Introduction	Method Overview	Mapping Comp.	Entailment Comp.	Entailment Eval.	Repair	Related	Conclusions

Ontology Integration Using Mappings: Towards Getting the Right Logical Consequences

*Ernesto Jiménez Ruiz*¹ Bernardo Cuenca Grau² Ian Horrocks² Rafael Berlanga¹

¹Computer Languages and Systems, Universitat Jaume I, Spain

²Computing Laboratory, University of Oxford, UK

ESWC 2009 Crete June 3, 2009

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

		Entailment Comp. 0000			
Outlin	e				

1 Introduction

- Ontology Integration Method
- 3 Method Step 1: Mapping Computation
- 4 Method Step 2: Computation of Entailments
- 5 Method Step 3: Evaluation of Entailments
- 6 Method Step 4: Repair of Unintended Entailments

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- 7 Related Work
- 8 Evaluation and Conclusions

\sim	.						
			0000				
Introduction	Method Overview	Mapping Comp.	Entailment Comp.	Entailment Eval.	Repair	Related	Conclusions

Our approach in a nutshell

Logic-based Ontology Integration using Mappings

- We present a methodology and tool support
- We evaluate the consequences of integrating ontologies

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Tool support — Protégé plugin ContentMap

• Operative for Protégé 4 beta

	Method Overview		Entailment Comp. 0000		
Our ap	oproach in	a nutsh	ell		

Logic-based Ontology Integration using Mappings

- We present a methodology and tool support
- We evaluate the consequences of integrating ontologies

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Tool support — Protégé plugin ContentMap

• Operative for Protégé 4 beta

Introduction	Method Overview	Mapping Comp.	Entailment Comp.	Entailment Eval.	Repair	Related	Conclusions
0000							

Why are Ontologies Integrated?

Some Reasons...

- Ontology reuse in ontology development
- Data integration
- Interoperability between agents

Some Problems...

- How to establish mappings between ontologies
- How to evaluate compatibility between ontologies

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

	Entailment Comp. 0000		

Motivating Example

Bibliographic domain . . .

- Ontologies from the 2004 EON Ontology Alignment Contest.
- Describing bibliographic references: INRIA (\mathcal{O}_{INR}), MIT (\mathcal{O}_{MIT}), UMBC (\mathcal{O}_{UMBC}) and AIFB Karlsruhe (\mathcal{O}_{AIFB}).
- \mathcal{O}_{INR} was used as reference.
- We use the corresponding **gold standard** to evaluate the integration.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction Method Overview Mapping Comp. Entailment Comp. Entailment Eval. Repair Related Conclusions 000 0 0 0 0 0 0 0

Motivating Example: Integrating \mathcal{O}_{MIT} and \mathcal{O}_{INR}

Some Mappings ...

- $\mathcal{O}_{\mathsf{INR}}$: year $\sqsubseteq \mathcal{O}_{\mathsf{MIT}}$: hasYear
- $\mathcal{O}_{\mathsf{INR}}$: TechnicalReport $\sqsubseteq \mathcal{O}_{\mathsf{MIT}}$: Technicalreport

Unintended Consequences . .

- TechnicalReport Date
- TechnicalReport 🔄 🗄 date.Reference

Explanation

• In \mathcal{O}_{MIT} : TechnicalReport $\sqsubseteq \ge hasYear 1.Literal$

・ロト < 同ト < 三ト < 三ト < 三ト < のへの

• In $\mathcal{O}_{\mathsf{INR}}$: year hasDomain Date

Introduction Method Overview Mapping Comp. Entailment Comp. Entailment Eval. Repair Related Conclusions 000 0 0 0 0 0 0 0

Motivating Example: Integrating \mathcal{O}_{MIT} and \mathcal{O}_{INR}

Some Mappings ...

- $\mathcal{O}_{\mathsf{INR}}$: year $\sqsubseteq \mathcal{O}_{\mathsf{MIT}}$: hasYear
- $\mathcal{O}_{\mathsf{INR}}$: TechnicalReport $\sqsubseteq \mathcal{O}_{\mathsf{MIT}}$: Technicalreport

Unintended Consequences

- TechnicalReport ⊑ Date
- TechnicalReport ⊑ ∃date.Reference

Explanation

• In \mathcal{O}_{MIT} : TechnicalReport $\sqsubseteq \ge hasYear 1.Literal$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇◇◇

• In \mathcal{O}_{INR} : year hasDomain Date

Introduction Method Overview Mapping Comp. Entailment Comp. Entailment Eval. Repair Related Conclusions 000 0 0 0 0 0 0 0

Motivating Example: Integrating \mathcal{O}_{MIT} and \mathcal{O}_{INR}

Some Mappings ...

