

HERAKLION, GREECE 6TH EUROPEAN SEMANTIC WEB CONFERENCE 31 MAY - 4 JUNE 2009

A Tableau Algorithm for Handling Inconsistency in OWL

Xiaowang Zhang. Guohui Xiao. Zuoquan Lin

School of Mathematical Sciences Peking University, China {zxw,xgh,lzq}@is.pku.edu.cn

Presented by Liping Zhou

One cannot live without inconsistency. Carl Jung (1875-1961)

There is nothing constant in this world but inconsistency.

Jonathan Swift (1667-1745)

Xiaowang Zhang, Guohui Xiao, and Zuoquan Lin A Tableau Algorithm for Handling Inconsistency in OWL

Outline

- Motivation
- Quasi-classical description Logic ALCNQ
- A Tableau Algorithm for \mathcal{ALCNQ}
- Conclusions and our future works

HeraKlion, Greece, ESWC '09

Motivation

Xiaowang Zhang, Guohui Xiao, and Zuoquan Lin A Tableau Algorithm for Handling Inconsistency in OWL

Motivation

• Conclusions drawn from an inconsistent knowledge base may be completely meaningless.

Motivation

- Conclusions drawn from an inconsistent knowledge base may be completely meaningless.
- A non-standard reasoning method to obtain meaningful answers when facing an ontology with inconsistency.

Motivation

- Conclusions drawn from an inconsistent knowledge base may be completely meaningless.
- A non-standard reasoning method to obtain meaningful answers when facing an ontology with inconsistency.
- Yue Ma et al presents a four-valued semantics of description logics to handle inconsistency (ESWC'07) .

Motivation

- Conclusions drawn from an inconsistent knowledge base may be completely meaningless.
- A non-standard reasoning method to obtain meaningful answers when facing an ontology with inconsistency.
- Yue Ma et al presents a four-valued semantics of description logics to handle inconsistency (ESWC'07) .
- The shortages of four-valued description logics are that three basic inference rules, namely, **MP**, **MT** and **DS**, are invalid.

Motivation

- Conclusions drawn from an inconsistent knowledge base may be completely meaningless.
- A non-standard reasoning method to obtain meaningful answers when facing an ontology with inconsistency.
- Yue Ma et al presents a four-valued semantics of description logics to handle inconsistency (ESWC'07) .
- The shortages of four-valued description logics are that three basic inference rules, namely, **MP**, **MT** and **DS**, are invalid.

modus ponens (MP) $\{C(a), C \sqsubseteq D\} \models D(a)$ modus tollens (MT) $\{\neg D(a), C \sqsubseteq D\} \models \neg C(a)$ disjunctive syllogism (DS) $\{\neg C(a), C \sqcup D\} \models D(a)$

HeraKlion, Greece, ESWC '09

Motivation

We try to find a new semantics for description logics to **handle inconsistency** with satisfying the **three inference rules.**

HeraKlion, Greece, ESWC '09

Motivation

Quasi-classical semantics by presented **Besnard** and **Hunter** (1995) has those good features.

• Syntax

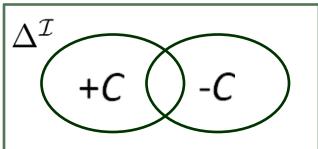
1. The language of QC ALCNQ is almost the same as that of ALCNQ.

A new concept constructor (C) called *complement of a concept* is introduced.
 A concept C is in QC NNF, if concept C is in NNF and complement only occurs over a concept name or negation of a concept name.

• Semantics

1. QC semantics contains two semantics, namely, QC weak semantics and QC strong semantics.

2. A concept *C* is interpreted over domain as a pair (+*C*,-*C*).



• Semantics

1. QC semantics contains two semantics, namely, QC weak semantics and QC strong semantics.

2. A concept C is interpreted over domain as a pair (+C, -C).

 $\Delta^{\mathcal{I}}$

inconsistent

information

SCHOOL OF MATHEMATICAL SCIENCES

Quasi-classical DL ALCNQ

Semantics

1. QC semantics contains two semantics, namely, QC weak semantics and QC strong semantics.

2. A concept C is interpreted over domain as a pair (+*C*,-*C*).

classical $\Delta^{\mathcal{I}}$ inconsistent classical information incomplete +Cinformation

