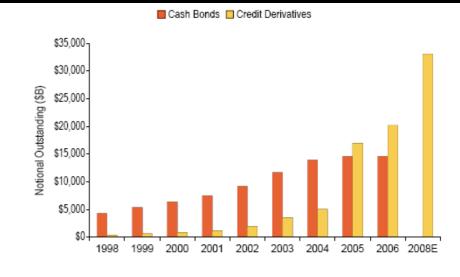
Spiraling toward complete markets and financial instability

Matteo Marsili Abdus Salam ICTP, Trieste

Coping with Crises in Complex Socio-Economic Systems, ETHZ, June 11, 2009

Bad guys or bad theories?

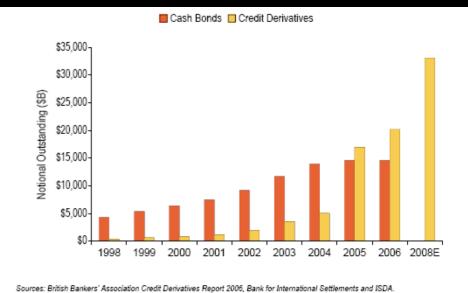
 "... very frequently the "world images" that have been created by "ideas" have, like switchmen, determined the tracks along which action has pushed the dynamic of interest." (M.Weber)



Sources: British Bankers' Association Credit Derivatives Report 2006, Bank for International Settlements and ISDA Note: Cash konds through June 2006.

Bad guys or bad theories?

• "... very frequently the "world images" that have been created by "ideas" have, like switchmen, determined the tracks along which action has pushed the dynamic of interest." (M. Weber)



Note: Cash bonds through June 2006.

• The game:

a) consumers in a risky world

b) the financial industry: engineer new trading instruments

General Equilibrium Theory: optimality with complete markets

Bad guys or bad theories?

- "... very frequently the "world images" that have been created by "ideas" have, like switchmen, determined the tracks along which action has pushed the dynamic of interest." (M. Weber)
- Cash Bonds Credit Derivatives

Sources: British Bankers' Association Credit Derivatives Report 2006, Bank for International Settlements and ISDA

Note: Cash konds through June 2006

• The game:

a) consumers in a risky world

b) the financial industry: engineer new trading instruments General Equilibrium Theory: optimality with complete markets

- Results:
 - in an ideal world: i) completeness = instability
 ii) trading volumes in interbank market diverges
 - in non-ideal world: i) derivative markets destabilize underlying markets
 ii) from supply limited to demand limited equilibria

Outline

- The General Equilibrium Theory perspective: What is the role of financial markets?
- A simple model of a complex market
- Spiraling toward market completeness in ideal markets
- Non-ideal markets: some preliminary results
- Conclusions

The perspective of General Equilibrium Theory:

wait and buy sunglasses or umbrella Inefficient, if e.g. tomorrow price of sunglasses > price of umbrella

The perspective of General Equilibrium Theory:

• Tomorrow: rain or sun?

wait and buy sunglasses or umbrella Inefficient, if e.g. tomorrow price of sunglasses > price of umbrella The second sec

• Contingent commodity markets: markets and prices, open today for (sunglasses if rain), (sunglasses if sun), (umbrella if rain), (umbrella if sun) Today: shopping in contingency commodity markets Tomorrow: delivery and consumption

The perspective of General Equilibrium Theory:

• Tomorrow: rain or sun?

wait and buy sunglasses or umbrella Inefficient, if e.g. tomorrow price of sunglasses > price of umbrella

• Contingent commodity markets: markets and prices, open today for (sunglasses if rain), (sunglasses if sun), (umbrella if rain), (umbrella if sun) Today: shopping in contingency commodity markets Tomorrow: delivery and consumption

Optimal allocation under perfect competition

• Financial market: 1 riskless B_t and 1 risky S_t assets Today $B_0=S_0=1$ Tomorrow $B_1=1$, $S_1=1+u$ if sun, $S_1=1-d$ if rain

- Financial market: 1 riskless B_t and 1 risky S_t assets Today $B_0=S_0=1$ Tomorrow $B_1=1$, $S_1=1+u$ if sun, $S_1=1-d$ if rain
- I want to have C^{rain} euros to buy an umbrella if it rains and C^{sun} euros to buy sunglasses if it is sunny. Can I do that? How much does it cost?

- Financial market: 1 riskless B_t and 1 risky S_t assets Today $B_0=S_0=1$ Tomorrow $B_1=1$, $S_1=1+u$ if sun, $S_1=1-d$ if rain
- I want to have C^{rain} euros to buy an umbrella if it rains and C^{sun} euros to buy sunglasses if it is sunny. Can I do that? How much does it cost?
- Yes! Buy a portfolio z_B units of B and z_S units of S such that

 $|z_B + (1+u)z_S = C^{sun}|$ $|z_B + (1-d)z_S = C^{rain}$

- Financial market: 1 riskless B_t and 1 risky S_t assets Today $B_0=S_0=1$ Tomorrow $B_1=1$, $S_1=1+u$ if sun, $S_1=1-d$ if rain
- I want to have C^{rain} euros to buy an umbrella if it rains and C^{sun} euros to buy sunglasses if it is sunny. Can I do that? How much does it cost?
- Yes! Buy a portfolio z_B units of B and z_S units of S such that

$$z_B + (1+u)z_S = C^{\text{sun}}$$
$$z_B + (1-d)z_S = C^{\text{rain}}$$

• How much does it cost?

$$C_0 = z_B + z_S = \frac{d}{u+d}C^{\text{sun}} + \frac{u}{u+d}C^{\text{rain}} = E_q[C_{t=1}]$$

- Financial market: 1 riskless B_t and 1 risky S_t assets Today $B_0=S_0=1$ Tomorrow $B_1=1$, $S_1=1+u$ if sun, $S_1=1-d$ if rain
- I want to have C^{rain} euros to buy an umbrella if it rains and C^{sun} euros to buy sunglasses if it is sunny. Can I do that? How much does it cost?
- Yes! Buy a portfolio z_B units of B and z_S units of S such that

$$z_B + (1+u)z_S = C^{\text{sun}}$$
$$z_B + (1-d)z_S = C^{\text{rain}}$$

• How much does it cost?

$$C_0 = z_B + z_S = \frac{d}{u+d}C^{\text{sun}} + \frac{u}{u+d}C^{\text{rain}} = E_q[C_{t=1}]$$

• This can be done for any contingent claim C^w. Independent of probability!