- $\mathcal{O}_{\mathsf{INR}}$: year $\sqsubseteq \mathcal{O}_{\mathsf{MIT}}$: hasYear
- $\mathcal{O}_{\mathsf{INR}}$: TechnicalReport $\sqsubseteq \mathcal{O}_{\mathsf{MIT}}$: Technicalreport

Unintended Consequences

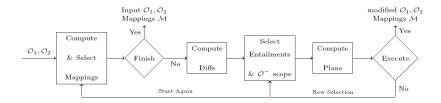
- TechnicalReport ⊑ Date
- TechnicalReport ⊑ ∃date.Reference

Explanation

- In \mathcal{O}_{MIT} : TechnicalReport $\sqsubseteq \ge hasYear 1.Literal$
- In $\mathcal{O}_{\mathsf{INR}}$: year hasDomain Date

		Entailment Comp. 0000		
Outlin	e			

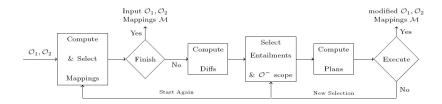
Introduction


- 2 Ontology Integration Method
- 3 Method Step 1: Mapping Computation
- 4 Method Step 2: Computation of Entailments
- 5 Method Step 3: Evaluation of Entailments
- 6 Method Step 4: Repair of Unintended Entailments

(日)

- Related Work
- 8 Evaluation and Conclusions

Necessity of a Logic-based Ontology Integration Method



Steps

- Generate or reuse mappings between ontologies
- Select and filter erroneous mappings
- Reasoning with the ontologies and the mappings
- Compare entailments before and after the integration
- Suggest possible ways to repair errors

Necessity of a Logic-based Ontology Integration Method

Steps

- Generate or reuse mappings between ontologies
- Select and filter erroneous mappings
- Reasoning with the ontologies and the mappings
- Compare entailments before and after the integration
- Suggest possible ways to repair errors

ntroduction 0000	Method Overview ○●	Mapping Comp. 00	Entai 0000	Iment Comp.	Entailment Eval 0000	I. Repair 00	Related 0	Conclusions
Tool S	Support: (ContentM	lap	Overvi	iew			
ile Edit Ontologie		Tabs View Window	- <mark>[C:VAli</mark> g Help	gnmentTools\Ontol	ogyTests\JIA_1.owl]	- 88	(
Active Ontology En	1. owl (http://www.semanticweb.or tities Classes Object Propert Mappings New Entailments		iuais OV	NLVīz DL Query	ContentMap Manager	. 06		
Input Ontologies	EXPLICIT MAPP	INGS		Impact Expressivity L	IMPACT OF MERGI anguage	NG REFINEMENT		
Ontology URI 1 Ontology URI 2	Use Local Loaded Ontology file:/C:/AlignmentTools/OntologyTe]	⊻ 'A ⊑ 35 _ 'A ⊑ 41	(reasoner output) :.B' (Existencial Restrictions) R.B' (Universal Restrictions) (disjoint(A,B))			
-Input Mappings Use pre-e	stracted mappings file			Q Pr	(Being 'A' and 'B' atomi eview Logic Impact	ic concepts)	endency Tree	

Threshold for Suppressible Mappings 0.4	

file: /C:/AlignmentTools/OntologyTests/OLA_JIA_mappings.owl

IMPACT OF MER	GING REFINEMENT						
Impact Expressivity Language							
✓ 'A ⊆ B' (reasoner output)							
✓ 'A ⊆ ∃R.B' (Existencial Restrictions)							
A ⊆ ∀R.B' (Universal Restrictions)							
A⊑ -B' (disjoint(A,B))							
(Being 'A' and 'B' atomic concepts)							
🔾 Preview Logic Impact	Extract Dependency Tree						
Suggestion Options							
Without Dependency Tree (Mark as su	unnrensible (A. m. () estellmente)						
 Vitrious Dependency Tree (mark as ac 	appressible A to the terminer to j						
\bigcirc With Dependency Tree (Mark 'A \equiv 1'	and low confidence entailemnts)						
Threshold Suppress (<) 0.4							
Sc Perform	n Suggestions						
Plan Extraction Options							
Select Scope for Plan Extractor:	Select Order type for Plans:						
Allow changes over Mappings	Order by Number of Axioms						
 Allow changes over Ontology 1 							
Allow changes over Ontology 2	Order by Confidence Value						
🔯 Extr	ract Plans						

		11 0 1	Entailment Comp. 0000		
Outlin	е				

- Ontology Integration Method
- 3 Method Step 1: Mapping Computation
- 4 Method Step 2: Computation of Entailments
- 5 Method Step 3: Evaluation of Entailments
- 6 Method Step 4: Repair of Unintended Entailments