Quasi-classical DL ALCNQ

• QC weak interpretations

Constructor Syntax	Weak Semantics
A	$A^{\mathcal{I}} = \langle +A, -A \rangle$, where $+A, -A \subseteq \Delta^{\mathcal{I}}$
R	$R^{\mathcal{I}} = \langle +R, -R \rangle$, where $+R, -R \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
0	$o^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
Т	$\langle \Delta^I, \emptyset angle$
\perp	$\langle \emptyset, \Delta^{\mathcal{I}} \rangle$
$C_1 \sqcap C_2$	$\langle +C_1 \cap +C_2, -C_1 \cup -C_2 \rangle$
$C_1 \sqcup C_2$	$\langle +C_1 \cup +C_2, -C_1 \cap -C_2 \rangle$
$\neg C$	$\langle -C, +C \rangle$
\overline{C}	$\langle \Delta^{\mathcal{I}} \setminus (-C), \Delta^{\mathcal{I}} \setminus (+C) \rangle$
$\exists R.C$	$\langle \{x \mid \exists y, (x, y) \in +R \text{ and } y \in +C\}, \{x \mid \forall y, (x, y) \in +R \text{ implies } y \in -C\} \rangle$
$\forall R.C$	$\langle \{x \mid \forall y, (x, y) \in +R \text{ implies } y \in +C \}, \{x \mid \exists y, (x, y) \in +R \text{ and } y \in -C \} \rangle$
$\geq nR$	$\langle \{x \mid \sharp (\{y.(x,y) \in +R\}) \geq n\}, \{x \mid \sharp (\{y.(x,y) \in +R\}) < n\} \rangle$
$\leq nR$	$\langle \{x \mid \sharp (\{y.(x,y) \in +R\}) \le n\}, \{x \mid \sharp (\{y.(x,y) \in +R\}) > n\} \rangle$
	$\left\langle \{x \mid \sharp(\{y.(x,y) \in +R\} \text{ and } y \in +C) \geq n\}, \{x \mid \sharp(\{y.(x,y) \in +R\} \text{ and } y \notin -C) < n\} \right\rangle$
$\leq nR.C$	$\left\langle \{x \mid \sharp(\{y.(x,y) \in +R\} \text{ and } y \notin -C) \leq n\}, \{x \mid \sharp(\{y.(x,y) \in +R\} \text{ and } y \in +C) > n\} \right\rangle$

Quasi-classical DL ALCNQ

• QC weak interpretations

Constructor Syntax	Weak Semantics
A	$A^{\mathcal{I}} = \langle +A, -A \rangle$, where $+A, -A \subseteq \Delta^{\mathcal{I}}$
R	$R^{\mathcal{I}} = \langle +R, -R \rangle$, where $+R, -R \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
0	$o^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
Т	$\langle \Delta^I, \emptyset \rangle$
\perp	$\langle \emptyset, \Delta^{\mathcal{I}} \rangle$
$C_1 \sqcap C_2$	$\langle +C_1 \cap +C_2, -C_1 \cup -C_2 \rangle$
$C_1 \sqcup C_2$	$\langle +C_1 \cup +C_2, -C_1 \cap -C_2 \rangle$
$\neg C$	$\langle -C, +C \rangle$
\overline{C}	$\langle \Delta^{\mathcal{I}} \setminus (-C), \Delta^{\mathcal{I}} \setminus (+C) \rangle$
$\exists R.C$	$\langle \{x \mid \exists y, (x, y) \in +R \text{ and } y \in +C\}, \{x \mid \forall y, (x, y) \in +R \text{ implies } y \in -C\} \rangle$
$\forall R.C$	$\langle \{x \mid \forall y, (x, y) \in +R \text{ implies } y \in +C \}, \{x \mid \exists y, (x, y) \in +R \text{ and } y \in -C \} \rangle$
$\geq nR$	$\langle \{x \mid \sharp (\{y.(x,y) \in +R\}) \geq n\}, \{x \mid \sharp (\{y.(x,y) \in +R\}) < n\} \rangle$
$\leq nR$	$\langle \{x \mid \sharp (\{y.(x,y) \in +R\}) \le n\}, \{x \mid \sharp (\{y.(x,y) \in +R\}) > n\} \rangle$
	$\left\langle \{x \mid \sharp(\{y.(x,y) \in +R\} \text{ and } y \in +C) \geq n\}, \{x \mid \sharp(\{y.(x,y) \in +R\} \text{ and } y \notin -C) < n\} \right\rangle$
$\leq nR.C$	$\left\langle \{x \mid \sharp(\{y.(x,y) \in +R\} \text{ and } y \notin -C) \leq n\}, \{x \mid \sharp(\{y.(x,y) \in +R\} \text{ and } y \in +C) > n\} \right\rangle$

Quasi-classical DL ALCNQ

• QC weak satisfaction

$$\begin{aligned} - \mathcal{I} &\models_{w} C(a) \text{ iff } a^{\mathcal{I}} \in +C, C^{\mathcal{I}} = \langle +C, -C \rangle; \\ - \mathcal{I} &\models_{w} R(a, b) \text{ iff } (a^{\mathcal{I}}, b^{\mathcal{I}}) \in +R, R^{\mathcal{I}} = \langle +R, -R \rangle; \\ - \mathcal{I} &\models_{w} C_{1} \sqsubseteq C_{2} \text{ iff } +C_{1} \subseteq +C_{2}, \text{ for } i = 1, 2, C_{i}^{\mathcal{I}} = \langle +C_{i}, -C_{i} \rangle; \\ - \mathcal{I} &\models_{w} a = b \text{ iff } a^{\mathcal{I}} = b^{\mathcal{I}}; \\ - \mathcal{I} &\models_{w} a \neq b \text{ iff } a^{\mathcal{I}} \neq b^{\mathcal{I}}; \end{aligned}$$