- Financial market: 1 riskless B_t and 1 risky S_t assets Today $B_0=S_0=1$ Tomorrow $B_1=1$, $S_1=1+u$ if sun, $S_1=1-d$ if rain
- I want to have C^{rain} euros to buy an umbrella if it rains and C^{sun} euros to buy sunglasses if it is sunny. Can I do that? How much does it cost?
- Yes! Buy a portfolio z_B units of B and z_S units of S such that

$$z_B + (1+u)z_S = C^{\text{sun}}$$
$$z_B + (1-d)z_S = C^{\text{rain}}$$

• How much does it cost?

$$C_0 = z_B + z_S = \frac{d}{u+d}C^{sun} + \frac{u}{u+d}C^{rain} = E_q[C_{t=1}]$$

- This can be done for any contingent claim C^w. Independent of probability!
- Assumptions:
 - i) perfect competition
 - ii) full information
 - iii) no-arbitrage: ud>0
 - iv) complete market: what if there are three states? (e.g. sun, cloud, rain)

The financial innovation spiral

(Merton and Bodie 2005)

"As products such as futures, options, swaps, and securitized loans become standardized [...] the producers (typically, financial intermediaries) trade in these new markets and volume expands; increased volume reduces marginal transaction costs and thereby makes possible further implementation of more new products and trading strategies by intermediaries, which in turn leads to still more volume [...] and so on it goes, spiraling toward the theoretically limiting case of zero marginal transactions costs and dynamically complete markets."

The financial innovation spiral

(Merton and Bodie 2005)

"As products such as futures, options, swaps, and securitized loans become standardized [...] the producers (typically, financial intermediaries) trade in these new markets and volume expands; increased volume reduces marginal transaction costs and thereby makes possible further implementation of more new products and trading strategies by intermediaries, which in turn leads to still more volume [...] and so on it goes, spiraling toward the theoretically limiting case of zero marginal transactions costs and dynamically complete markets."

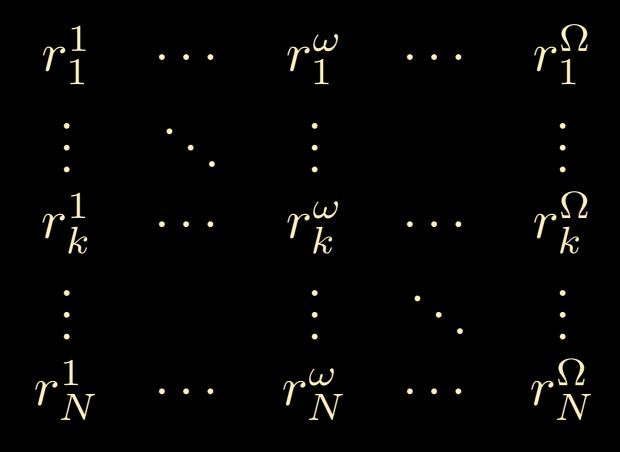
"When particular transaction costs or behavioral patterns produce large departures from the predictions of the ideal frictionless neoclassical equilibrium for a given institutional structure, new institutions tend to develop that partially offset the resulting inefficiencies. In the longer run, after institutional structures have had time to fully develop, the predictions of the neoclassical model will be approximately valid for asset prices and resource allocations."

(see also R. J. Shiller, "The Subprime Solution" 2008)

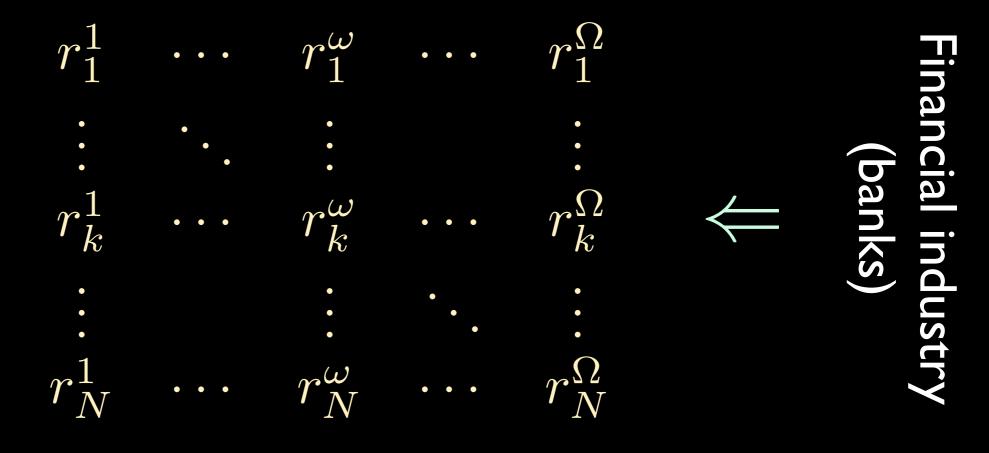
A simple model of a complex financial market