(日)

- 7 Related Work
- 8 Evaluation and Conclusions

Introduction Method Overview Mapping Comp. Entailment Comp. Entailment Eval. Repair Related Conclusions 0000 00 000 00 00 00 00

Computation of the Mappings

Mapping Representation

- Mappings $\langle id, e_1, e_2, n, \rho \rangle$
- are considered as OWL 2 axioms: SubClassOf(*e*₁ *e*₂), EquivalentClasses(*e*₁ *e*₂), or DisjointClasses(*e*₁ *e*₂)
- with ρ of the form (\sqsubseteq), (\equiv), or (\perp)
- and *n* (the confidence value) added as OWL 2 axiom annotation
- No extra semantics is given to mappings
- Therefore a set of mappings is represented as an OWL 2 ontology

Introduction Method Overview Mapping Comp. Entailment Comp. Entailment Eval. Repair Related Conclusions 0000 00 00 00 00 00 00 00

Computation of the Mappings

Mapping Representation

- Mappings $\langle id, e_1, e_2, n, \rho \rangle$
- are considered as OWL 2 axioms: SubClassOf(*e*₁ *e*₂), EquivalentClasses(*e*₁ *e*₂), or DisjointClasses(*e*₁ *e*₂)
- with ρ of the form (\sqsubseteq), (\equiv), or (\perp)
- and *n* (the confidence value) added as OWL 2 axiom annotation
- No extra semantics is given to mappings
- Therefore a set of **mappings** is represented as an **OWL 2 ontology**

Introduction 0000	Method Overview 00	Mapping Comp. ○●	Entailment Comp. 0000		Related O	Conclusions 00

Mappings Selection: ContentMap support

Ontology Mapping Tools

- We reuse mapping generated by ontology matching tools
- For the experiments we used OLA, CIDER and AROMA

EXPLICIT MAPPINGS (01 \rightarrow 02)		EXPLICIT MAPPINGS $(02 \rightarrow 01)$	
Suggested Mappings to be Kept		Suggested Mappings to be Kept	
affects		affects	-
=JIA1:affects subPropertyOf JIA2:affects (c: 0.8667)		UIA2:affects subPropertyOf JIA1:affects (c: 0.8667)	•
Negative_Factor		Negative_Rheum_Factor	
JIA1:Negative_Factor subClassOf JIA2:Positive_Rheum_Factor (c: 0.625)		JIA2:Negative_Rheum_Factor subClassOf JIA1:Negative_Factor (c: 0.75)	O
●JIA1:Negative_Factor subClassOf JIA2:Negative_Rheum_Factor (c: 0.75)		JIA2:Negative_Rheum_Factor subClassOf JIA1:Positive_Factor (c: 0.625)	•
Disease		Positive_Rheum_Factor	
JIA1:Disease subClassOf JIA2:Juv_Disease (c: 0.625)		GIA2:Positive_Rheum_Factor subClassOf JIA1:Positive_Factor (c: 0.75)	•
SJIA1:Disease subClassOf JIA2:Disease (c: 1.0)		JIA2:Positive_Rheum_Factor subClassOf JIA1:Negative_Factor (c: 0.625)	•
	-		-

		Entailment Comp.		
Outlin	е			

- 1 Introduction
- Ontology Integration Method
- 3 Method Step 1: Mapping Computation
- 4 Method Step 2: Computation of Entailments
- 5 Method Step 3: Evaluation of Entailments
- 6 Method Step 4: Repair of Unintended Entailments

(日)

- 7 Related Work
- 8 Evaluation and Conclusions

Comme		ta il na an ta		
		Entailment Comp. ●000		

Computation of New Entailments

Reasoning with \mathcal{M} , \mathcal{O}_1 and \mathcal{O}_2

• $\mathcal{M} \subseteq \mathsf{map}(\mathcal{O}_1, \mathcal{O}_2)$ given by a tool

•
$$\mathcal{U} := \mathcal{O}_1 \cup \mathcal{O}_2 \cup \mathcal{M}$$

 New entailments in U but not in O₁, O₂ or M, regarding their respective signatures.