Quasi-classical DL ALCNQ

• QC weak satisfaction

$$\begin{aligned} - \mathcal{I} &\models_{w} C(a) \text{ iff } a^{\mathcal{I}} \in +C, C^{\mathcal{I}} = \langle +C, -C \rangle; \\ - \mathcal{I} &\models_{w} R(a,b) \text{ iff } (a^{\mathcal{I}}, b^{\mathcal{I}}) \in +R, R^{\mathcal{I}} = \langle +R, -R \rangle; \\ - \mathcal{I} &\models_{w} C_{1} \sqsubseteq C_{2} \text{ iff } +C_{1} \subseteq +C_{2}, \text{ for } i = 1, 2, C_{i}^{\mathcal{I}} = \langle +C_{i}, -C_{i} \rangle; \\ - \mathcal{I} &\models_{w} a = b \text{ iff } a^{\mathcal{I}} = b^{\mathcal{I}}; \\ - \mathcal{I} &\models_{w} a \neq b \text{ iff } a^{\mathcal{I}} \neq b^{\mathcal{I}}; \end{aligned}$$

• QC weak model

- \mathcal{I} is a QC weak model of \mathcal{T} iff $\mathcal{I} \models_w C \sqsubseteq D$ for each GCI $C \sqsubseteq D$ in \mathcal{T} . (written $\mathcal{I} \models_w \mathcal{T}$)
- \mathcal{I} is a QC weak model of \mathcal{A} iff $\mathcal{I} \models_w \alpha$ for each assertion α in \mathcal{A} . (written $\mathcal{I} \models_w \mathcal{A}$)

Quasi-classical DL ALCNQ

• *QC* strong interpretation

Constructor Syntax	Strong Semantics
A	$A^{\mathcal{I}} = \langle +A, -A \rangle$, where $+A, -A \subseteq \Delta^{\mathcal{I}}$
R	$R^{\mathcal{I}} = \langle +R, -R \rangle$, where $+R, -R \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
0	$o^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
Т	$\langle \Delta^{\mathcal{I}}, \emptyset \rangle$
\perp	$\langle \emptyset, \Delta^{\mathcal{I}} \rangle$
$C_1 \sqcap C_2$	$\langle +C_1 \cap +C_2, (-C_1 \cup -C_2) \cap (-C_1 \cup \overline{+C_2}) \cap (\overline{+C_1} \cup -C_2) \rangle$
$C_1 \sqcup C_2$	$\langle (+C_1 \cup +C_2) \cap (\overline{-C_1} \cup +C_2) \cap (+C_1 \cup \overline{-C_2}), -C_1 \cap -C_2 \rangle$
$\neg C$	$\langle -C, +C \rangle$
\overline{C}	$\langle \Delta^{\mathcal{I}} \setminus (-C), \Delta^{\mathcal{I}} \setminus (+C) \rangle$
$\exists R.C$	$\langle \{x \mid \exists y, (x, y) \in +R \text{ and } y \in +C\}, \{x \mid \forall y, (x, y) \in +R \text{ implies } y \in -C\} \rangle$
$\forall R.C$	$\langle \{x \mid \forall y, (x, y) \in +R \text{ implies } y \in +C \}, \{x \mid \exists y, (x, y) \in +R \text{ and } y \in -C \} \rangle$
$\geq nR$	$\langle \{x \mid \sharp (\{y.(x,y) \in +R\}) \geq n\}, \{x \mid \sharp (\{y.(x,y) \in +R\}) < n\} \rangle$
$\leq nR$	$\langle \{x \mid \sharp (\{y.(x,y) \in +R\}) \le n\}, \{x \mid \sharp (\{y.(x,y) \in +R\}) > n\} \rangle$
$\geq nR.C$	$\left\langle \{x \mid \sharp(\{y.(x,y) \in +R\} \text{ and } y \in +C) \geq n\}, \{x \mid \sharp(\{y.(x,y) \in +R\} \text{ and } y \notin -C) < n\} \right\rangle$
$\leq nR.C$	$\left\langle \{x \mid \sharp(\{y.(x,y) \in +R\} \text{ and } y \notin -C) \leq n\}, \{x \mid \sharp(\{y.(x,y) \in +R\} \text{ and } y \in +C) > n\} \right\rangle$

Quasi-classical DL ALCNQ

• *QC* strong interpretation

	Constructor Syntax	Strong Semantics
	A	$A^{\mathcal{I}} = \langle +A, -A \rangle$, where $+A, -A \subseteq \Delta^{\mathcal{I}}$
	R	$R^{\mathcal{I}} = \langle +R, -R \rangle$, where $+R, -R \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
	0	$o^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
	Т	$\langle \Delta^{\mathcal{I}}, \emptyset \rangle$
	\perp	$\langle \emptyset, \Delta^{\mathcal{I}} \rangle$
	$C_1 \sqcap C_2$	$\langle +C_1 \cap +C_2, (-C_1 \cup -C_2) \cap (-C_1 \cup \overline{+C_2}) \cap (\overline{+C_1} \cup -C_2) \rangle$
3	$C_1 \sqcup C_2$	$\langle (+C_1 \cup +C_2) \cap (\overline{-C_1} \cup +C_2) \cap (+C_1 \cup \overline{-C_2}), -C_1 \cap -C_2 \rangle$
	$\neg C$	$\langle -C, +C \rangle$
	\overline{C}	$\langle \Delta^{\mathcal{I}} \setminus (-C), \Delta^{\mathcal{I}} \setminus (+C) \rangle$
	$\exists R.C$	$\langle \{x \mid \exists y, (x, y) \in +R \text{ and } y \in +C\}, \{x \mid \forall y, (x, y) \in +R \text{ implies } y \in -C\} \rangle$
	$\forall R.C$	$\langle \{x \mid \forall y, (x, y) \in +R \text{ implies } y \in +C \}, \{x \mid \exists y, (x, y) \in +R \text{ and } y \in -C \} \rangle$
	$\geq nR$	$\langle \{x \mid \sharp (\{y.(x,y) \in +R\}) \geq n\}, \{x \mid \sharp (\{y.(x,y) \in +R\}) < n\} \rangle$
	$\leq nR$	$\langle \{x \mid \sharp (\{y.(x,y) \in +R\}) \le n\}, \{x \mid \sharp (\{y.(x,y) \in +R\}) > n\} \rangle$
		$\langle \{x \mid \sharp(\{y.(x,y) \in +R\} \text{ and } y \in +C) \ge n\}, \{x \mid \sharp(\{y.(x,y) \in +R\} \text{ and } y \notin -C) < n\} \rangle$
	$\leq nR.C$	$\left\langle \{x \mid \sharp(\{y.(x,y) \in +R\} \text{ and } y \notin -C) \leq n\}, \{x \mid \sharp(\{y.(x,y) \in +R\} \text{ and } y \in +C) > n\} \right\rangle$

