Goal: making pipelines scale

o

Scaling through parallel computing

* identify: ask Sindice, finds 20 sources
 transform: download 20 RDF files in parallel
* reason: merge and answer guery

Parallel computing by distribution

* identify on one machine
e transformers on second machine
e reasoner on third machine

How to do parallel computing?

Parallel supercomputer: multiple
CPUs with shared memory

Shared Memory Parallel Computer

Frocessors

Central Memory shared
by all processors

OS schedules jobs across CPUs

|y
‘U

Wmdows Vistar

If you have only a laptop?

Present core as multiple CPUs

__'—-—-__——-'--r

péntium' 4

LU

s &
w O
—
-
» 0
L L

Multi-core CPU with shared memory

JVM schedules threads across cores

Java

Thread.new()

And If you have two laptops?

Or If you have a cluster?

Leidall University

iy

- Yrije Univessiteit
:' P —

| |

.
I

=7 Multimedian iversity of Amsterdam

Or If you have a creditcard?

amazoncom

How will you split your program
across the laptops or cluster?

!

#1: use a distributed language

Fibonacci

int fib (int n) {
if (n<2) return (n);

else { Cilk code
int x,y, cilk int fib (int n) {
X = fib(n-1 if (n<2) return (n);
y = fib(n-2 else {
return (x+y), int x,y;
} X = spawn fib(n-1);
} y = spawn fib(n-2);
SYync;
sion return (x+y);

i OpenMP

RLANG

#2: use a distributed framework

What does LarKC offer now?

* Run plugins in parallel, on remote machines:
» Users register computing resources
* Decider asks remote containers for plugins

» Platform selects machines, uploads code &
iInput data, runs job, downloads output data

eu. larkc.core.pluginManager.distributed.
ReasonerManager. runJob(
DIGReasoner, query, statements);

What does LarKC offer now?

 Some plugins parallel/distributed inside:

» Sindice identifier (threads in memory)
 MaRVIN reasoner (peer-to-peer on cluster)
 GATE transformer (supercomputer)

* But plugins do this on their own

* |n coming year: LarKC will offer utilities to run
parallel jobs on multiple machines

 plaatje scenarios
« 2X laptops, shared memory, amazon, ...
» voorbeelden distributed programming
* hadoop, satin, openMP
» voorbeelden deployment scenarios
e one server, basement, cluster, EC2
» goal: how we will support distributed jobs
* snippet of code for running sindice remotely

Summary

» Scaling through distribution and parallelisation

» LarKC already supports running jobs remotely

» LarKC will help you parallelise your plugin

Distributed processing

« Scaling through parallelisation

- Parallel CPUs, shared memory
e Thread.start
e Eg: your notebook

« Scaling through distribution
« Parallel CPUs, distributed memory
« Eg: two notebooks, compute cluster, Amazon EC2
« Challenge: programming models task-dependant
 Distributed programming is hard
« Diverse plugins
« Diverse deployment scenarios

What do we have now?

« Parallelisation between plugins

« Users register computing resources
« Decider decides to deploy plugins on remote machines

« Platform (pipeline support system) manages data/code upload/download

_ select resources
_ prestaging

_ executing

_ poststaging

« Parallelisation inside plugins
« Some plugins use distribution/parallelisation
« EQ: Sindice, MaRVIN, GATE
« No platform support (yet)
o SUMmMary:
« LarKC already supports running jobs remotely
« LarKC will help you parallelise your plugin