Introduction Method Overview O

How to extract new entailments in $\boldsymbol{\mathcal{U}}$

- Notion of *deductive difference*
- B. Konev, D. Walther and Frank Wolter: "The Logical Difference Problem for Description Logic Terminologies"

Definition (Deductive Difference)

 $\mathsf{diff}_{\Sigma}(\mathcal{O}, \mathcal{O}') = \{ \alpha \mid \alpha \text{ a } \mathcal{DL}\text{-axiom}, \ \mathcal{O} \not\models \alpha, \ \mathcal{O}' \models \alpha \text{ and } \mathsf{Sig}(\alpha) \subseteq \Sigma \}$

Definition (Deductive Difference for Mappings)

 $\mathsf{mdiff}_{\Sigma_1,\Sigma_2}(\mathcal{O},\mathcal{O}') = \{ \alpha \in \mathsf{diff}_{\Sigma}(\mathcal{O},\mathcal{O}') \mid \alpha \ \mathcal{DL}\text{-mapping between } \Sigma_1, \Sigma_2 \}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction Method Overview O

How to extract new entailments in $\boldsymbol{\mathcal{U}}$

- Notion of *deductive difference*
- B. Konev, D. Walther and Frank Wolter: "The Logical Difference Problem for Description Logic Terminologies"

Definition (Deductive Difference)

$$\mathsf{diff}_{\Sigma}(\mathcal{O},\mathcal{O}') = \{ \alpha \mid \alpha \text{ a } \mathcal{DL}\text{-axiom}, \ \mathcal{O} \not\models \alpha, \ \mathcal{O}' \models \alpha \text{ and } \mathsf{Sig}(\alpha) \subseteq \Sigma \}$$

Definition (Deductive Difference for Mappings)

 $\mathsf{mdiff}_{\Sigma_1,\Sigma_2}(\mathcal{O},\mathcal{O}') = \{ \alpha \in \mathsf{diff}_{\Sigma}(\mathcal{O},\mathcal{O}') \mid \alpha \ \mathcal{DL}\text{-mapping between } \Sigma_1, \Sigma_2 \}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

How to extract new entailments in ${\cal U}$

- Notion of *deductive difference*
- B. Konev, D. Walther and Frank Wolter: "The Logical Difference Problem for Description Logic Terminologies"

Definition (Deductive Difference)

$$\mathsf{diff}_{\Sigma}(\mathcal{O}, \mathcal{O}') = \{ \alpha \mid \alpha \text{ a } \mathcal{DL}\text{-axiom}, \ \mathcal{O} \not\models \alpha, \ \mathcal{O}' \models \alpha \text{ and } \mathsf{Sig}(\alpha) \subseteq \Sigma \}$$

Definition (Deductive Difference for Mappings)

 $\mathsf{mdiff}_{\Sigma_1,\Sigma_2}(\mathcal{O},\mathcal{O}') = \{ \alpha \in \mathsf{diff}_{\Sigma}(\mathcal{O},\mathcal{O}') \mid \alpha \ \mathcal{DL}\text{-mapping between } \Sigma_1, \Sigma_2 \}$

・ロト < 団ト < 国ト < 国ト < 国ト < のへの

Problems of Semantic Difference...

- No algorithm for expressive DLs, such as SROIQ (OWL 2) and SHOIQ (OWL DL)
- Algorithms only for (fragments of) the OWL 2 EL and QL profiles
- The number of entailments in the difference can be huge (even infinite)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Necessity of an approximation

- $\operatorname{diff}_{\Sigma}^{\approx}(\mathcal{O},\mathcal{O}') \subseteq \operatorname{diff}_{\Sigma}(\mathcal{O},\mathcal{O}')$
- $\operatorname{mdiff}_{\Sigma_1,\Sigma_2}^{\approx}(\mathcal{O},\mathcal{O}') \subseteq \operatorname{mdiff}_{\Sigma_1,\Sigma_2}(\mathcal{O},\mathcal{O}')$

Problems of Semantic Difference...

- No algorithm for expressive DLs, such as SROIQ (OWL 2) and SHOIQ (OWL DL)
- Algorithms only for (fragments of) the OWL 2 EL and QL profiles
- The number of entailments in the difference can be huge (even infinite)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Necessity of an approximation

- $\operatorname{diff}_{\Sigma}^{\approx}(\mathcal{O}, \mathcal{O}') \subseteq \operatorname{diff}_{\Sigma}(\mathcal{O}, \mathcal{O}')$
- $\bullet \; \mathsf{mdiff}_{\Sigma_1, \Sigma_2}^{\thickapprox}(\mathcal{O}, \mathcal{O'}) \subseteq \mathsf{mdiff}_{\Sigma_1, \Sigma_2}(\mathcal{O}, \mathcal{O'})$

A, B are atomic concepts (including \top, \bot) and R, S atomic roles

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Approximation 2: reasoner output plus

- $A \sqsubseteq \neg B$
- $A \sqsubseteq \exists R.B$
- $A \sqsubseteq \forall R.B$

A, B are atomic concepts (including \top, \bot) and R, S atomic roles

 Approximation 2: reasoner output plus ...