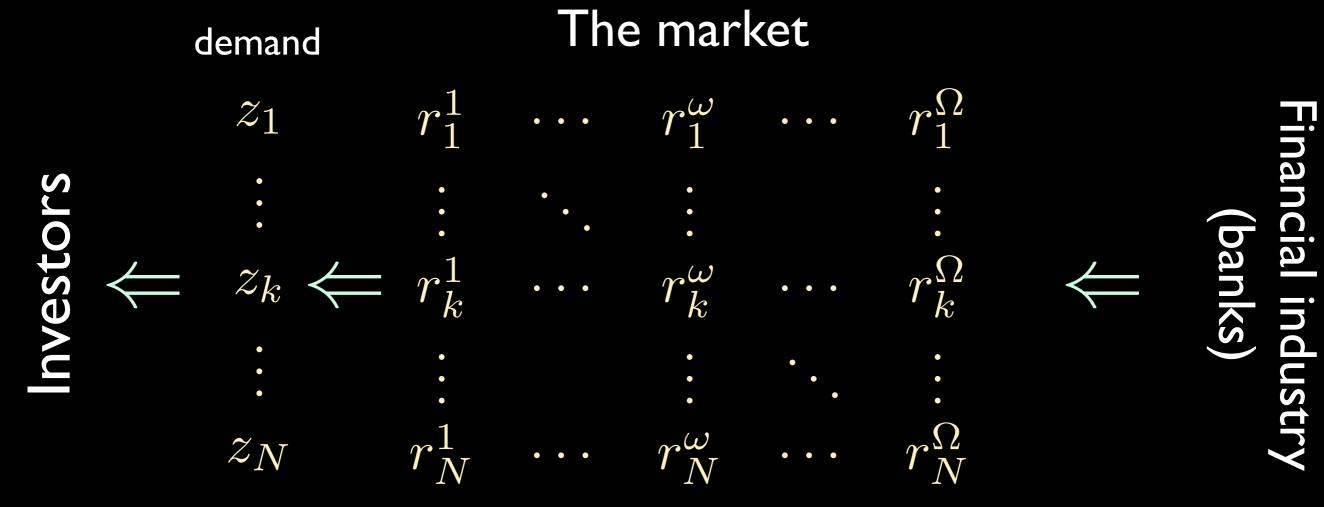
	consumers	market	banks
Today	max E[u(c)]	portfolio	sell financial
	buy assets	⇒	instruments
Tomorrow	buy and	payoff	state dependent
(?)	consume	←	return

The market



The market





 $\max_{\vec{z} \ge 0} E\left[u\left(c(\vec{z})\right)\right]$

The game: N assets, Ω states The market demand r_1^{Ω} r_1^{ω} z_1 r_1^{\perp} • • • -inancial industry (banks) Investors r_k^{ω} z_k $\leftarrow r_k^1$ r_k^Ω z_N r^{ω}_{N} r_N

 r_{N+1}^{ω}

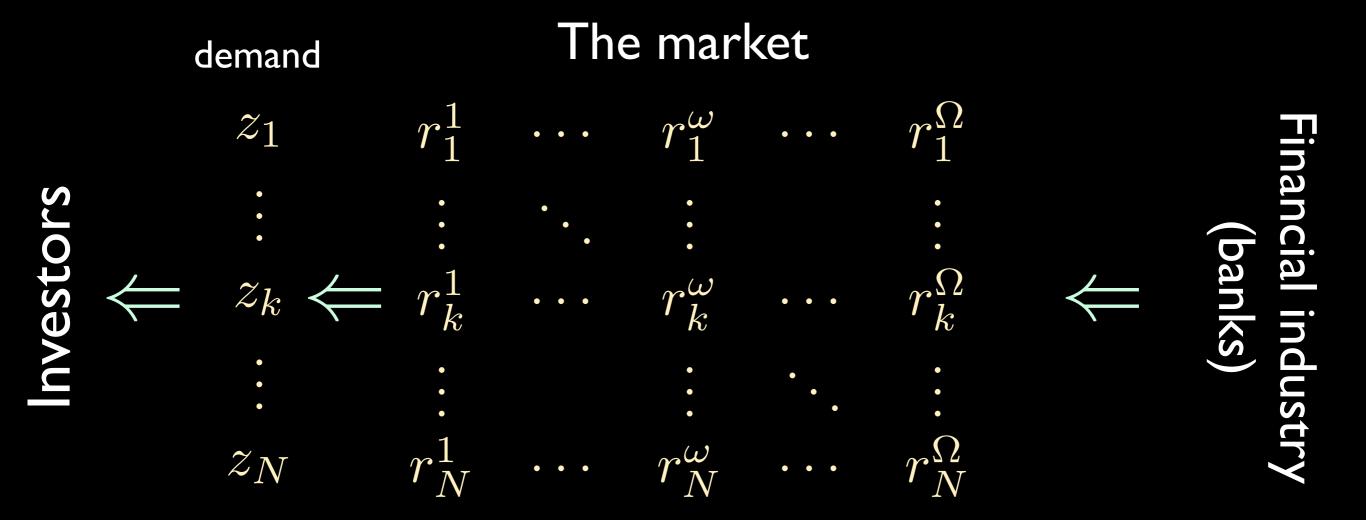
• • •

financial innovation

 r_{N+1}^{Ω}

 $\max_{\vec{z} \ge 0} E\left[u\left(c(\vec{z})\right)\right]$

 r_{N+1}^1



 $\max_{\vec{z} \ge 0} E\left[u\left(c(\vec{z})\right)\right]$

 $N, \Omega \to \infty, \quad n = \frac{N}{\Omega}$

Optimizing consumers

Solution of optimal consumption

$$\frac{\partial}{\partial z_i} E_\pi \left[u\left(c^{\omega}\right) \right] = \sum_{\omega} \pi^{\omega} \frac{u'(c^{\omega})}{p^{\omega}} r_i^{\omega} \quad \begin{cases} = 0 \quad \Leftrightarrow \quad z_i > 0\\ < 0 \quad \Leftrightarrow \quad z_i = 0 \end{cases}$$

i) investors select the assets which are traded $z_i > 0$

ii) they determine the Equivalent Martingale Measure (EMM)

$$q^{\omega} = \pi^{\omega} \frac{u'(c^{\omega})}{Qp^{\omega}}, \quad Q = \sum_{\omega} \pi^{\omega} \frac{u'(c^{\omega})}{p^{\omega}}$$

