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RUSHES flashlight
Motivation and state-of-the-art

General approach
— Low level analysis
— Mid level analysis
— High level semantic annotation

 Benchmarking and experimental results

e Summary
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RUSHES system
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e Target application: Video
archives of TV broadcasters
and movie producers

e Large amount of unedited raw
videos

« Annotation, search and
retrieval Is In many cases still
done manually and text based

* High demand for robust and
automatic content-based

video editing and post processing : :
room of a TV broadcaster semantic analysis tools

i
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Camera motion analysis

e Global motion estimation
e Motion vector analysis
e 3D camera motion descriptor (defined in MPEG7)

Limitations/drawbacks of global motion estimation
* Motion is usually predicted in 2D
e Scene is modeled by a plane (affine, parabolic models)

« 3D camera motion in relation to the 3D scene is not considered
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Our approach

* Apply state of the art 3D camera
self calibration technigques

 Estimate 3D camera motion within
a reconstructed 3D scene

* Reconstruct sparse set of robust
3D feature points

 Model and simplify the scene

* Provide interpretation schemes at
various semantic levels

Advantage

e EXxploit 3D scene structure and 3D ‘
camera movement within the 3D camera motion in the

scene reconstructed sparse 3D Scene
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analysis

2D feature
tracking

3D camera path
estimation

3D feature

extraction _
2D feature tracking

o KLT
o SIFT
e boujou + KLT refinement
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[Hartley, Zisserman]
e camera self
15 calibration
=< e robust 3D feature
point extraction

2D feature
tracking

boujou
ICARUS

3D camera path
estimation

split + merge of large
sequences (25.000
frames)

3D feature
extraction

reconstructed 3D camera motion
and sparse 3D scene model
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* PCA of the 3D point
dataset

e Subsequent
projection along the
direction with least
variance

e Delaunay
triangulation

3D feature
triangulation

frame based
visibility
estimation

triangle
parameter
estimation

statistical _
analysis triangulated rough 3D scene model
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1S

Removal of triangles

3D feature

triangulation » behind the camera

e with less than two
visible corners

frame based
visibility
estimation

» occluded triangles by
simple ray tracing

e outliers

triangle
parameter
estimation

statistical
analysis
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3D feature
triangulation

frame based
visibility
estimation

triangle

parameter
estimation

statistical
analysis

triangle parameters
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3D feature
triangulation

frame based
visibility
estimation
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estimation 2D histogram based clustering
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tiIc annotation

sification: hill, valley,...
ased clustering

rising slope
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ng

Database

o Approx. 90 min unedited video (mostly helicopter flights)

 Typical search scenarios for journalists

Evaluation

 Manual annotation of the considered database as ground truth

 Precision and recall evaluation for all clips

— Micro average: frame based

— Macro average: clip based macro average micro average
precision |recall precision (recall
In % In % In % In %
Reliable motion 99.28 72.17 99.89 84.47
zoom in 99.05 92.57 98.40 89.87
zoom out 99.27 91.51 98.62 91.46
rotation 96.88 67.42 95.99 61.89
flathess 66.41 56.78 77.61 73.46
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les: Zoom

Zoom QOperator: { zoom in: 1, no zoom: 0, zoom out: -1},
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les: Rotation

Rotation Operator: { rotation: 1, no rotation: 0 },
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ples: Flatness

Flatness Operator: { flat: 1, not flat: 0 },
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les: Flathess
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Low and mid level analysis
 Fully automatic

* Robust to noisy data sets and distortions

General approach

« Powerful approach for semantic 3D scene content
annotation

 Many possibilities for extensions and further research
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Visit the exhibit outside!

Thank you !

Project coordinator
~raunhofer Heinrich-Hertz-Institute

Dr. Oliver Schreer
Email: Oliver.Schreer@hhi.fraunhofer.de
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