Decidability of \mathcal{SHI} with transitive closure of roles

Chan LE DUC

INRIA Grenoble Rhône-Alpes - LIG

Example : Transitive Closure in Concept Axioms

- Devices have as their direct part a battery : Device □∃hasPart.Battery
- Devices have at some level of decomposition a battery : Device □∃hasPart⁺.Battery

Example : Transitive Closure in Concept Axioms

- Devices have as their direct part a battery : Device □∃hasPart.Battery
- Devices have at some level of decomposition a battery : Device □∃hasPart⁺.Battery

Remark :

If we define hasPart as a *transitive role*, we cannot distinguish the two concepts above

 OWL-DL is not expressive enough to describe these concepts

Problems

- Decidability of OWL-DL (SHOIN) with transitive closure of roles in concept axioms is known but there is not a practical algorithm;
- If we add transitive closure of roles to concept and role axioms even in SHI, decidability of the resulting logic is still unknown

Problems

- Decidability of OWL-DL (SHOIN) with transitive closure of roles in concept axioms is known but there is not a practical algorithm;
- If we add transitive closure of roles to concept and role axioms even in SHI, decidability of the resulting logic is still unknown

Goal :

An algorithm for checking satisfiability in the logic \mathcal{SHI} with transitive closure in concept and role axioms

Outline

- The logic \mathcal{SHI}_+
- Pelated Works : SHIQ, ALC reg
- Neighborhood and Normalization Tree
- Over the second seco
- Algorithm for concept satisfiability
- Onclusion and Future Work

$\mathcal{SHI}_{+} = \mathcal{SHI}$ with Transitive Closure of Roles _{Syntax}

- Concept names : N_C , role names : N_R ;
- Transitive closure of roles : $\{R^+ \mid R \in N_R\}$
- Inverse roles : $\{S^{-} | S \in N_{R} \cup \{R^{+} | R \in N_{R}\}\},\$
- Role hierarchy R := {R ⊑ S} where R, S are role names, transitive closures or inverses (SHI₊-roles);
- Formulae inductively defined from N_C, SHI₊-roles and logic constructors :
 C := A | C □ D | C □ D | ¬C | ∃R.C | ∀R.C
- Concept axioms $T := \{C \sqsubseteq D\}$
- An ontology $\mathcal{O} := \mathcal{T} \cup \mathcal{R}$

Motivating Examples SHI_+ Neighborhood Normalization T

$\mathcal{SHI}_{+} = \mathcal{SHI}$ with Transitive Closure of Roles semantics

• An interpretation $\mathcal{I} = \langle \Delta, .^{\mathcal{I}} \rangle$ with $\Delta^{\mathcal{I}} \neq \emptyset$ and $.^{\mathcal{I}}$ a function s.t. $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$; $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$; $(C \sqcap D)^{\mathcal{I}} := C^{\mathcal{I}} \cap D^{\mathcal{I}}$; $(C \sqcup D)^{\mathcal{I}} := C^{\mathcal{I}} \cup D^{\mathcal{I}}$; $(\neg C)^{\mathcal{I}} := \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$; $(\exists R.C)^{\mathcal{I}} := \{x \mid \exists y.y \in C^{\mathcal{I}} \land \langle x, y \rangle \in R^{\mathcal{I}}\}$; $(\forall R.C)^{\mathcal{I}} := \{x \mid \langle x, y \rangle \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$; $R^{-\mathcal{I}} := \{\langle x, y \rangle \mid \langle y, x \rangle \in R^{\mathcal{I}}\}$ $P^{+\mathcal{I}} := \bigcup_{n>0} (P^n)^{\mathcal{I}}$ with $(P^1)^{\mathcal{I}} = P^{\mathcal{I}}$, $(P^n)^{\mathcal{I}} = (P^{n-1})^{\mathcal{I}} \circ P^{\mathcal{I}}$;

\mathcal{SHI}_+ = \mathcal{SHI} with Transitive Closure of Roles $_{\text{Semantics}}$

- An interpretation $\mathcal{I} = \langle \Delta, .^{\mathcal{I}} \rangle$ with $\Delta^{\mathcal{I}} \neq \emptyset$ and $.^{\mathcal{I}}$ a function s.t. $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$; $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$; $(C \sqcap D)^{\mathcal{I}} := C^{\mathcal{I}} \cap D^{\mathcal{I}}$; $(C \sqcup D)^{\mathcal{I}} := C^{\mathcal{I}} \cup D^{\mathcal{I}}$; $(\neg C)^{\mathcal{I}} := \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$; $(\exists R. C)^{\mathcal{I}} := \{x \mid \exists y. y \in C^{\mathcal{I}} \land \langle x, y \rangle \in R^{\mathcal{I}}\}$; $(\forall R. C)^{\mathcal{I}} := \{x \mid \langle x, y \rangle \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$; $R^{-\mathcal{I}} := \{\langle x, y \rangle \mid \langle y, x \rangle \in R^{\mathcal{I}}\}$ $P^{+\mathcal{I}} := \bigcup_{n > 0} (P^{n})^{\mathcal{I}}$ with $(P^{1})^{\mathcal{I}} = P^{\mathcal{I}}, (P^{n})^{\mathcal{I}} = (P^{n-1})^{\mathcal{I}} \circ P^{\mathcal{I}}$;
- An interpretation I which satisfies all axioms in R (resp. T) is called a model of R (resp. T), denoted I ⊨ R (resp. I ⊨ T). A concept C is satisfiable w.r.t. T and R iff there is an interpretation I such that I ⊨ R, I ⊨ T and C^I ≠ Ø;