A creative financial sector

Financial instruments are drawn at random from a probability distribution with

$$E_{\pi}[r_i] = \sum_{\omega} \pi^{\omega} r_i^{\omega} = -\frac{\epsilon}{\Omega}, \quad \text{Var}[r_i] = \frac{1}{\Omega}, \quad i = 1, \dots, N$$

 Successful innovations (z_i>0) are not independent draws! **Theory: statistical mechanics** Typical behavior of self-averaging quantities (De Martino et al. Macroecon. Dyn. 2007)

 $\lim_{\Omega \to \infty} \left\langle \max_{\vec{z} \ge 0} E[u(c^{\omega})] \right\rangle_{\vec{p}, \hat{a}} = \lim_{\beta \to \infty} \lim_{\Omega \to \infty} \frac{1}{\beta} \left\langle \log Z(\beta) \right\rangle_{\vec{p}, \hat{a}}$

1- The partition function $Z(\beta) = \sum_{\{\vec{z} \ge 0\}} e^{\beta u[c^{\omega}(\vec{z})]}$

2-The replica trick $\langle \log Z \rangle_{\vec{p},\hat{a}} = \lim_{r \to 0} \frac{1}{r} \log \langle Z^r \rangle_{\vec{p},\hat{a}}$

3-For integer r

$$\begin{split} \langle Z^r \rangle_{\vec{p},\hat{a}} &= \sum_{\{\vec{z}_1 \ge 0\}} \cdots \sum_{\{\vec{z}_r \ge 0\}} \left\langle e^{\beta \sum_{a=1}^r u[c^{\omega}(\vec{z}_a)]} \right\rangle_{\vec{p},\hat{a}} \\ &= \int d\hat{\Phi} e^{r\beta\nu(r,\beta,\hat{\Phi})} \qquad \hat{\Phi} = \text{order parameters} \\ \text{4- Saddle point:} \quad \lim_{\Omega \to \infty} \left\langle \max_{\vec{z} \ge 0} E[u(c^{\omega})] \right\rangle_{\vec{p},\hat{a}} = \lim_{\beta \to \infty} \lim_{r \to 0} \max_{\hat{\Phi}} \nu(r,\beta,\hat{\Phi}) \end{split}$$

The typical behavior

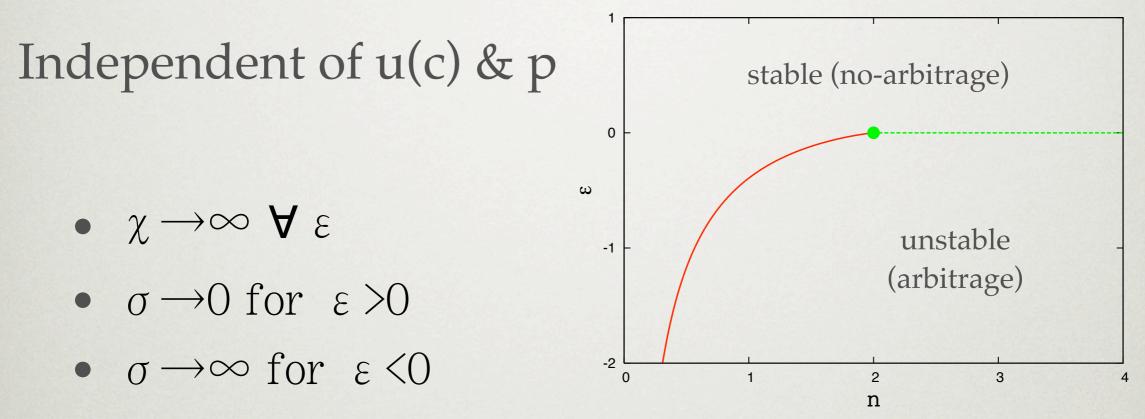
Observables:
 response function
 EMM dispersion
 market completeness
 volume (or revenue)

 $egin{aligned} \chi &= \lim_{eta o \infty} rac{eta}{2N} \sum_{i=1}^N (z_{i,a} - z_{i,b})^2 = rac{1}{N} \sum_i rac{\delta z_i}{\delta p_i^0} \ \sigma &= |q - \pi| \ \phi &= |\{i: \ z_i > 0\}|/\Omega \ V &= \sum_i z_i \end{aligned}$

• Consistency relations Conservation $1 = \langle e \rangle$ no-arbitrage $E_a[c^{\omega}]$

 $1 = \langle c^* p \rangle_{t,p} + \epsilon n \langle z^* \rangle_t$ $E_q[c^{\omega} p^{\omega}] = E_q[1] = 1$

