

» Piece-wise linear = primitives
Problems, not just Techniques

¢ Insight by abstracting away from
samples and understanding
relationships



Fundamental progress has to do with
the reinterpretation of basic ideas

Alfred North Whitehead (1967-1947)
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Thank You
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