 • $A \sqsubseteq \neg B$

 • $A \sqsubseteq \exists R.B$

 • $A \sqsubseteq \forall R.B$

		Entailment Comp. 0000		
Outlin	e			

1 Introduction

- Ontology Integration Method
- 3 Method Step 1: Mapping Computation
- 4 Method Step 2: Computation of Entailments
- 5 Method Step 3: Evaluation of Entailments
- 6 Method Step 4: Repair of Unintended Entailments

(日)

- Related Work
- 8 Evaluation and Conclusions

Introduction Method Overview Mapping Comp. Entailment Comp. Entailment Eval. Repair Related Conclusions

Evaluation of Entailments: ContentMap support

Manual Entailment selection

Once we have

$$\Lambda = \mathsf{diff}_{\Sigma_1}^{\thickapprox}(\mathcal{O}_1, \mathcal{U}) \cup \mathsf{diff}_{\Sigma_2}^{\thickapprox}(\mathcal{O}_2, \mathcal{U}) \cup \mathsf{mdiff}_{\Sigma_1, \Sigma_2}^{\thickapprox}(\mathcal{M}, \mathcal{U})$$

- Some entailments may be intended (called \mathfrak{T}^+),
- \bullet while others may reveal potential errors in ${\cal U}$ (called $\Im^-).$

Evaluation of Entailments: ContentMap support

Manual Entailment selection

- Once we have
 - $\Lambda = {\rm diff}_{\Sigma_1}^{\thickapprox}(\mathcal{O}_1,\mathcal{U}) \cup {\rm diff}_{\Sigma_2}^{\thickapprox}(\mathcal{O}_2,\mathcal{U}) \cup {\rm mdiff}_{\Sigma_1,\Sigma_2}^{\thickapprox}(\mathcal{M},\mathcal{U})$
- Some entailments may be intended (called \mathfrak{T}^+),
- while others may reveal potential errors in $\mathcal U$ (called \mathfrak{T}).

NEW ENTAILENTS WRT SIGNATURE OF ONTOLOGY 1	NEW ENTAILENTS WRT SIGNATURE OF ONTOLOGY 2
Negative_Factor	Negative_Rheum_Factor
Negative_Factor subClassOf Nothing (c: 0.4688)	Negative_Rheum_Factor subClassOf Nothing (c: 0.4688)
Positive_Factor	Positive_Rheum_Factor
Positive Factor subClassOf Nothing (c: 0.4688)	Positive Rheum Factor subClassOf Nothing (c: 0.4688)
Oly_Juvenile_Athritis	Rheum_Arthritis
Oly_Juvenile_Arthritis subClassOf Nothing (c: 0.4688)	Rheum_Arthritis subClassOf Juv_Disease (c: 0.625)
	Poly_Juv_Rheum_Arthritis
	Poly_Juv_Rheum_Arthritis subClassOf Nothing (c: 0.4688)

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶ ◆□▶

Evaluation of Entailments: ContentMap support

Manual Entailment selection

- Once we have
 - $\Lambda = {\rm diff}_{\Sigma_1}^{\thickapprox}(\mathcal{O}_1,\mathcal{U}) \cup {\rm diff}_{\Sigma_2}^{\thickapprox}(\mathcal{O}_2,\mathcal{U}) \cup {\rm mdiff}_{\Sigma_1,\Sigma_2}^{\thickapprox}(\mathcal{M},\mathcal{U})$
- Some entailments may be intended (called \Im^+),
- while others may reveal potential errors in $\mathcal U$ (called \mathfrak{T}^-).

NEW MAPPING ENTAILENTS (01 \rightarrow 02)	NEW MAPPING ENTAILENTS $(02 \rightarrow 01)$
Juvenile_Athritis	Rheum_Arthritis
JIA1:Juvenile_Arthritis subClassOf JIA2:Rheum_Arthritis (c: 0.8125)	JIA2:Rheum_Arthritis subClassOf JIA1:Disease (c: 1.0)
JIA1:Juvenile_Arthritis subClassOf JIA2:Juv_Rheum_Arthritis (c: 0.5)	Juv_Rheum_Atthitis
Multi_Joint_Disease	JIA2:Juv_Rheum_Arthritis subClassOf JIA1:Disease (c: 1.0)
JIA1:Multi_Joint_Disease subClassOf JIA2:Juv_Disease (c: 0.625)	
JIA1:Multi_Joint_Disease subClassOf JIA2:Disease (c: 1.0)	Systemic_Juv_Rheum_Adhritis
Rheumatoid_Arthritis	 JIA2:Systemic_Juv_Rheum_Arthritis subClassOf JIA1:Rheumatoid_Arthritig 200 (c: 0.8125)
JIA1:Rheumatoid_Arthritis subClassOf JIA2:Juv_Disease (c: 0.625)	
JIA1:Rheumatoid_Arthritis subClassOf JIA2:Disease (c: 1.0)	