\mathcal{SHI}_+ = \mathcal{SHI} with Transitive Closure of Roles $_{\text{Semantics}}$

- An interpretation $\mathcal{I} = \langle \Delta, .^{\mathcal{I}} \rangle$ with $\Delta^{\mathcal{I}} \neq \emptyset$ and $.^{\mathcal{I}}$ a function s.t. $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$; $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$; $(C \sqcap D)^{\mathcal{I}} := C^{\mathcal{I}} \cap D^{\mathcal{I}}$; $(C \sqcup D)^{\mathcal{I}} := C^{\mathcal{I}} \cup D^{\mathcal{I}}$; $(\neg C)^{\mathcal{I}} := \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$; $(\exists R. C)^{\mathcal{I}} := \{x \mid \exists y. y \in C^{\mathcal{I}} \land \langle x, y \rangle \in R^{\mathcal{I}}\}$; $(\forall R. C)^{\mathcal{I}} := \{x \mid \langle x, y \rangle \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$; $R^{-\mathcal{I}} := \{\langle x, y \rangle \mid \langle y, x \rangle \in R^{\mathcal{I}}\}$ $P^{+\mathcal{I}} := \bigcup_{n > 0} (P^{n})^{\mathcal{I}}$ with $(P^{1})^{\mathcal{I}} = P^{\mathcal{I}}, (P^{n})^{\mathcal{I}} = (P^{n-1})^{\mathcal{I}} \circ P^{\mathcal{I}}$;
- An interpretation I which satisfies all axioms in R (resp. T) is called a model of R (resp. T), denoted I ⊨ R (resp. I ⊨ T). A concept C is satisfiable w.r.t. T and R iff there is an interpretation I such that I ⊨ R, I ⊨ T and C^I ≠ Ø;
- Ontology consistency, subsumption C ⊑ D can be reduced to concept satisfiability.

Related works : tableaux-based algorithms (SHIQ [Horrocks et al.], ALC_{reg} [Baader])

- being a possibly infinite graph whose nodes and edges are labelled;
- expressing as local properties the semantic constraints imposed by labels
- Ompletion Trees :
 - Using expansion rules to express tableaux properties;
 - Being built by applying expansion rules;
 - Using blocking condition to ensure termination;
 - Providing a finite representation of possibly infinite models;

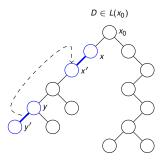
Why the usual blocking condition fails?

Blocking condition :

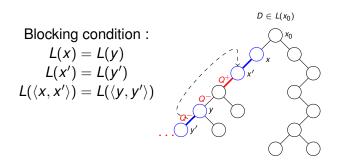
$$L(x) = L(y)$$

$$L(x') = L(y')$$

$$L(\langle x, x' \rangle) = L(\langle y, y' \rangle)$$



Why the usual blocking condition fails?



Related works : tableaux-based algorithms (SHIQ [Horrocks et al.], ALC_{reg} [Baader])

- Tableaux :
 - being a possibly infinite graph whose nodes and edges are labelled;
 - expressing as local properties the semantic constraints imposed by labels
- 2 Completion Trees :
 - Using expansion rules to express tableaux properties;
 - Being built by applying expansion rules;
 - Using blocking condition to ensure termination;
 - Providing a finite representation of possibly infinite models;

Remark

If transitive closure is added to \mathcal{SHI} then :

- Global properties are needed in tableaux
- The blocking condition is no longer sufficient

Key ideas of our approach to satisfiability in \mathcal{SHI}_+

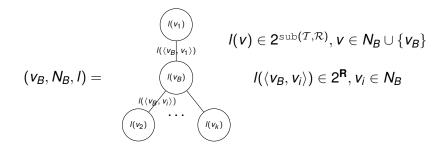
• New tableaux :

- Introducing a global property for satisfying transitive closures
- New construction of completion trees
 - Introducing neighborhood notion to capture all expansion rules for SHI;
 - Tiling neighborhoods together to build a normalization tree by using the usual blocking condition ;
 - Satisfying transitive closure is translated into selecting a "good" normalization tree

Neighborhoods

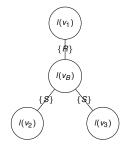
- $\begin{array}{rcl} D & : & \mathcal{SHI}_+ \text{ concept} \\ \mathrm{sub}(D) & : & \text{set of all sub-concepts of } D \\ \mathcal{T}, \mathcal{R} & : & \text{concept axioms and role hierarchy in } \mathcal{SHI}_+ \end{array}$
- **R** := set of roles *R* occurring in $\mathcal{T}, \mathcal{R}, D$ with R^- and R^+ sub $(\mathcal{T}, \mathcal{R})$:= set of all sub-concepts formed from $nnf(\neg C \sqcup D)$ w.