Quasi-classical DL ALCNQ

- QC strong satisfaction
 - $\mathcal{I} \models_{s} C(a) \text{ iff } a^{\mathcal{I}} \in +C \text{ where } C^{\mathcal{I}} = \langle +C, -C \rangle;$
 - $\mathcal{I} \models_{s} R(a, b) iff(a^{\mathcal{I}}, b^{\mathcal{I}}) \in +R \text{ where } R^{\mathcal{I}} = \langle +R, -R \rangle;$
 - $\mathcal{I} \models_s C_1 \sqsubseteq C_2 \text{ iff } \overline{-C_1} \subseteq +C_2, +C_1 \subseteq +C_2 \text{ and } -C_2 \subseteq -C_1, \text{ for } i = 1, 2, C_i^{\mathcal{I}} = \langle +C_i, -C_i \rangle;$
 - $-\mathcal{I}\models_{s}a=b \text{ iff } a^{\mathcal{I}}=b^{\mathcal{I}};$
 - $\mathcal{I} \models_{s} a \neq b \text{ iff } a^{\mathcal{I}} \neq b^{\mathcal{I}};$

Quasi-classical DL ALCNQ

• QC strong satisfaction

- $\mathcal{I} \models_{s} C(a) \text{ iff } a^{\mathcal{I}} \in +C \text{ where } C^{\mathcal{I}} = \langle +C, -C \rangle;$
- $\mathcal{I} \models_{s} R(a, b) iff(a^{\mathcal{I}}, b^{\mathcal{I}}) \in +R where R^{\mathcal{I}} = \langle +R, -R \rangle;$
- $\mathcal{I} \models_s C_1 \sqsubseteq C_2 \text{ iff } \overline{-C_1} \subseteq +C_2, +C_1 \subseteq +C_2 \text{ and } -C_2 \subseteq -C_1, \text{ for } i = 1, 2, C_i^{\mathcal{I}} = \langle +C_i, -C_i \rangle;$
- $-\mathcal{I}\models_{s}a=b \text{ iff } a^{\mathcal{I}}=b^{\mathcal{I}};$
- $\mathcal{I} \models_s a \neq b \text{ iff } a^{\mathcal{I}} \neq b^{\mathcal{I}};$

• QC strong model

- \mathcal{I} is a QC strong model of \mathcal{T} iff $\mathcal{I} \models_s C \sqsubseteq D$ for each GCI $C \sqsubseteq D$ in \mathcal{T} . (written $\mathcal{I} \models_s \mathcal{T}$)
- \mathcal{I} is a QC strong model of \mathcal{A} iff $\mathcal{I} \models_s \alpha$ for each assertion α in \mathcal{A} . (written $\mathcal{I} \models_s \mathcal{A}$)

• *QC* entailment relationship An ontology \mathcal{O} quasi-classically entails an axiom ϕ iff for each interpretation \mathcal{I} if \mathcal{I} is a QC strong model of \mathcal{O} then $\mathcal{I} \models_w \phi$. $(\mathcal{O} \models_Q \phi)$

SCHOOL OF MATHEMATICAL SCIENCES PEKING UNIVERSITY

Quasi-classical DL ALCNQ

- *QC* entailment relationship An ontology \mathcal{O} quasi-classically entails an axiom ϕ iff for each interpretation \mathcal{I} if \mathcal{I} is a QC strong model of \mathcal{O} then $\mathcal{I} \models_w \phi$. $(\mathcal{O} \models_Q \phi)$
- QC entailment features
 - $\{B(a), \neg B(a)\} \not\models_Q C(a).$ - $\{C \sqcup D(a), \neg C \sqcup E(a)\} \models_Q D \sqcup E(a).$ - If $\mathcal{O} \models_Q \phi$ then $\mathcal{O} \models \phi$.
 - If $\mathcal{O} \models_{\mathbf{4}}^{\bullet} \phi$ then $\mathcal{O} \models_{Q} \phi$.