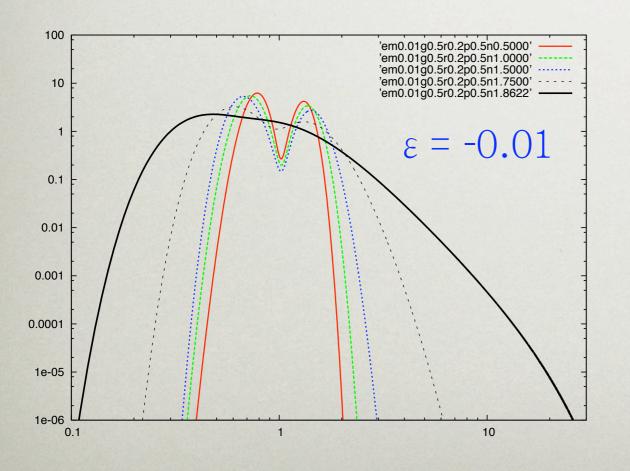
PHASE DIAGRAM

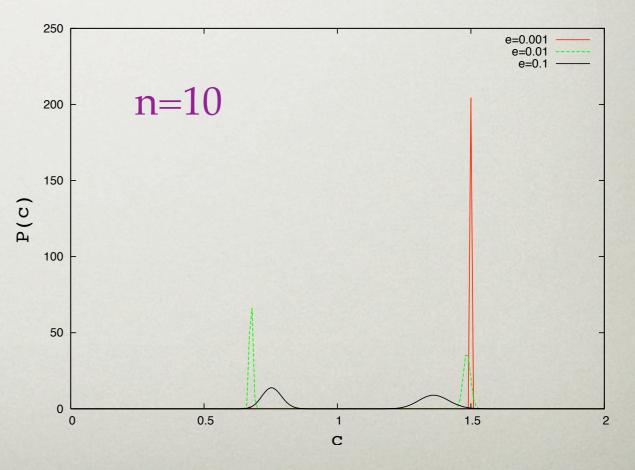


- For $\varepsilon > 0$ singularity = complete market ($\varepsilon = 0, n > 2$)
- For ε <0 singularity < complete market

 $\sigma \rightarrow 0$ for $\epsilon > 0$

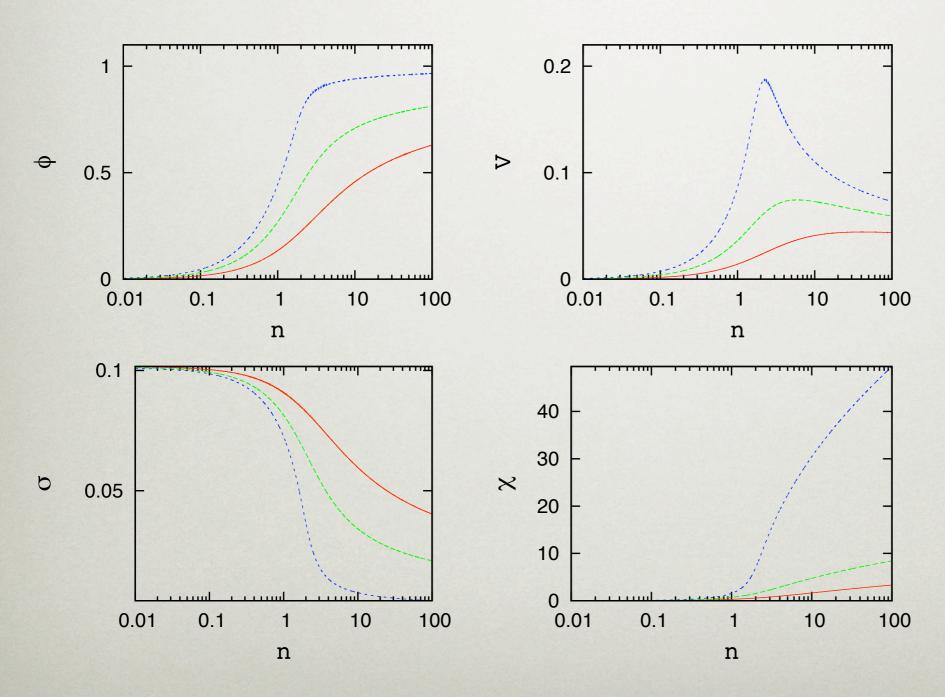
 $\sigma \rightarrow \infty$ for $\varepsilon < 0$

