

Goal: making pipelines scale

Scaling through parallel computing

Parallel computing by distribution

● identify: ask Sindice, finds 20 sources
● transform: download 20 RDF files in parallel
● reason: merge and answer query

● identify on one machine
● transformers on second machine
● reasoner on third machine

How to do parallel computing?

Parallel supercomputer: multiple
CPUs with shared memory

OS schedules jobs across CPUs

If you have only a laptop?

Present core as multiple CPUs

Multi-core CPU with shared memory

JVM schedules threads across cores

Thread.new()

And if you have two laptops?

Or if you have a cluster?

Or if you have a creditcard?

How will you split your program
across the laptops or cluster?

#1: use a distributed language

#2: use a distributed framework

What does LarKC offer now?

● Run plugins in parallel, on remote machines:
● Users register computing resources
● Decider asks remote containers for plugins
● Platform selects machines, uploads code &

input data, runs job, downloads output data

eu.larkc.core.pluginManager.distributed.
ReasonerManager.runJob(

DIGReasoner, query, statements);

What does LarKC offer now?

● Some plugins parallel/distributed inside:
● Sindice identifier (threads in memory)
● MaRVIN reasoner (peer-to-peer on cluster)
● GATE transformer (supercomputer)

● But plugins do this on their own

● In coming year: LarKC will offer utilities to run
parallel jobs on multiple machines

● plaatje scenarios
● 2x laptops, shared memory, amazon, ...

● voorbeelden distributed programming
● hadoop, satin, openMP

● voorbeelden deployment scenarios
● one server, basement, cluster, EC2

● goal: how we will support distributed jobs
● snippet of code for running sindice remotely

Summary

● Scaling through distribution and parallelisation

● LarKC already supports running jobs remotely
● LarKC will help you parallelise your plugin

Distributed processing

● Scaling through parallelisation
● Parallel CPUs, shared memory
● Thread.start
● Eg: your notebook

● Scaling through distribution
● Parallel CPUs, distributed memory
● Eg: two notebooks, compute cluster, Amazon EC2

● Challenge: programming models task-dependant
● Distributed programming is hard
● Diverse plugins
● Diverse deployment scenarios

What do we have now?

● Parallelisation between plugins
● Users register computing resources

● Decider decides to deploy plugins on remote machines

● Platform (pipeline support system) manages data/code upload/download

– select resources

– prestaging

– executing

– poststaging

● Parallelisation inside plugins
● Some plugins use distribution/parallelisation

● Eg: Sindice, MaRVIN, GATE

● No platform support (yet)

● Summary:
● LarKC already supports running jobs remotely

● LarKC will help you parallelise your plugin