• QC consistency

- A concept C is QC satisfiable w.r.t. a TBox \mathcal{T} if there exists a QC model \mathcal{I} of \mathcal{T} such that $+C \neq \emptyset$ where $C^{\mathcal{I}} = \langle +C, -C \rangle$; and QC unsatisfiable w.r.t. \mathcal{T} otherwise.
- An ABox \mathcal{A} is *QC* consistent if there exists a QC model \mathcal{I} of \mathcal{A} , and *QC* inconsistent otherwise.
- An ABox \mathcal{A} is *QC* consistent w.r.t. a TBox \mathcal{T} if there exists a QC model \mathcal{I} of \mathcal{T} such that \mathcal{I} is a QC models of \mathcal{A} , and *QC* inconsistent w.r.t. \mathcal{T} otherwise.

• QC consistency

- A concept C is QC satisfiable w.r.t. a TBox \mathcal{T} if there exists a QC model \mathcal{I} of \mathcal{T} such that $+C \neq \emptyset$ where $C^{\mathcal{I}} = \langle +C, -C \rangle$; and QC unsatisfiable w.r.t. \mathcal{T} otherwise.
- An ABox \mathcal{A} is *QC* consistent if there exists a QC model \mathcal{I} of \mathcal{A} , and *QC* inconsistent otherwise.
- An ABox \mathcal{A} is *QC* consistent w.r.t. a TBox \mathcal{T} if there exists a QC model \mathcal{I} of \mathcal{T} such that \mathcal{I} is a QC models of \mathcal{A} , and *QC* inconsistent w.r.t. \mathcal{T} otherwise.

QC inference problems

- Instance checking: an individual a is called a QC instance of a concept C w.r.t. an ABox \mathcal{A} iff for any QC model \mathcal{I} of \mathcal{A} , \mathcal{I} is a QC model of C(a).
- Subsumption a concept C QC subsumes a concept D w.r.t. a TBox \mathcal{T} iff for any QC model \mathcal{I} of \mathcal{T}, \mathcal{I} is a QC model of $C \sqsubseteq D$.

Quasi-classical DL ALCNQ

QC consistency

- A concept C is QC satisfiable w.r.t. a TBox \mathcal{T} if there exists a QC model \mathcal{I} of \mathcal{T} such that $+C \neq \emptyset$ where $C^{\mathcal{I}} = \langle +C, -C \rangle$; and QC unsatisfiable w.r.t. \mathcal{T} otherwise.
- An ABox \mathcal{A} is *QC* consistent if there exists a QC model \mathcal{I} of \mathcal{A} , and *QC* inconsistent otherwise.
- An ABox \mathcal{A} is *QC* consistent w.r.t. a TBox \mathcal{T} if there exists a QC model \mathcal{I} of \mathcal{T} such that \mathcal{I} is a QC models of \mathcal{A} , and *QC* inconsistent w.r.t. \mathcal{T} otherwise.

QC inference problems

- Instance checking: an individual a is called a QC instance of a concept C w.r.t. an ABox A iff for any OC model \mathcal{T} of A \mathcal{T} is a OC model of C(a)

Reducing QC inference problems to QC consistency problem

- $\mathcal{O} \models_Q C(a)$ iff $\mathcal{O} \cup \{\overline{C}(a)\}$ is QC inconsistent.
- $-\mathcal{O}\models_{Q} C \sqsubseteq D \text{ iff } \mathcal{O} \cup \{C \sqcap \overline{D}(b)\} \text{ is QC inconsistent for some new individual } b \text{ not occurring in } \mathcal{O}.$

A Tableau Algorithm for \mathcal{ALCNQ}

• **QC Tableau** (Based on Ian Horrocks's tableau)

Given an ABox $\mathcal{A}, T = (S, \mathcal{L}, \mathcal{E}, \mathcal{J})$ is a QC tableau for \mathcal{A} iff

- -S is a non-empty set;
- $\mathcal{L}: S \to 2^{clos(\mathcal{A})}$ maps each element in S to a set of concepts;
- $\mathcal{E}: R_{\mathcal{A}} \to 2^{S \times S}$ maps each role to a set of pairs of elements in S;
- $\mathcal{J}: U_{\mathcal{A}} \to S$ maps individuals occurring in \mathcal{A} to elements in S.