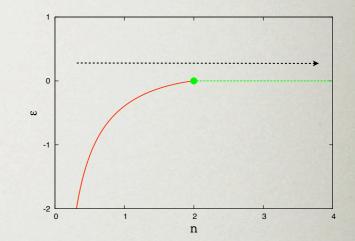




INCREASING FINANCIAL COMPLEXITY

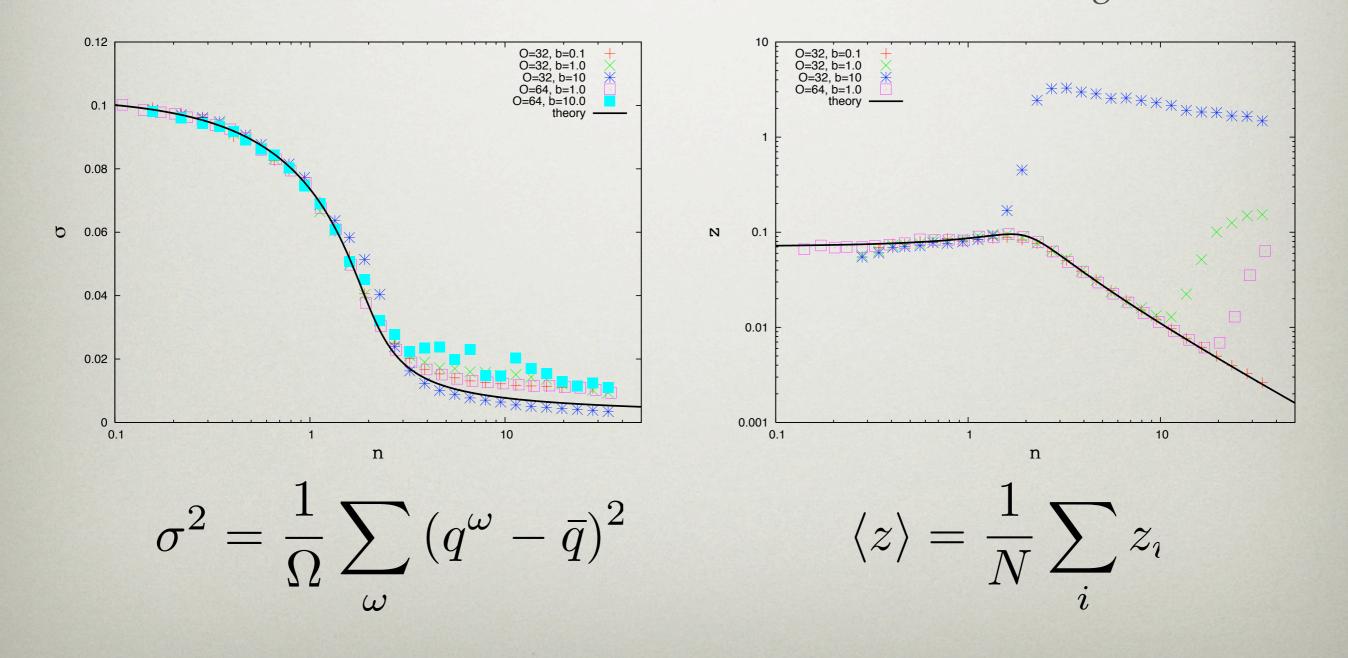
 $\epsilon = 0.01, 0.05, 0.10$





LEARNING TO INVEST $\epsilon = 0.01, \quad \gamma = 0.5, \quad \Omega = 32$

Hard to learn when market is nearly complete (cfr Brock, Hommes, Wagener, 2006)



A COMPETITIVE FINANCIAL INDUSTRY

- Part of the risk of a new instrument can be hedged buying existing instruments
- Residual risk $\Sigma = \min_{\vec{u}} \operatorname{Var} \left[r_{\text{new}}^{\omega} - \sum_{i} v_{i} r_{i}^{\omega} \right] = 1 - \phi$
- Risk premium vanishes as markets become complete e.g. Mean Variance profit function

$$\Rightarrow \ \epsilon = \frac{\gamma}{2}(1-\phi)$$

• The weights of portfolios used to hedge each instrument diverges as $\phi \rightarrow 1$

$$\sum_{i} v_i^2 = \frac{\phi}{1-\phi}$$

• Susceptibility in the interbank market also diverges

A COMPETITIVE FINANCIAL INDUSTRY

• Part of the risk of a new instrument can be hedged buying existing instruments

• Residual risk

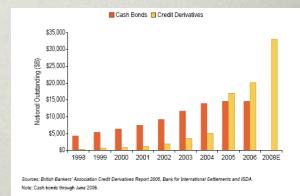
$$\Sigma = \min_{\vec{u}} \operatorname{Var} \left[r_{\text{new}}^{\omega} - \sum_{i} v_{i} r_{i}^{\omega} \right] = 1 - \phi$$

• Risk premium vanishes as markets become complete e.g. Mean Variance profit function

$$\Rightarrow \ \epsilon = \frac{\gamma}{2}(1-\phi)$$

• The weights of portfolios used to hedge each instrument diverges as $\phi \to 1$

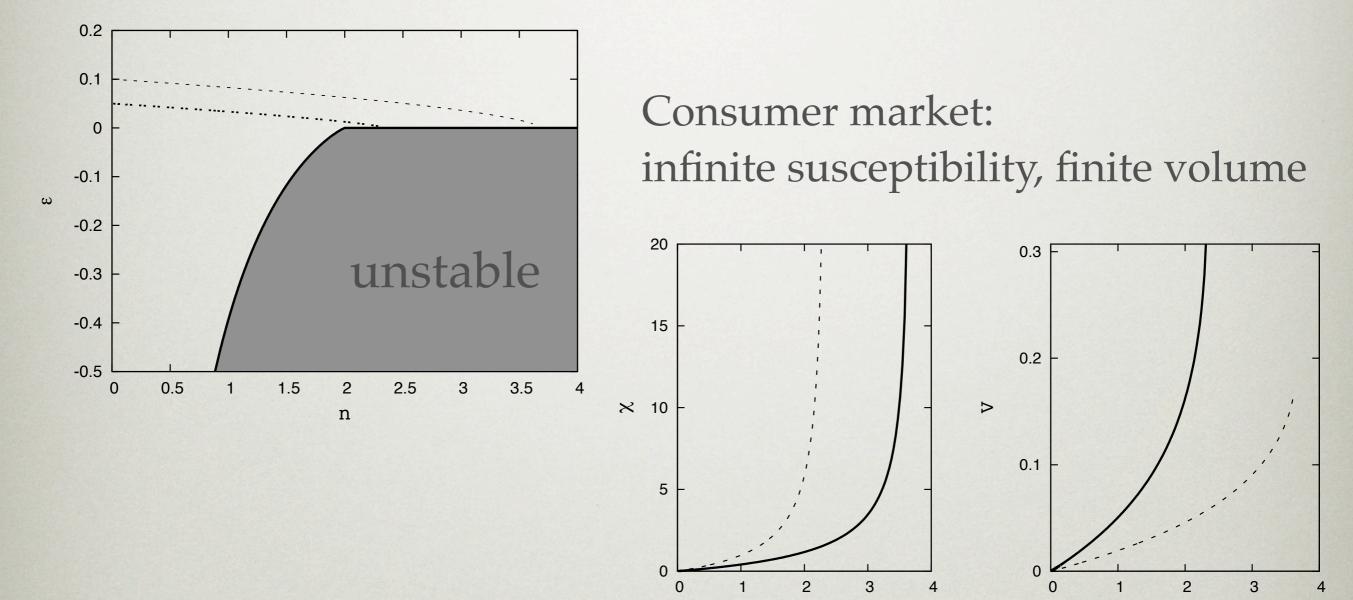
$$\sum_{i} v_i^2 = \frac{\phi}{1-\phi}$$