 $:= \quad \text{set of all sub-concepts formed from } nnf(\neg C \sqcup D) \text{ w.r.t. } \mathcal{R} \\ \text{where } C \sqsubseteq D \in \mathcal{T}$



all semantic constraints satisfied at v_B : valid neighborhood

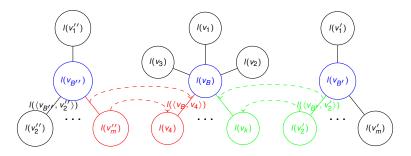
Valid neighborhood : example



$$I(v_B) = \{ \exists R.C, \exists S.C, \exists S.D, E \} \\ I(v_1) = \{ C, \forall R^-.E \} \\ I(v_2) = \{ C, \exists R.C \} \\ I(v_3) = \{ C \}$$

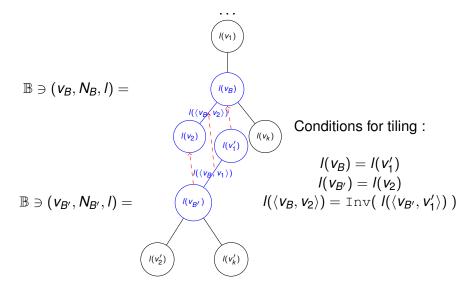
Saturated neighborhoods

A valid neighborhood (v_B, N_B, I) is *saturated* if for each valid neighborhood (v_{B'}, N_{B'}, I) with I(v_{B'}) = I(v_B) and for each v' ∈ N_{B'}, there exists v ∈ N_B such that I(v) = I(v') and I((v_B, v)) = I((v_{B'}, v'))



We denote \mathbb{B} for the set of saturated neighborhoods

Tiling saturated neighborhoods



Normalization Tree

Let *D* be an SHI_+ concept w.r.t. T and R.

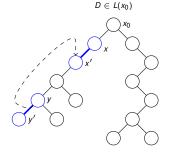
- A normalization tree **T** is built by tiling saturated neighborhoods,
- Tiling terminates at a node (it becomes a leaf) if the blocking condition is satisfied

Blocking condition :

$$L(x) = L(y)$$

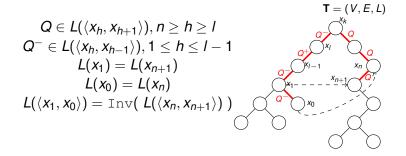
$$L(x') = L(y')$$

$$L(\langle x, x' \rangle) = L(\langle y, y' \rangle)$$



Normalization Tree with Cyclic Paths

 $\langle x_0, x_1, \cdots, x_k, \cdots, x_n, x_{n+1} \rangle$ is a cyclic path for $\langle x_l, x_{l-1} \rangle \in E$ with $Q^+ \in L(\langle x_l, x_{l-1} \rangle)$ and $2 \le l \le k$ if



Decidability of \mathcal{SHI}_+

- **Theorem :** Let *D* be an \mathcal{SHI}_+ concept w.r.t. \mathcal{T} and \mathcal{R} . *D* is satisfiable iff there is a normalization tree $\mathbf{T} = (V, E, L)$ such that for each $\langle x, y \rangle \in E$ with $Q^+ \in L(\langle x, y \rangle), Q \notin L(\langle x, y \rangle)$ there is a cyclic path for $\langle x, y \rangle$.
- Algorithm (sketch) :
 - From D, T, R, finding B which is a set of saturated neighborhoods;
 - From \mathbb{B} , tiling neighborhoods to obtain a normalization tree $\mathbf{T} = (V, E, L)$;
 - Building cyclic paths on T.

Conclusion and Future Work

- Conclusion
 - An algorithm for deciding concept satisfiability in \mathcal{SHI}_+
 - Separation of satisfying expansion rules for SHI from satisfying transitive closures by introducing neighborhood notion
 - Translation of non-determinism caused by transitive closures into selection from normalization trees
 - Complexity : double exponential

Conclusion and Future Work

- Conclusion
 - An algorithm for deciding concept satisfiability in \mathcal{SHI}_+
 - Separation of satisfying expansion rules for SHI from satisfying transitive closures by introducing neighborhood notion
 - Translation of non-determinism caused by transitive closures into selection from normalization trees
 - Complexity : double exponential
- Future Work
 - A goal-oriented algorithm
 - Adding qualifying number restriction (Q) and nominals (O) to SHI₊ (i.e. adding transitive closure of roles to OWL-DL)

Questions?

Thank you

Chan.Leduc@inrialpes.fr