Furthermore, for all $s, t \in S, C, C_1, C_2 \in clos(\mathcal{A})$ and T satisfies: (P1) if $C \in \mathcal{L}(s)$, then $\overline{C} \notin \mathcal{L}(s)$, (P2) if $C_1 \sqcap C_2 \in \mathcal{L}(s)$, then $C_1 \in \mathcal{L}(s)$ and $C_2 \in \mathcal{L}(s)$, (P3) if $C_1 \sqcup C_2 \in \mathcal{L}(s)$, then (a) if $\sim C_i \in \mathcal{L}(s)$ for some $(i \in \{1, 2\})$, then $\otimes (C_1 \sqcup C_2, C_i) \in \mathcal{L}(s)$, (b) else $C_1 \in \mathcal{L}(s)$ or $C_2 \in \mathcal{L}(s)$, (P4) if $\forall R.C \in \mathcal{L}(s)$ and $\langle s, t \rangle \in \mathcal{E}(R)$, then $C \in \mathcal{L}(t)$, (P5) if $\exists R.C \in \mathcal{L}(s)$, then there is some $t \in S$ such that $\langle s, t \rangle \in \mathcal{E}(R)$ and $C \in \mathcal{L}(t)$, (P6) if $< nR.C \in \mathcal{L}(s)$, then $\sharp R^T(s, C) < n$, (P7) if $\geq nR.C \in \mathcal{L}(s)$, then $\sharp R^T(s,C) \geq n$, (P8) if $(\bowtie nR.C) \in \mathcal{L}(s)$ and $\langle s, t \rangle \in \mathcal{E}(R)$ then $C \in \mathcal{L}(t)$ or $\overline{C} \in \mathcal{L}(t)$, (P9) if $a : C \in \mathcal{A}$, then $C \in \mathcal{L}(\mathcal{J}(a))$, (P10) if $(a, b) : R \in \mathcal{A}$, then $\langle \mathcal{J}(a), \mathcal{J}(b) \rangle \in \mathcal{E}(R)$, (P11) if $a \neq b \in \mathcal{A}$, then $\mathcal{J}(a) \neq \mathcal{J}(b)$, where \bowtie is a place-holder for both \leq and \geq , and $R^T(s,C) = \{t \in S \mid \langle s,t \rangle \in \mathcal{E}(R)\}$ and $C \in \mathcal{L}(t)$.

Xiaowang Zhang, Guohui Xiao, and Zuoquan Lin A Tableau Algorithm for Handling Inconsistency in OWL

A Tableau Algorithm for \mathcal{ALCNQ}

• **QC Tableau** (Based on Ian Horrocks's tableau)

Given an ABox $\mathcal{A}, T = (S, \mathcal{L}, \mathcal{E}, \mathcal{J})$ is a QC tableau for \mathcal{A} iff

- S is a non-empty set;
- $\mathcal{L}: S \to 2^{clos(\tilde{\mathcal{A}})}$ maps each element in S to a set of concepts;
- $\mathcal{E}: R_{\mathcal{A}} \to 2^{S \times S}$ maps each role to a set of pairs of elements in S;
- $\mathcal{J}: U_{\mathcal{A}} \to S$ maps individuals occurring in \mathcal{A} to elements in S.

Furthermore, for all $s, t \in S, C, C_1, C_2 \in clos(\mathcal{A})$ and T satisfies:

A QC ABox is <u>QC consistent</u> if and only if it has a <u>QC tableau</u>.

(P8) if $(\bowtie nR.C) \in \mathcal{L}(s)$ and $\langle s, t \rangle \in \mathcal{E}(R)$ then $C \in \mathcal{L}(t)$ or $\overline{C} \in \mathcal{L}(t)$,

(P9) if $a : C \in \mathcal{A}$, then $C \in \mathcal{L}(\mathcal{J}(a))$, (P10) if $(a, b) : R \in \mathcal{A}$, then $\langle \mathcal{J}(a), \mathcal{J}(b) \rangle \in \mathcal{E}(R)$, (P11) if $a \in \mathcal{A}$ then $\mathcal{J}(a) = \langle \mathcal{J}(b) \rangle$

(P11) if $a \neq b \in \mathcal{A}$, then $\mathcal{J}(a) \neq \mathcal{J}(b)$,

where \bowtie is a place-holder for both \leq and \geq , and $R^T(s, C) = \{t \in S \mid \langle s, t \rangle \in \mathcal{E}(R) \text{ and } C \in \mathcal{L}(t)\}.$

Xiaowang Zhang, Guohui Xiao, and Zuoquan Lin 30 A Tableau Algorithm for Handling Inconsistency in OWL

A Tableau Algorithm for \mathcal{ALCNQ}

1. The \rightarrow_{\Box} -rule

Condition: $C_1 \sqcap C_2 \in \mathcal{L}(x)$, x is not indirectly blocked, and $\{C_1, C_2\} \not\subseteq \mathcal{L}(x)$. Action: $\mathcal{L}(x) := \mathcal{L}(x) \cup \{C_1(x), C_2(x)\}.$

2. The $\rightarrow \square$ -rule

Condition: $C_1 \sqcup C_2 \in \mathcal{L}(x)$, x is not indirectly blocked, and $\{C_1, C_2, \sim C_1, \sim C_2\} \cap \mathcal{L}(x) = \emptyset$. Action: $\mathcal{L}(x) := \mathcal{L}(x) \cup \{E\}$ for some $E \in \{C_1, C_2\}$.

3. The \rightarrow_{QC} -rule

Condition: $C_1 \sqcup C_2 \in \mathcal{L}(x)$, x is not indirectly blocked, and $\sim C_i \in \mathcal{L}(x)$ (for some $i \in \{1, 2\}$). Action: $\mathcal{L}(x) := \mathcal{L}(x) \cup \{ \otimes (C_1 \sqcup C_2, C_i) \}.$

4. The \rightarrow_\exists -rule

Condition: $\exists R.C \in \mathcal{L}(x)$, x is not blocked, and x has no R-neighbor y with $C \in \mathcal{L}(y)$. Action: create a new node y with $\mathcal{L}(\langle x, y \rangle) := \{R\}$ and $\mathcal{L}(y) := \{C\}$.

5. The \rightarrow_{\forall} -rule

Condition:

(1) $\forall R.C \in \mathcal{L}(x)$, x is not indirectly blocked, and

(2) there is an *R*-neighbor y of x with $C \in \mathcal{L}(y)$.

