V TALAS Video & Image Indexing and Retrieval in the Large Scale

FP6 project VITALAS Arjen P. de Vries arjen@acm.org

Information Society

Video & Image Indexing and Retrieval in the Large Scale

- Three characteristics:
 - Use-case driven

Information Society

- Professional users
- Larg-ish collections
 - Target: 10M images, 10k hours of video
- Cross-media
 - Target: 1K 3K 'cross-medi

AS

Integration Project

Metadata Translator

4

Personalization, access rights, ...

User sets:

- Personal Data
- Preferences

Administrator establishes:

- Role (rights to perform system operations)
- Access Profile (rights to access data sources)

(15min–4min)/11 partners ≈ 1 min / partner

Missing results...

9

- Improved access structure PMH V2
 - Random projections to reduce dimensionality, and compressed signatures to further reduce memory resource consumption
 - Real-time Global similarity search on 20 M images and more ...
 - Real-time Local search in 1 (150M local feature descrip

Scalable Sub-image Search

- Logos ground truth generation
 - Creation of a new challenging dataset (INRIA)
 - 10,000 BELGA images
 - Annotated with 26 logos (> 10 pixels)
 - 55 internal queries and 24 external queries
 - Made available to third parties for research usage

Logo name	Illustration	nb of images
Addidas	h.	114
Addidas-text	adidas	47
Base	BASE	408
Bouigues	6	11
Citroen		46
Citroen-text	CITROËN	97
CocaCola	Coca Cola	32
Cofidis	COTIDES	17
Dexia	DEXIA	494
Standard Liege	Ø	372
Eleclerc	0	8
Ferrari	3	76
Gucci	GUCCI	2
Kia	KIA	82

Mercedes		73
Nike	5	116
Peugeot	*	5
US President	O	14
Puma	\sim	54
Puma-text	PUMA	22
Quick	Q	56
Roche	Roche	2
SNCF	SVKF	6
StellaArtois	MILLIA	15
TNT	THT	66
VRT	Vrt	9

Table 1: Annotated logos in BelgaLogos dataset

AS

Final Chorus Conference, Brussels, May 26t

- Scalability issues for 1K 3K concepts:
 - How to define the lexicon?
 - How to use the lexicon?
 - How to obtain training data for supervised ML?

Cross-media Concepts

- Candidate concepts are selected semiautomatically
 - Derived from Belga captions and/or logs
 - Statistical test with Europarl as reference corpus

V TALAS Automatically-selected concept vocabular

- soccer (soccer, soccers, soccere): 27278.65
- pictur (picture, pictures, pictured, picturing, pictur, picturs, pictureds): 22565.06
- minist (minister, ministers, ministe, minist, ministeer, ministes, ministered): 21035.98
- team (team, teams, teamed, teaming): 18273.36
- cup (cup, cups, cupping, cupped): 18187.04
- citi (city, cities, citi, citys, citis, citie): 17369.72
- leagu (league, leagues, leagu, leagus): 16693.42
- celebr (celebrates, celebrate, celebrations, celebration, celebrated, celebrating, celebrities, celebrity, celebrants, celebrer, celebre, celebrators, celebrateing, celebreated, celebreates, celebres, celebrational, celebral, celebratings, celebrant): 16545.52
- won (won, wons): 16436.22
- championship (championships, championship): 16256.48

- Wikipedia-based Concept Suggestion:
 - Each Vitalas concept is associated with a Wikipedia article
 - Rank concept-related articles by keyword query
 - Suggest top-k concepts

- Can we use click-through data instead of manually labelled samples?
 - Advantages:
 - Large quantities, no user intervention, collective assessments
 - Disadvantages:
 - Noisy & sparse
 - Queries not based on strict v

TALAS Manual annotations vs. search logs

Information Society Technologies

- Research questions:
 - How to annotate images with concepts using click-through data?
 - How reliable are click-through data based annotations?
 - What is the effectiveness of these annotations as training samples for con

- •Use queries for which images were clicked
 - Inherent noise: gap between queries/captions and concepts
 - queries describe the content+context of images to be retrieved
 - clicked images retrieved using their captions: *content+context*
 - concept-based annotations: based on visual content-only criteria
 - Sparsity: only cover part of previously accessed
 - Mismatch between terms in descriptions and queries

Effectiveness

•Experiment 1 (visual features):

training: search-log based annotations
 test set for each concept: manual annotations (~1000 images)

