# Measuring the Similarity between Implicit Semantic Relations from the Web

Danushka Bollegala, Yutaka Matsuo, Mitsuru Ishizuka 18<sup>th</sup> International World Wide Web Conference, 2009.

Madrid, Spain



### Attributional vs. Relational Similarity

Attributional Similarity is the correspondence between the attributes of two objects



A high degree of attributional similarity exists between Jaguar and cat: sim(X,Y)

## Attributional vs. Relational Similarity

Relational similarity is the correspondence between the relations that exist between two pairs of objects

(ostrich, bird)





Ostrich is a large bird

(lion, cat)





Lion is a large cat

A high degree of relational similarity exists between the two object pairs sim(A,B,X,Y)

## Applications of Relational Similarity

- Recognizing Analogies (Turney ACL 2006)
  - (traffic, road) vs. (water, pipe)

X flows in Y

#### Semantic Relation Classification

- Natase & Szpakowicz 2003)
- laser printer (instrument), concert hall (purpose), student discount (benificiary)
- Implicit Relation extraction
  - Given a word pair (A,B) for which relation R holds, and a word C, find a word D s.t. (A,B) and (C,D) are analogous.
    - □ (A,B)=(Christianity, Bible), C=Muslim => D=Qur'an

## Analogy making in Al

- Structure Mapping Theory (SMT) (Gentner, Cognitive Science '83)
  - Analogy is a mapping of knowledge from one domain (the base) into another (the target) which conveys that a system of relations known to hold in the base also holds in the target.
- ▶ Mapping rules: M:b<sub>i</sub>→t<sub>i</sub>
  - Attributes of objects are dropped
    - $\rightarrow$  RED(b<sub>i</sub>)  $\rightarrow$  RED(t<sub>i</sub>)
  - Certain relations between objects in the base are mapped to the target
    - ▶ REVOLVES(EARTH,SUN) → REVOLVES(ELECTRON,NEUCLEUS)
  - > **systematicity principle**: base predicate that belongs to a mappable system of mutually constraining interconnected relations is more likely to be mapped to the target domain.
    - ► CAUSE[PUSH( $b_i, b_j$ ), COLLIDE( $b_i, b_k$ )]  $\rightarrow$  CAUSE[PUSH( $t_i, t_j$ ), COLLIDE( $t_i, t_k$ )]

## Challenges in Measuring Relational Similarity

- How to explicitly state the relation between two entities?
- How to extract the multiple relations between two entities?
  - Extract lexical patterns from contexts where the two entities co-occur
- A single semantic relation can be expressed by multiple patterns.
  - ▶ E.g. "ACQUISITION": X acquires Y, Y is bought by X
  - Cluster the semantically related lexical patterns into separate clusters.
- Semantic Relations might not be independent.
  - E.g. IS-A and HAS-A. Ostrich is a bird, Ostrich has feathers
  - Measure the correlation between various semantic relations
    - Mahalanobis Distance vs. Euclidian Distance
- The contribution of different semantic relations towards relational similarity is unknown
  - Learn the contribution of different semantic relations using training data
    - Information Theoretic Metric Learning (ITML) (Davis 2008)

How to explicitly state the relations between the two words in a word pair?

#### Pattern Extraction

- We use prefix-span, a sequential pattern mining algorithm, to extract patterns that describe various relations, from text snippets returned by a web search engine.
- query = lion \* \* \* \* \* \* cat
- ▶ snippet = .. lion, a large heavy-built social cat of open rocky areas in Africa ..
- patterns = X, a large Y / X a large Y / X a large Y of
- Prefix span algorithm is used to extract patterns because:
  - It is efficient
  - ▶ It can considers gaps
- Extracted patterns can be noisy:
  - misspellings, ungrammatical sentences, fragmented snippets

How to identify the different patterns that talk about the same semantic relation?