Susceptibility in the interbank market also diverges

MEAN VARIANCE BANKS $\epsilon = \frac{\gamma}{2}\Sigma$

n

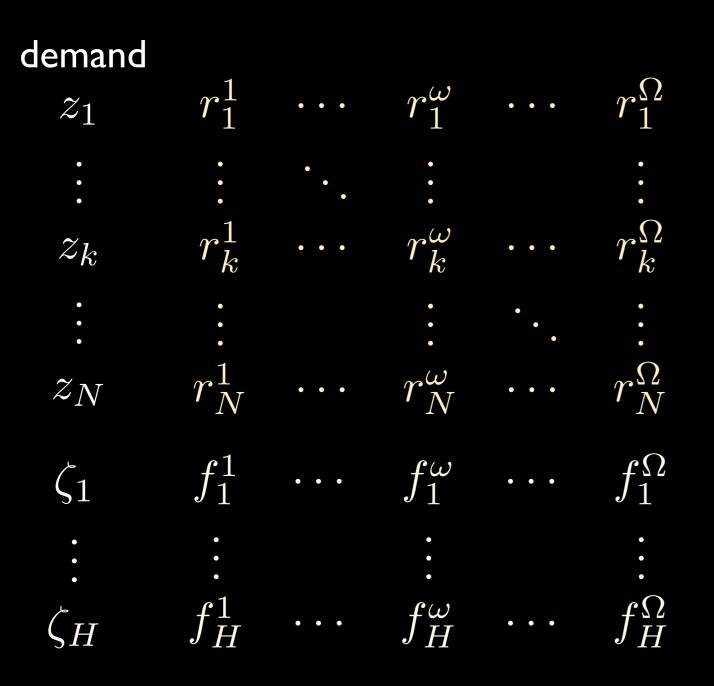


Interbank market: both susceptibility and volumes diverge as $\phi \to 1$

Conclusions I

- The proliferation of financial instruments, even in an ideal world (perfect competition and full information), is problematic
 - Complete markets lie on a critical line with infinite susceptibility
 - A competitive financial sector is expected to converge to this singularity
 - The volume generated by banks to hedge financial instruments they sell diverges as market approaches completeness
- Learning to invest optimally is hard (as in Brock, Hommes, Wagener 2006)
- Market imperfections amplified close to complete markets: institution size grows with financial complexity

Illiquid markets: underlying and derivatives



Derivatives:

$$f_h^{\omega} = F_h(r_1^{\omega}, \dots, r_N^{\omega}) - f_h^{\omega}$$

Return of underlying:

$$r_k^{\omega} = \rho(z_k, \zeta_1, \dots, \zeta_H)$$

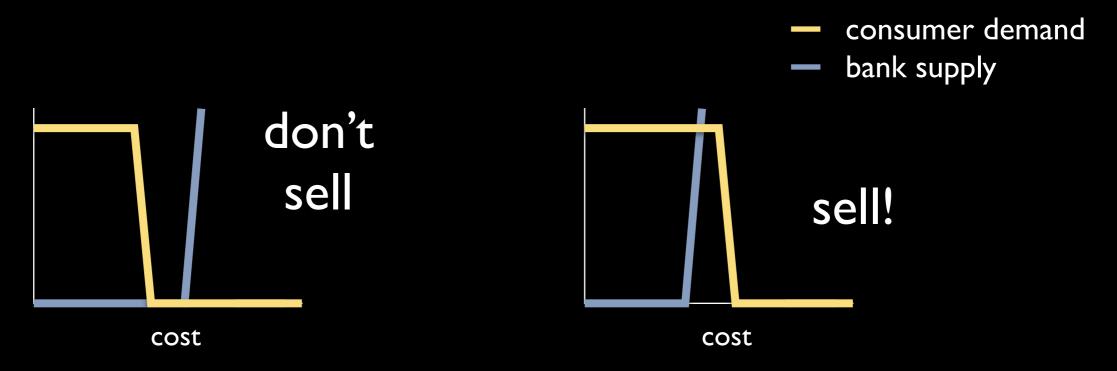
Price of derivatives:

$$f_h^0(z_1,\ldots,z_N,\zeta_1,\ldots,\zeta_H)$$

Illiquid markets: N derivatives on I underlying

• derivative:

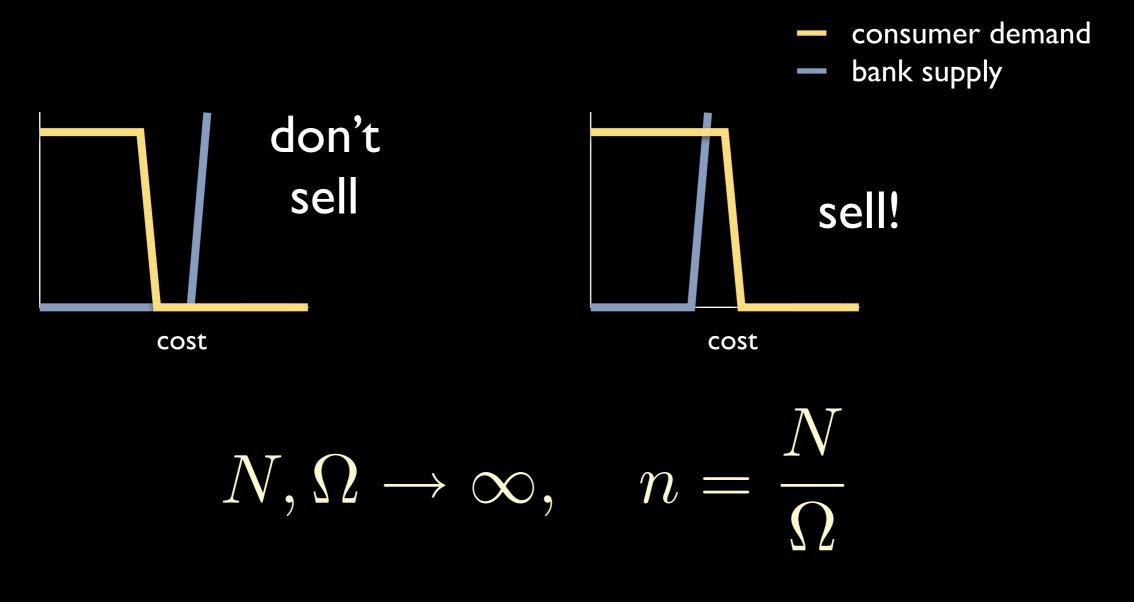
pay c today $\Rightarrow a^{\omega}$ units of asset in state $\omega = I,..,\Omega$ tomorrow



