How to quantify the influence of correlations on investment diversification

Matúš Medo¹, Chi Ho Yeung², Yi-Cheng Zhang¹

¹University of Fribourg, Switzerland ²Department of Physics, HKUST, Hong Kong, China

International workshop on coping with crises in complex socio-economic systems

Zürich, June 12, 2009

DIVERSIFICATION

DIVERSIFICATION

Mean-Variance portfolio (Markowitz, 1952)

M stocks:

- \blacksquare average returns μ_i
- return variances V_i
- return correlations C_{ij} (matrix $M \times M$)

Mean-Variance portfolio (Markowitz, 1952)

- M stocks:
 - \blacksquare average returns μ_i
 - return variances V_i
 - return correlations C_{ij} (matrix $M \times M$)
- **our portfolio:** fractions of wealth f_i invested in individual stocks

portfolio return:
$$R_P = \sum_{i=1}^{M} f_i \mu_i$$

portfolio variance:
$$V_P = \sum_{i,j=1}^M f_i f_j C_{ij} \sqrt{V_i V_j}$$

Mean-Variance portfolio (Markowitz, 1952)

- M stocks:
 - \blacksquare average returns μ_i
 - return variances V_i
 - return correlations C_{ij} (matrix $M \times M$)
- **our portfolio:** fractions of wealth f_i invested in individual stocks

portfolio return:
$$R_P = \sum_{i=1}^M f_i \mu_i$$
 portfolio variance: $V_P = \sum_{i=1}^M f_i f_j C_{ij} \sqrt{V_i V_j}$

mean-variance portfolio: minimizes V_P for a given R_P

This is the key slide

the optimal portfolio variance

$$V_P^*(R_P, M, \mathbf{C}) = \dots$$

■ let's focus purely on correlations: $\mu_i = \mu$, $V_i = V$

This is the key slide

the optimal portfolio variance

$$V_P^*(R_P, M, \mathbf{C}) = \dots$$

- let's focus purely on correlations: $\mu_i = \mu$, $V_i = V$
- effective portfolio size m_{ef}

optimal portfolio constructed from **M** correlated assets

optimal portfolio constructed from ??? uncorrelated assets

This is the key slide

the optimal portfolio variance

$$V_P^*(R_P, M, \mathbf{C}) = \dots$$

- let's focus purely on correlations: $\mu_i = \mu$, $V_i = V$
- effective portfolio size m_{ef}

optimal portfolio optimal portfolio constructed from ⇔ constructed from

M correlated assets ??? uncorrelated assets

$$V_P^*(R_P, M, \mathbf{C}) = V_P^*(R_P, m_{\text{ef}}, \mathbf{1}) \implies m_{\text{ef}}$$

$$m_{\mathrm{ef}} = \sum_{i,j=1}^{M} \left(\mathbf{C}^{-1}\right)_{ij}$$

$$m_{\mathrm{ef}} = \sum_{i,j=1}^{M} \left(\mathbf{C}^{-1}\right)_{ij}$$

no correlations:

$$m_{\rm ef} = M$$

$$m_{\mathrm{ef}} = \sum_{i,j=1}^{M} \left(\mathbf{C}^{-1}\right)_{ij}$$

no correlations:

$$m_{\rm ef} = M$$

perfect correlations:

$$m_{\rm ef}=1$$

$$m_{\mathrm{ef}} = \sum_{i,j=1}^{M} \left(\mathbf{C}^{-1}\right)_{ij}$$

no correlations:

$$m_{\rm ef} = M$$

perfect correlations:

$$m_{\rm ef}=1$$

N groups of stocks with no inter-group correlations:

$$m_{\mathsf{ef}} = m_{\mathsf{ef}}(1) + \cdots + m_{\mathsf{ef}}(N)$$

Effective portfolio size: saturation

all correlations identical:

$$m_{\rm ef} = \frac{M}{1 + (M-1)C}$$

Effective portfolio size: saturation

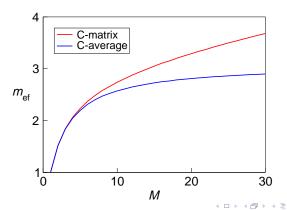
all correlations identical:

$$m_{\mathsf{ef}} = \frac{M}{1 + (M-1)C} o \frac{1}{C}$$

Effective portfolio size: saturation

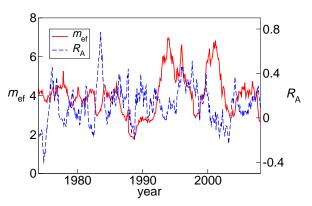
all correlations identical:

$$m_{\mathsf{ef}} = \frac{M}{1 + (M-1)C} o \frac{1}{C}$$



Effective portfolio size: evolution

20 current stocks from the DJIA (Jan 1973—Apr 2008)



The end

Thank you for your attention