 Introduction
 Method Overview
 Mapping Comp.
 Entailment Comp.
 Entailment Eval.
 Repair
 Related
 Conclusions

 0000
 00
 0000
 0000
 000
 000
 000
 000

Evaluation of Entailments: ContentMap support

Dependency Relationship $\alpha \triangleright \beta$

- Entailments are organized within a dependency tree
- Based on the notion of Justification for an axiom
- Just(α, O) is the set of all justifications for α in O.

Definition (Dependency Relationship)

Let $\mathcal{O} \models \alpha, \beta$. $\alpha \triangleright \beta$ iff for each $\mathcal{J}_{\beta} \in \text{Just}(\beta, \mathcal{O})$, there is $\mathcal{J}_{\alpha} \in \text{Just}(\alpha, \mathcal{O})$ s.t. $\mathcal{J}_{\alpha} \subseteq \mathcal{J}_{\beta}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Introduction
 Method Overview
 Mapping Comp.
 Entailment Comp.
 Entailment Eval.
 Repair
 Related
 Conclusions

 0000
 00
 0000
 0000
 000
 000
 000
 000

Evaluation of Entailments: ContentMap support

Dependency Relationship $\alpha \triangleright \beta$

- Entailments are organized within a dependency tree
- Based on the notion of Justification for an axiom
- Just(α, O) is the set of all justifications for α in O.

Definition (Dependency Relationship)

Let $\mathcal{O} \models \alpha, \beta$. $\alpha \triangleright \beta$ iff for each $\mathcal{J}_{\beta} \in \text{Just}(\beta, \mathcal{O})$, there is $\mathcal{J}_{\alpha} \in \text{Just}(\alpha, \mathcal{O})$ s.t. $\mathcal{J}_{\alpha} \subseteq \mathcal{J}_{\beta}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

0000	00	00 .		0000	00		00	
Introduction	Method Overview	Mapping Comp.	Entailment Comp.	Entailment Eval.	Repair	Related	Conclusions	

Dependency Relationship: ContentMap support

DEPENDENCY TREE OF NEW ENTAILEMENTS							
Entailments Dependency Tree	Keep	Remove	Confi	Justificat			
JIA2:Juv_Rheum_Arthritis equivalentTo JIA2:Rheum_Arthritis	•		0.4063		-		
JIA2:Rheum_Arthritis subClassOf JIA2:Juv_Disease		~	0.4063				
JIA2:Positive_Rheum_Factor subClassOf not JIA1:Positive_Factor		~	0.625		-		
JIA1:Positive_Factor subClassOf not JIA2:Positive_Rheum_Factor		•	0.625		-		
JIA2:Positive_Rheum_Factor subClassOf Nothing		~	0.4688		1000		
JIA2:Poly_Juv_Rheum_Arthritis subClassOf Nothing		~	0.4688				
JIA2:Negative_Rheum_Factor subClassOf not JIA1:Negative_Factor		~	0.625				
JIA1:Negative_Factor subClassOf not JIA2:Negative_Rheum_Factor			0.625				
JIA1:Rheumatoid_Arthritis subClassOf JIA2:Juv_Disease		~	0.5				
●JIA1:Juvenile_Arthritis subClassOf JIA2:Juv_Rheum_Arthritis	•		0.5				
JIA2:Positive_Rheum_Factor subClassOf not JIA1:Negative_Factor	~		0.75		•		

シック・ 単語・ 4 目 > 4 目 > 4 日 >

Evaluation of Entailments: ContentMap support

Automatic Entailment selection

- Suggestions for \Im^+ and \Im^-
- Unsatisfiable concepts and entailments with low confidence will be included in 𝔅[−]
- \bullet Entailments with high confidence will be included in \Im^+

Definition (Confidence of an Entailment)

- Confidence of a mapping: annotation value
- Confidence of an **axiom** α not annotated with a confidence value: $conf(\alpha) = 1$
- Confidence of a Justification: $conf(\mathcal{J}) = \prod_{\gamma \in \mathcal{J}} conf(\gamma)$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ④ ● ●

Confidence of an entailment β:
 conf(β) = max(U_{J∈Just(β,O)} conf(J))

Evaluation of Entailments: ContentMap support

Automatic Entailment selection

- \bullet Suggestions for \Im^+ and \Im^-
- Unsatisfiable concepts and entailments with low confidence will be included in 𝔅[−]
- \bullet Entailments with high confidence will be included in \Im^+