-feasibility study: in most cases, AP considerably higher than the prior

Concept c	$\mathbf{T}_{c,exact}$	$\mathbf{T}_{c,LM}$	$\mathbf{T}_{c,LMS}$	$\mathbf{T}_{c,LMS_{key}}$	$\mathbf{T}_{c,LM_{stem}}$	$\mathbf{T}_{c,LMS_{stem}}$	$\mathbf{T}_{c,LMS_{stem_key}}$	$\mathbf{T}_{c,clickgraph}$	prior
airplane_flying				0.0589			0.0589		0.0262
airport	0.2269	0.3736	0.3736	0.3637	0.3736	0.3736	0.3637	0.3032	0.2181
anderlecht	0.5920	0.6003	0.6003	0.5496	0.6003	0.6003	0.5501	0.5168	0.3223
athlete				0.3419	0.4547	0.4547	0.4859		0.3968
basketball	0.5172	0.5499	0.5499	0.5473	0.5499	0.5499	0.5521	0.5172	0.3855
building		0.2166	0.2166	0.2166	0.2166	0.2166	0.2166	0.0779	0.1034
club_brugge	0.5353	0.5786	0.5224	0.6082	0.5786	0.5224	0.6056	0.5030	0.4080
crowd				0.3854			0.3854		0.1494
farms				0.0623			0.0677		0.0090
fashion_model			0.7227	0.7227		0.7116	0.7116		0.4333
fire	0.3868	0.4523	0.4523	0.3371	0.4395	0.4395	0.3424	0.3620	0.0972
flood	0.5159	0.5794	0.5794	0.5333	0.5948	0.5948	0.4511	0.4261	0.3627
formula_one	0.4322	0.5478	0.5890	0.7242	0.5813	0.5813	0.7242	0.7257	0.4208
highway				0.3062			0.3223		0.1623
logo								0.5453	0.4322
meadow				0.0162			0.0162		0.0010
$rally_motorsport$		0.6899	0.6899	0.7197	0.6899	0.6899	0.7018	0.5556	0.2763
red_devils	0.7540	0.7837	0.8046	0.7191	0.7977	0.8046	0.7191	0.6584	0.4624
sky				0.2662			0.2448		0.1454
soccer	0.5694	0.6435	0.6435	0.6475	0.6435	0.6435	0.6475	0.5600	0.4297
stadium		0.3954	0.3954	0.2169	0.3954	0.3954	0.1913		0.1091
team		0.2153	0.2153	0.1905	0.2153	0.2153	0.2153	0.0675	0.0371
tennis	0.4471	0.5044	0.5044	0.5016	0.5044	0.5044	0.5016	0.4588	0.3717
volleyball	0.5561	0.5678	0.5678	0.5119	0.5678	0.5678	0.5119	0.4541	0.3403
war		0.1737	0.1737	0.1737	0.1737	0.1737	0.1737	0.3120	0.2076
MAP	0.5030	0.4920	0.5059	0.4050	0.4928	0.5022	0.4067	0.4402	0.2523

Example: soccer

Final Chorus Conference, Brussels, May 26th-27th 2009

Speech Search

Near-Realtime ASR using Multipass Decoding

- SoA models for German
- Baseline setups for French and English

Hybrid Speech Search Approach

- Parallel word and syllable ASR decoding
- Hybrid retrieval from word and subword lattices
- Advantage: no fixed vocabulary

Focus on both Accuracy and Efficiency in Ret

- High precision/recall without need of fixed lexi
- Enable vocabulary independent search on 10.

- Speech Search Results Hybrid Spoken Term Detection
- Data set: Broadcast News + Conversation Shows (German)
- Exact hybrid on a simulated 10.000h syllable index: 0.06 seconds
- Enables vocabulary independent speech search on large archive
- Several retrieval algorithms available
 - ⇒ Choice depends on precision / recall / efficiency requirements

System Setup	Precision	Re
Exact syllable transcript search	0,96	0,6
Syllable lattice retrieval	0,91	0,7
Syllable lattice retrieval (+ fuzzy search)	0,80	0,7
Exact syllable-word-hybrid	0,97	0,8

Scalable Speech Search

Treffer **Treffer 1** ... die weltweite finanzkrise hat die schwächen des kapitalistischen Start: 14:44 wirtschaftssystems ans nicht gebracht ... Match: 100% **Treffer 2** ... doch noch retten zu können unter anderem eine firma heidelberg Start: 26:23 zement war durch die finanzkrise erheblichen bedrängnis geraten Match: 100% außerdem hatte merkel bei fehlt spekulationen ... **Treffer 3** ... die den tod des ihren siebzig jährige bestätigte in dem schreiben heißt es die durch die finanzkrise verursachte wirtschaftlichen notlage Start: 27:41 seiner firmen zu wie die ohnmacht nicht behandeln ... Match: 100%

Alle Informationen anzeigen

Audio Structuring

- Separation into homogeneous audio segments
- Detection of pre-defined acoustic scenarios
 ⇒ Speech parts, speaker gender
 ⇒ Re-appearing speaker
 - clusters, acoustic concepts

Information Society

Match: 100%

anfang

V TALAS

Interactive Exploration

Local Interactive Cartographic Explorer

Global Interactive Cartographic Explorer

Local map: local expension based on image, textual or hybride proximity Documents close from each others are connected

(First) User Evaluations

- Search with VITALAS integrated system Corpus: 100K images (BELGA)
 - Users were very enthusiastic about the possibilities offered by the advanced functionalities
 - More practice needed on new functionalities to perform better
 - Response time is not sufficient
- Logo search, evaluation Corpus 10000 images (BELGA)
 - Very positive end user feedback
 - Our expert would like to extend the use beyond logos
- Audio search, evaluation Corpus: 1 year from
 - *Results: very positive end user feedback*
 - Timeline representation pertinent

- Organize
 - Wikipedia MM task (from INEX \rightarrow ImageCLEF)
 - More Vitalas spin-off... ImageCLEF 2009 uses a 500k Belga collection!
- Participate
 - TRECVID High level features task (2008, 2009), Search task (2008, 2009)
 - Ambition for 2009: Interactive professional archivists
 - INEX Efficiency, Entity Ran

- Scalability:
 - Local and global visual search: 20M global features, 100K locals features
 - Vocabulary independent speech search on 10k hours of video
- Competitive cross-media concept
 detectors
- Overcome training data be log file analysis

- Main scientific objectives:
 - Scalability
 - Closing the loop between cross-media retrieval and indexing
- Main emphasis in terms of effort:
 - Improve intuitiveness and user control
- Main deliverables:
 - Operational system at user

PF/Tijah

- Many search problems in Vitalas have been approached as XML Retrieval:
 - Concept / term suggestion, concept / metadata search, query log analysis
 - Features: XQuery integration, incremental indexing, working with arbitrar