#### Clustering the Lexical Patterns

- We have ca. 150,000 patterns that occur more than twice in the corpus that express various semantic relations
- However, a single semantic relation is expressed by more than one lexical patterns
- How to identify the patterns that express a particular semantic relation?
  - Distributional Hypothesis (Harris 1957)
  - Patterns that are equally distributed among word-pairs are semantically similar
- We can cluster the patterns according to their distribution in word-pairs
  - Pair-wise comparison is computationally expensive
  - Propose a sequential pattern clustering algorithm

## Distribution of patterns in word-pairs



## **Greedy Sequential Clustering**

- 1. Sort the patterns according to their total frequency in all word-pairs
- 2. Select the next pattern:
  - 1. Measure the similarity between each of the existing clusters and the pattern
  - If the similarity with the most similar cluster is greater than a threshold  $\theta$ , then add to that cluster, otherwise form a new cluster with this pattern.
  - 3. Repeat until all patterns are clustered.
- 3. We view each cluster as a vector of word-pair frequencies and compute the cosine similarity between the centroid vector and the pattern.
- Properties of the clustering algorithm
  - Scales linearly with the number of patterns O(n)
  - More general clusters are formed ahead of the more specific clusters
  - Only one parameter to be adjusted (clustering threshold  $\theta$ )
  - No need to specify the number of clusters
  - Does not require pair-wise comparisons, which are computationally costly
  - A greedy clustering algorithm

How to account for the inter-dependence between semantic relations?

How to compute the relational similarity from the pattern clusters?



### **Computing Relational Similarity**

- ▶ We represent each word pair by an N dimensional feature vector
  - N: Total number of clusters
  - feature value: total frequency of patterns that belong to a cluster
  - feature vectors are normalized to unit length
- Using a labeled dataset of positive and negative instances, we learn a Mahalanobis distance metric.
  - Mahalanobis distance between two vectors x and y is defined by,

$$(\mathbf{x}-\mathbf{y})^{t} A(\mathbf{x}-\mathbf{y})$$

where A is the Mahalanobis matrix.

- We use the Information Theoretic Metric Learning algorithm (Davis et al. 2007).
  - No eigenvalue or eigenvector computations are required
  - Scalable to large datasets via lower rank approximations
  - Can incorporate slack variables

## **EXPERIMENTS**



#### **Datasets**

#### ENT dataset

- We created a dataset that has 100 entity-pairs covering five relation types. (20X5 = 100)
- ▶ ACQUIRER-ACQUIREE (e.g. [Google, YouTube])
- ▶ **PERSON-BIRTHPLACE** (e.g. [Charlie Chaplin, London])
- **CEO-COMPANY** (e.g. [*Eric Schmidt, Google*])
- COMPANY-HEADQUARTERS (e.g. [Microsoft, Redmond])
- PERSON-FIELD (e.g. [Einstein, Physics])
- ca. 100,000 snippets are downloaded for each relation type
- SAT word analogy dataset (Turney 2003)
  - ▶ 374 SAT word analogy questions (2178 word pairs)
  - ▶ Each question has five choices out of one is correct

#### Relation Classification on ENT Dataset

- We use the proposed relational similarity measure to classify entity pairs according to the semantic relations between them.
- We use k-nearest neighbor classification (k=10)
  - For each entity pair in the ENT dataset, assign the relation type of the most relationally similar *k* entity pairs.
  - Repeat the above process for all entity pairs in the dataset
- Evaluation measure:

Average Precision = 
$$\frac{\sum_{r=1}^{k} Precision(r) \times Relevant(r)}{No. of relevant pairs}$$

#### Results – Relation Classification Task

| Relation            | VSM   | LRA   | EUC   | PROPOSED |
|---------------------|-------|-------|-------|----------|
| ACQUIRER-ACQUIREE   | 92.7  | 92.24 | 91.47 | 94.15    |
| COMPANY-HEADQARTERS | 84.55 | 82.54 | 79.86 | 86.53    |
| PERSON-FIELD        | 44.70 | 43.96 | 51.95 | 57.15    |
| CEO-COMPANY         | 95.82 | 96.12 | 90.58 | 95.78    |
| PERSON-BIRTHPLACE   | 27.47 | 27.95 | 33.43 | 36.48    |
| OVERALL             | 68.96 | 68.56 | 69.46 | 74.03    |

Comparison with baselines and previous work

**VSM**: Vector Space Model (cosine similarity between pattern frequency vectors)

LRA: Latent Relational Analysis (Turney '06 ACL, Based on LSA)