Definition (Confidence of an Entailment)

- Confidence of a mapping: annotation value
- Confidence of an **axiom** α not annotated with a confidence value: $conf(\alpha) = 1$
- Confidence of a Justification: $conf(\mathcal{J}) = \prod_{\gamma \in \mathcal{J}} conf(\gamma)$
- Confidence of an **entailment** β : $\operatorname{conf}(\beta) = \max(\bigcup_{\mathcal{J} \in \operatorname{Just}(\beta, \mathcal{O})} \operatorname{conf}(\mathcal{J}))$

		Entailment Comp. 0000		
Outlin	e			

Introduction

- Ontology Integration Method
- 3 Method Step 1: Mapping Computation
- 4 Method Step 2: Computation of Entailments
- 5 Method Step 3: Evaluation of Entailments
- 6 Method Step 4: Repair of Unintended Entailments

(日)

7 Related Work

8 Evaluation and Conclusions

Introduction Method Overview Mapping Comp. Entailment Comp. Entailment Eval. Repair Related Conclusions

Repair of Unintended Entailments

Extraction of Plans

- Given \Im^+ and \Im^-
- A repair plan for $\mathcal U$ is a set of axioms $\mathcal P \subseteq \mathcal U$ such that:

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

- $(\mathcal{U} \setminus \mathcal{P}) \models \alpha$ for each $\alpha \in \mathfrak{S}^+$, and
- $(\mathcal{U} \setminus \mathcal{P}) \not\models \beta$ for each $\beta \in \mathfrak{F}^-$.

Note that conflicting choices in \Im^+ and \Im^- may make it impossible to find any plans.

Introduction Method Overview Mapping Comp. Entailment Comp. Entailment Eval. Repair Related Conclusions

Repair of Unintended Entailments

Extraction of Plans

- Given \Im^+ and \Im^-
- A repair plan for \mathcal{U} is a set of axioms $\mathcal{P} \subseteq \mathcal{U}$ such that:

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

- $(\mathcal{U} \setminus \mathcal{P}) \models \alpha$ for each $\alpha \in \mathfrak{S}^+$, and
- $(\mathcal{U} \setminus \mathcal{P}) \not\models \beta$ for each $\beta \in \mathfrak{F}^-$.

Note that conflicting choices in \Im^+ and \Im^- may make it impossible to find any plans.

Repair of Unintended Entailments: ContentMap Support

Organization of Candidate Plans

- ContentMap ranks the plans in order of:
 - number of affected axioms, or
 - confidence, $\operatorname{conf}(\mathcal{P}) = \prod_{\alpha \in \mathcal{P}} \operatorname{conf}(\alpha)$.

👙 Extracted Plans	
AVAILABLE REPAIR PLANS	
Select an available plan from list	
Plan 3 (confidence: 0.0477, axioms to remove: 6)	
Axioms to Remove	
Plan 3	
●JIA1:Disease subClassOf JIA2:Juv_Disease - (c: 0.625)	•••
JIA1:Disease subClassOf JIA2:Juv_Disease - (c: 0.625) JIA1:Negative_Factor subClassOf JIA2:Positive_Rheum_Factor - (c: 0.625)	D 00 00
	80
JIA1:Negative_Factor subClassOf JIA2:Positive_Rheum_Factor - (c: 0.625)	88
JIA1:Negative_Factor subClassOf JIA2:Positive_Rheum_Factor - (c: 0.625) JIA2:Negative_Rheum_Factor subClassOf JIA1:Positive_Factor - (c: 0.625)	0 0 0 0 0 0
JIA1:Negative_Factor subClassOf JIA2:Positive_Rheum_Factor - (c: 0.625) JIA2:Negative_Rheum_Factor subClassOf JIA1:Positive_Factor - (c: 0.625) JIA2:Positive_Rheum_Factor subClassOf JIA1:Negative_Factor - (c: 0.625)	0 0 0 0 0 0 0 0 0 0 0 0 0

		Entailment Comp. 0000		
Outlin	e			

Introduction

- Ontology Integration Method
- 3 Method Step 1: Mapping Computation
- 4 Method Step 2: Computation of Entailments
- 5 Method Step 3: Evaluation of Entailments
- 6 Method Step 4: Repair of Unintended Entailments

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Related Work

8 Evaluation and Conclusions

		Entailment Comp. 0000		
Relate	d Work			

Similar approaches

- **Debugging and revision of mappings**: Meilicke, C., Stuckenschmidt, H., Tamilin, A.
- Debugging and repairing inconsistencies in OWL ontologies: Kalyanpur et al. and Schlobach et al.

