

3D Scene Structure Analysis for Semantic Annotation and Retrieval of Unedited Video

Chorus Final Conference, Brussels, 26 May 2009

Dr. Oliver Schreer Ingo Feldmann, Wolfgang Waizenegger

Fraunhofer Heinrich-Hertz-Institute

Outline

- RUSHES flashlight
- Motivation and state-of-the-art
- General approach
 - Low level analysis
 - Mid level analysis
 - High level semantic annotation
- Benchmarking and experimental results
- Summary

The RUSHES project

- European FP6 funded research project
- 9 partners among 6 countries
- 3 universities, 2 research institutes, 3 companies, 1 SME
- Duration 2.5 years, end of project in July 2009

Components of the RUSHES system

Motivation

video editing and post processing room of a TV broadcaster

- Target application: Video archives of TV broadcasters and movie producers
- Large amount of unedited raw videos
- Annotation, search and retrieval is in many cases still done manually and text based
- High demand for robust and automatic content-based semantic analysis tools

State of the Art

Camera motion analysis

- Global motion estimation
- Motion vector analysis
- 3D camera motion descriptor (defined in MPEG7)

Limitations/drawbacks of global motion estimation

- Motion is usually predicted in 2D
- Scene is modeled by a plane (affine, parabolic models)
- 3D camera motion in relation to the 3D scene is not considered

Our approach

Our approach

- Apply state of the art 3D camera self calibration techniques
- Estimate 3D camera motion within a reconstructed 3D scene
- Reconstruct sparse set of robust 3D feature points
- Model and simplify the scene
- Provide interpretation schemes at various semantic levels

Advantage

 Exploit 3D scene structure and 3D camera movement within the scene

General module overview

Low level metadata analysis

2D feature tracking

- KLT
- SIFT
- boujou + KLT refinement

Low level analysis

reconstructed 3D camera motion and sparse 3D scene model [Hartley, Zisserman]

- camera self calibration
- robust 3D feature point extraction
- boujou

ICARUS

 split + merge of large sequences (25.000 frames)

medium level

Removal of triangles

- behind the camera
- with less than two visible corners
- occluded triangles by simple ray tracing
- outliers

medium level scene description

normals (blue) for visible triangles

triangle parameters

- orientation (normal)
- size (area)
- distance to camera
- neighbors

High level semantic annotation

26 May 2009, Chorus Final Conference

Benchmarking

Database

- Approx. 90 min unedited video (mostly helicopter flights)
- Typical search scenarios for journalists

Evaluation

- Manual annotation of the considered database as ground truth
- Precision and recall evaluation for all clips

zc ro

- Micro average: frame based
- Macro average: clip based

ased	macro average		micro average	
	precision	recall	precision	recall
	in %	in %	in %	in %
eliable motion	99.28	72.17	99.89	84.47
oom in	99.05	92.57	98.40	89.87
oom out	99.27	91.51	98.62	91.46
tation	96.88	67.42	95.99	61.89
atness	66.41	56.78	77.61	73.46

Demo: Low + mid level analysis

26 May 2009, Chorus Final Conference

Classification examples: Zoom

Classification examples: Rotation

Classification examples: Flatness

Classification examples: Flatness

Summary

Low and mid level analysis

- Fully automatic
- Robust to noisy data sets and distortions

General approach

- Powerful approach for semantic 3D scene content annotation
- Many possibilities for extensions and further research

Visit the exhibit outside!

Thank you !!!

Project coordinator Fraunhofer Heinrich-Hertz-Institute Dr. Oliver Schreer Email: Oliver.Schreer@hhi.fraunhofer.de