Action: $\mathcal{L}(y) := \mathcal{L}(y) \cup \{C\}.$

6. The choose-rule

Condition: $(\bowtie nR.C) \in \mathcal{L}(x)$, x is not indirectly blocked, and there is an R-neighbor y of x with $\{C, \overline{C}\} \cap \mathcal{L}(y) = \emptyset$.

Action: $\mathcal{L}(y) := \mathcal{L}(y) \cup \{E\}$ for some $E \in \{C, \overline{C}\}$.

A Tableau Algorithm for \mathcal{ALCNQ}

1. The \rightarrow_{\Box} -rule

PEKING UNIVERSITY

BEIJING CHINA

SCHOOL OF MATHEMATICAL SCIENCES

Condition: $C_1 \sqcap C_2 \in \mathcal{L}(x)$, x is not indirectly blocked, and $\{C_1, C_2\} \not\subseteq \mathcal{L}(x)$. Action: $\mathcal{L}(x) := \mathcal{L}(x) \cup \{C_1(x), C_2(x)\}.$

2. The $\rightarrow \square$ -rule

Condition: $C_1 \sqcup C_2 \in \mathcal{L}(x)$, x is not indirectly blocked, and $\{C_1, C_2, \sim C_1, \sim C_2\} \cap \mathcal{L}(x) = \emptyset$. Action: $\mathcal{L}(x) := \mathcal{L}(x) \cup \{E\}$ for some $E \in \{C_1, C_2\}$.

3. The \rightarrow_{QC} -rule

Condition: $C_1 \sqcup C_2 \in \mathcal{L}(x)$, x is not indirectly blocked, and $\sim C_i \in \mathcal{L}(x)$ (for some $i \in \{1, 2\}$). Action: $\mathcal{L}(x) := \mathcal{L}(x) \cup \{ \otimes (C_1 \sqcup C_2, C_i) \}.$

4. The \rightarrow_\exists -rule

Other six rules are based on Ian Horrocks's expansion rules for DLs.

Action: $\mathcal{L}(y) := \mathcal{L}(y) \cup \{C\}.$

6. The choose-rule

Condition: $(\bowtie nR.C) \in \mathcal{L}(x)$, x is not indirectly blocked, and there is an R-neighbor y of x with $\{C, \overline{C}\} \cap \mathcal{L}(y) = \emptyset$.

Action: $\mathcal{L}(y) := \mathcal{L}(y) \cup \{E\}$ for some $E \in \{C, \overline{C}\}$.

HeraKlion, Greece, ESWC '09

SCHOOL OF MATHEMATICAL SCIENCES PEKING UNIVERSITY BELIING CHINA

A Tableau Algorithm for \mathcal{ALCNQ}

 QC Tableau Algorithm 1. All concepts is in **QC NNF**. E.g. $A, \neg A, \overline{A}, \overline{\neg A}$ 2. $clos(\mathcal{A})$:a <u>closure</u> of concepts occurring in \mathcal{A} 3. Node: $\mathcal{L}(x)$, $\mathcal{L}(x) \subseteq clos(\mathcal{A})$ 4. *R*-Edge: $\mathcal{L}(\langle x, y \rangle), \mathcal{L}(\langle x, y \rangle) \in R$ 5. A **QC forest** is a collection of QC trees with nodes and edges. 6. Closed condition: $\{C, \overline{C}\} \subseteq \mathcal{L}(x)$

SCHOOL OF MATHEMATICAL SCIENCES

PEKING UNIVERSITY

BELING CHINA

HeraKlion, Greece, ESWC '09

A Tableau Algorithm for \mathcal{ALCNQ}

7. A QC tree is **closed** if it satisfies the <u>closed</u> <u>condition</u>.

8. A QC forest is **closed** if all trees of it are <u>closed</u>.

SCHOOL OF MATHEMATICAL SCIENCES

PEKING UNIVERSITY

BELING CHINA

HeraKlion, Greece, ESWC '09

A Tableau Algorithm for \mathcal{ALCNQ}

- 7. A QC tree is **closed** if it satisfies the <u>closed</u> <u>condition</u>.
- 8. A QC forest is **closed** if all trees of it are <u>closed</u>.

Soundness and Completeness A QC ABox has a <u>QC tableau</u> if and only if the QC forest of it is <u>closed</u>.

HeraKlion, Greece, ESWC '09

A Tableau Algorithm for \mathcal{ALCNQ}

• **Example**: given an ABox **A** and a query **q**,

1.**A**={Bird(a), Penguin(a), \neg Fly(a), \neg Bird \sqcup Fly(a), \neg Bird \sqcup Haswing(a) }.

2. **q** : Haswing(a).