**EUC**: Euclidean distance between cluster vectors

**PROPOSED**: Proposed method (Learned Mahalanobis distance between entity-pairs)

## Pattern Clusters

| Cluster 1<br>(2868) | <b>X</b> acquires <b>Y</b>          | <b>X</b> has acquired <b>Y</b>       | X's Y acquisition                 | <b>X</b> , acquisition, <b>Y</b>      | <b>Y</b> goes <b>X</b>               |
|---------------------|-------------------------------------|--------------------------------------|-----------------------------------|---------------------------------------|--------------------------------------|
| Cluster 2<br>(2711) | <b>Y</b> legend <b>X</b> was        | <b>X</b> 's championship <b>Y</b>    | <b>Y</b> star <b>X</b> was        | <b>X</b> autographed <b>Y</b> ball    | <b>Y</b> start <b>X</b> robbed       |
| Cluster 3 (2615)    | <b>Y</b> champion <b>X</b>          | world <b>Y</b> champion <b>X</b>     | <b>X</b> teaches <b>Y</b>         | <b>X</b> 's greatest <b>Y</b>         | <b>Y</b> players like <b>X</b>       |
| Cluster 4<br>(2008) | <b>X</b> to buy <b>Y</b>            | <b>X</b> and <b>Y</b> confirmed      | <b>X</b> buy <b>Y</b> is          | <b>Y</b> purchase to boost <b>X</b>   | <b>X</b> is buying <b>Y</b>          |
| Cluster 5<br>(2002) | <b>Y</b> founder <b>X</b>           | <b>Y</b> founder and CEO <b>X</b>    | <b>X</b> , founder of <b>Y</b>    | <b>X</b> says <b>Y</b>                | <b>X</b> talks up <b>Y</b>           |
| Cluster 6<br>(1364) | <b>X</b> revolutionized <b>Y</b>    | <b>X</b> professor of <b>Y</b>       | in <b>Y</b> since <b>X</b>        | ago, <b>X</b> revolutionized <b>Y</b> | <b>X</b> 's contribution to <b>Y</b> |
| Cluster 7<br>(845)  | <b>X</b> and modern <b>Y</b>        | genius: <b>X</b> and modern <b>Y</b> | <b>Y</b> in DDDD, <b>X</b> was    | on <b>Y</b> by <b>X</b>               | <b>X</b> 's lectures on <b>Y</b>     |
| Cluster 8<br>(280)  | <b>X</b> headquarters in <b>Y</b>   | <b>X</b> offices in <b>Y</b>         | past <b>X</b> offices in <b>Y</b> | the <b>X</b> conference in <b>Y</b>   | <b>X</b> headquarters in <b>Y</b> on |
| Cluster 9<br>(144)  | <b>X</b> 's childhood in <b>Y</b>   | <b>X</b> 's birth in <b>Y</b>        | <b>Y</b> born <b>X</b>            | <b>Y</b> born <b>X</b> introduced the | sobbing <b>X</b> left <b>Y</b> to    |
| Cluster 10<br>(49)  | <b>X</b> headquarters in <b>Y</b> . | <b>X</b> 's <b>Y</b> headquarters    | <b>Y</b> – based <b>X</b>         | <b>X</b> works with the <b>Y</b>      | <b>Y</b> office of <b>X</b>          |

## Solving Word Analogies on SAT Dataset

| Algorithm            | SAT score | Algorithm         | SAT score         |
|----------------------|-----------|-------------------|-------------------|
| Random guessing      | 0.200     | LSA+Predictation  | 0420              |
| Jiang & Conrath      | 0.273     | Veale (WordNet)   | 0.430             |
| Lin                  | 0.273     | Bicici & Yuret    | 0.440             |
| Leacock & Chodrow    | 0.313     | VSM               | 0.470 less than 6 |
| Hirst & StOnge       | 0.321     | PROPOSED          | 0.511 hours       |
| Resnik               | 0.332     | Pertinence        | 0.535             |
| PMI-IR (Turney 2003) | 0.35      | LRA (Turney 2006) | 0.561 8 days!!!   |
| SVM (Bollegala ECAI) | 0.401     | Human             | 0.570             |

#### Latent Relational Analysis vs. The Proposed Method



#### Conclusions

- Distributional similarity is useful to identify semantically similar lexical patterns
- Clustering lexical patterns prior to measuring similarity improves performance
- Greedy sequential clustering algorithm efficiently produces pattern clusters for common semantic relations
- Mahalanobis distance outperforms Euclidean distance when measuring similarity between semantic relations
- Future Work
  - Use relational similarity to analogical search

## Thank You

Contact: Danushka Bollegala danushka@mi.ci.i.u-tokyo.ac.jp

http://www.miv.t.u-tokyo.ac.jp/danushka The University of Tokyo, Japan.