Our Contribution

- Our approach uses only OWL 2 semantics.
- We are not restricted to inconsistencies, but can include **any unintended entailment**.
- We provide techniques to evaluate entailments: approximation of semantic difference, dependency tree.
- We have formalized the repair method.
- We provide **tool support**.

		Entailment Comp. 0000		
Relate	d Work			

Similar approaches

- **Debugging and revision of mappings**: Meilicke, C., Stuckenschmidt, H., Tamilin, A.
- Debugging and repairing inconsistencies in OWL ontologies: Kalyanpur et al. and Schlobach et al.

Our Contribution

- Our approach uses only OWL 2 semantics.
- We are not restricted to inconsistencies, but can include **any unintended entailment**.
- We provide techniques to evaluate entailments: approximation of semantic difference, dependency tree.
- We have formalized the repair method.
- We provide tool support.

		Entailment Comp. 0000		
Outlin	e			

1 Introduction

- Ontology Integration Method
- 3 Method Step 1: Mapping Computation
- 4 Method Step 2: Computation of Entailments
- 5 Method Step 3: Evaluation of Entailments
- 6 Method Step 4: Repair of Unintended Entailments

(日)

- Related Work
- 8 Evaluation and Conclusions

		Entailment Comp. 0000		
Experi	ments			

Bibliographic Ontologies: INRIA (\mathcal{O}_{INR}), MIT (\mathcal{O}_{MIT}), UMBC (\mathcal{O}_{UMBC}) and AIFB Karlsruhe (\mathcal{O}_{AIFB}).

Repair Using Gold Standard

• Unsatisfiability and unintended entailments were found

Synthetic Repair Using Mapping Tools

- We used OLA, AROMA and CIDER
- In all the cases ContentMap automatically found unsatisfiability and unintended entailments
- Repair plans corrected identified errors
- Precision (w.r.t. GS) was improved from 1-5%

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall decreased in some cases 1-3%

		Entailment Comp. 0000		
Experi	ments			

Bibliographic Ontologies: INRIA (\mathcal{O}_{INR}), MIT (\mathcal{O}_{MIT}), UMBC (\mathcal{O}_{UMBC}) and AIFB Karlsruhe (\mathcal{O}_{AIFB}).

Repair Using Gold Standard

• Unsatisfiability and unintended entailments were found

Synthetic Repair Using Mapping Tools

- We used OLA, AROMA and CIDER
- In all the cases ContentMap automatically found unsatisfiability and unintended entailments
- Repair plans corrected identified errors
- Precision (w.r.t. GS) was improved from 1-5%

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Recall decreased in some cases 1-3%

		Entailment Comp. 0000			
Evnori	monte				

Bibliographic Ontologies: INRIA (\mathcal{O}_{INR}), MIT (\mathcal{O}_{MIT}), UMBC (\mathcal{O}_{UMBC}) and AIFB Karlsruhe (\mathcal{O}_{AIFB}).

Repair Using Gold Standard

• Unsatisfiability and unintended entailments were found

Synthetic Repair Using Mapping Tools

- We used OLA, AROMA and CIDER
- In all the cases ContentMap automatically found unsatisfiability and unintended entailments
- Repair plans corrected identified errors
- Precision (w.r.t. GS) was improved from 1-5%
- Recall decreased in some cases 1-3%

		Entailment Comp. 0000		
C 1				

Conclusions

Some Drawbacks

- Problems of Scalability with big Ontologies
- The user is overwhelmed in some cases.

Possible Solution

Modularization and Divide and Conquer approach.

		Entailment Comp. 0000		
Const				

Conclusions

Some Drawbacks

- Problems of Scalability with big Ontologies
- The user is overwhelmed in some cases.

Possible Solution

Modularization and Divide and Conquer approach.

We want you...

• ... to test ContentMap and give us feedback.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

More information from . .

http://krono.act.uji.es/people/Ernesto/contentmap

Fancy a demo?

I'm happy to give one during any of the next breaks.

• ... to test ContentMap and give us feedback.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

More information from ...

http://krono.act.uji.es/people/Ernesto/contentmap

Fancy a demo?

We want you...

I'm happy to give one during any of the next breaks.

Thank you!

• ... to test ContentMap and give us feedback.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

More information from ...

http://krono.act.uji.es/people/Ernesto/contentmap

Fancy a demo?

We want you...

I'm happy to give one during any of the next breaks.

Questions?

• ... to test ContentMap and give us feedback.

http://krono.act.uji.es/people/Ernesto/contentmap

Fancy a demo?

We want you...

I'm happy to give one during any of the next breaks.

Thank you very much!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・