A Tableau Algorithm for \mathcal{ALCNQ}

- **Example**: given an ABox **A** and a query **q**,
- 1.**A**={Bird(a), Penguin(a), \neg Fly(a), \neg Bird \sqcup Fly(a), \neg Bird \sqcup Haswing(a) }.
- 2. **q** : Haswing(a).
- 3. Initializing: $\mathbf{A} \cup \{\overline{Haswing}(a)\}$

A Tableau Algorithm for \mathcal{ALCNQ}

- **Example**: given an ABox **A** and a query **q**,
- 1.**A**={Bird(a), Penguin(a), \neg Fly(a), \neg Bird \sqcup Fly(a), \neg Bird \sqcup Haswing(a) }.
- 2. **q** : Haswing(a).
- 3. Initializing: $\mathbf{A} \cup \{\overline{Haswing}(a)\}$
- 4. Applying the QC tableau algorithm, till the algorithm's termination

A Tableau Algorithm for \mathcal{ALCNQ}

- **Example**: given an ABox **A** and a query **q**,
- 1.**A**={Bird(a), Penguin(a), \neg Fly(a), \neg Bird \sqcup Fly(a), \neg Bird \sqcup Haswing(a) }.
- 2. **q** : Haswing(a).
- 3. Initializing: $\mathbf{A} \cup \{\overline{Haswing}(a)\}$
- 4. Applying the QC tableau algorithm, till the algorithm's termination
 5. Obtaining a QC forest F which only contains one tree T, as follows :
 T={Bird, Penguin, ¬Fly, ¬Bird, Fly, Haswing, Haswing }

A Tableau Algorithm for \mathcal{ALCNQ}

• **Example**: given an ABox **A** and a query **q**,

1.**A**={Bird(a), Penguin(a), \neg Fly(a), \neg Bird \sqcup Fly(a), \neg Bird \sqcup Haswing(a) }.

- 2. **q** : Haswing(a).
- 3. Initializing: $\mathbf{A} \cup \{\overline{Haswing}(a)\}$

4. Applying the QC tableau algorithm, till the algorithm's termination
5. Obtaining a QC forest F which only contains one tree T, as follows : T={Bird, Penguin, ¬Fly, ¬Bird, Fly, Haswing, Haswing }
6. QC forest F is closed because T is closed.

A Tableau Algorithm for \mathcal{ALCNQ}

• **Example**: given an ABox **A** and a query **q**,

1.**A**={Bird(a), Penguin(a), \neg Fly(a), \neg Bird \sqcup Fly(a), \neg Bird \sqcup Haswing(a) }.

- 2. **q** : Haswing(a).
- 3. Initializing: $\mathbf{A} \cup \{\overline{Haswing}(a)\}$

4. Applying the QC tableau algorithm, till the algorithm's termination
5. Obtaining a QC forest F which only contains one tree T, as follows : T={Bird, Penguin, ¬Fly, ¬Bird, Fly, Haswing, Haswing }
6. QC forest F is closed because T is closed.
7. A ∪ {Haswing(a)} is QC inconsistent because A ∪ {Haswing(a)}

hasn't any **QC tableau**.

A Tableau Algorithm for \mathcal{ALCNQ}

- **Example**: given an ABox **A** and a query **q**,
- $1.\mathbf{A} = \{Bird(a), Penguin(a), \neg Fly(a), \neg Bird \sqcup Fly(a), \neg Bird \sqcup Haswing(a) \}.$
- 2. **q** : Haswing(a).
- 3. Initializing: $\mathbf{A} \cup \{\overline{Haswing}(a)\}$
- 4. Applying the QC tableau algorithm, till the algorithm's termination
- 5. Obtaining a QC forest **F** which only contains one tree **T**, as follows :

T={Bird, Penguin, ¬Fly, ¬Bird, Fly, Haswing, Haswing }

6. QC forest **F** is **closed** because **T** is **closed**.

- 7. $\mathbf{A} \cup \{\overline{Haswing}(a)\}$ is **QC inconsistent** because $\mathbf{A} \cup \{\overline{Haswing}(a)\}$ hasn't any **QC tableau**.
- 8. Return *true* about query q w.r.t. A. That is, $A \models_Q q$.

HeraKlion, Greece, ESWC '09

Conclusions

• Our approach is **paraconsistent**.

Conclusions

- Our approach is **paraconsistent**.
- Our approach ensures stronger inference power than those based four-valued semantics.

Conclusions

- Our approach is **paraconsistent**.
- Our approach ensures stronger inference power than those based four-valued semantics.
- Our approach has **approximate ability** to handle consistent DL-ontologies.

Conclusions

- Our approach is **paraconsistent**.
- Our approach ensures stronger inference power than those based four-valued semantics.
- Our approach has **approximate ability** to handle consistent DL-ontologies.
- Our approach localizes inconsistent information in whole knowledgebase to some extent.

Future works

• We will further study the *QC semantics* for more **complex description logics** such as *SHOIN*(**D**). *(under consideration)*

Future works

- We will further study the *QC semantics* for more **complex description logics** such as *SHOIN*(**D**). *(under consideration)*
- We will employ indirectly some classical reasoners such as *Pellet* and *KAON2* to implement paraconsistent reasoning.(under consideration)

Future works

- We will further study the *QC semantics* for more **complex description logics** such as *SHOIN*(**D**). *(under consideration)*
- We will employ indirectly some classical reasoners such as *Pellet* and *KAON2* to implement paraconsistent reasoning.(under consideration)
- We will build our **QC reasoner** based on QC tableau algorithm presented in this paper.

BEIJING

Thank you for your attention! Ευχαριστώ 谢 **Questions**?

Xiaowang Zhang, Guohui Xiao, and Zuoquan Lin 50 A Tableau Algorithm for Handling Inconsistency in OWL