Illiquid markets: N derivatives on I underlying

• derivative:

pay c today $\Rightarrow a^{\omega}$ units of asset in state $\omega = I,..,\Omega$ tomorrow



The price of the underlying $p^{\omega}(t=1) \equiv 1 + r^{\omega} = D^{\omega} + \sum_{i=1}^{N} s_i a_i^{\omega}$

s_i = supply of derivative i
> 0 if E[profit] > risk premium

Competitive equilibria

- For general demand functions
- Banks supply a quantity of derivative contracts
 {s_i, i=1,...,N} which is given by the minima of
 the function

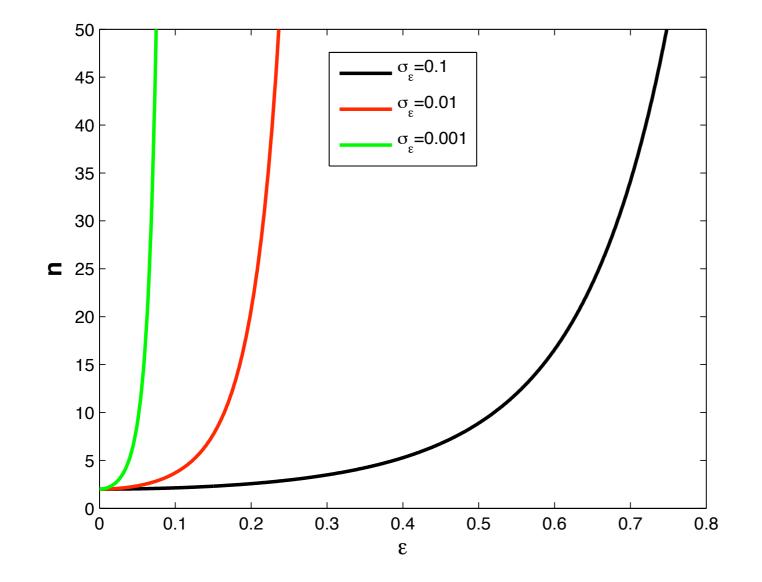
$$H = \frac{1}{2} \sum_{\omega=1}^{\Omega} \pi^{\omega} \left(d^{\omega} + \sum_{i=1}^{N} s_i a_i^{\omega} \right)^2 + \sum_{i=1}^{N} g(s_i)$$

return²

g related to inverse demand function

= GC Minority Game

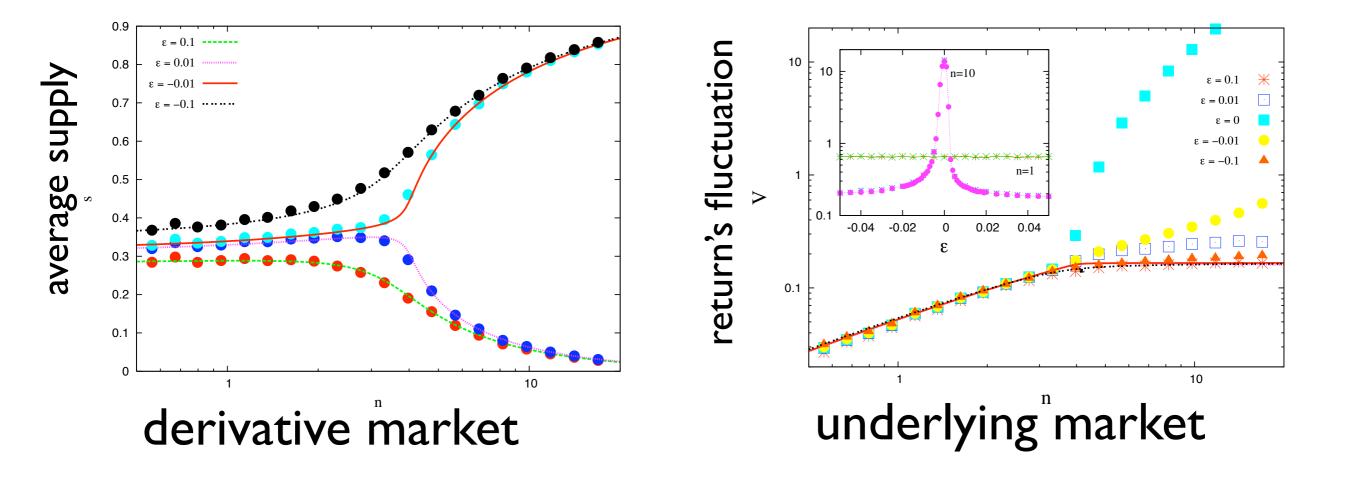
Phase diagram



Susceptibility $\chi \rightarrow \infty$ on phase boundary

Increasing financial complexity

$$\epsilon = c_i - c_i^{(0)} - \rho_i$$
 ~ risk premium



Derivative markets destabilize underlying markets

Conclusions

- System-wide picture of complex markets as large random economies
- Quantifying financial stability $\chi = \frac{\delta \text{equilibrium}}{\delta \text{parameters}}$ fragility when repertoire of instruments expands
- Asset Pricing Theory for illiquid markets

Thanks

- Fabio Caccioli (SISSA)
- Pierpaolo Vivo (ICTP)
- Silvio Franz (Paris Sud)