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Important Applications

Aerodynamics: Shape optimization to improve airplanes, cars,
ventilators, turbines...
Hydrodynamics: wave drag of boats, pipes, by-pass, harbors...

Electromagnetics: Stealth airplane, antenna, missiles...
Combustion: Car and airplane engines, scramjets...
Turbulence: delay the separation of boundary layers, reduce
turbulent drag (active control, deformable airplane...)

Pironneau (LJLL) Differentiable and quasi-differentiable methods for Optimal Shape DesignMLA09 4 / 51



Important Applications

Aerodynamics: Shape optimization to improve airplanes, cars,
ventilators, turbines...
Hydrodynamics: wave drag of boats, pipes, by-pass, harbors...

Electromagnetics: Stealth airplane, antenna, missiles...
Combustion: Car and airplane engines, scramjets...
Turbulence: delay the separation of boundary layers, reduce
turbulent drag (active control, deformable airplane...)

Pironneau (LJLL) Differentiable and quasi-differentiable methods for Optimal Shape DesignMLA09 4 / 51



Main Topics for Shape Optimization

min
v∈V⊂Rd

E(v)

Black Box Optimization: use only v → E(v)

Differentiable Optimization: use also gradv E(v)

E(v + δv) = E(v)+ < gradE(v), δv > +o(‖δv‖)
δv = −ρgradE(v) ⇒ E(v + δv)− E(v) ≈ −ρ‖gradE(v)‖2

Constrained Optimization: V = {v ∈ H : f (v) = 0, g(v) ≤ 0}
Multi-criteria and Pareto optimality:

E(v) =
∑

i

αiEi(v) ⇔ ? @w : Ei(w) ≤ Ei(v) ∀i

Topological Optimization: Embed the problem into a larger class
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An Academic Problem

C

S

G

D

T

Š

min
S∈Sd
{
∫

D
|ψ − ψd |2 : −∆ψ = 0, in C − Ṡ, ψ|S = 0 ψ|∂C = ψd}

Wind tunnel Design by adapting S so that flow is uniform in D. Flow is
irrotational inviscid and 2D.
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Existence of Solution

Theorem

min
v∈V⊂Rd

E(v)

has a solution if V is closed, E is bounded from below, l.s.c. and
either V is bounded or lim||x ||→∞ E(x) = +∞
Thus if one can show that the criteria of the OSD problem is l.s.c. a
solution will exist. It has been shown by Sverak that this is so if the
number of connected component of Ω is bounded.

In Allaire, Bucur, Delfour et al, it is shown that a penalization of the
perimeter of the unknown surface also induce existence in 2D.

Theorem The following problem has at least one solution:

min
S∈Sd
{
∫

D
|ψ − ψd |2 + ε|S|2 : −∆ψ = 0, in C − Ṡ, ψ|S = 0 ψ|∂C = ψd}

Uniqueness is almost impossible to prove;
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Sensitivity Analysis

−∆ψε = f in Ωε ψε = 0 on Γε := {x + εαn : x ∈ Γ}

Definition If ψ′α := lim 1
ε (ψε − ψ) exists then ψ is Gateau differentiable

with respect to Γ in the direction α. If ψ′α is linear in α then ψ is Frechet
differentiable. Similarly

ψεα = ψ + εψ′α +
ε2

2
ψ′′α

n

X G

a

To compute ψ′ and ψ′′ notice that, by linearity, they satisfy the same
PDE but with f = 0. By Taylor expansion, x ∈ Γ:

0 = ψεα(x + εαn) = ψεα(x) + εα
∂ψεα

∂n
(x) +

ε2α2

2
∂2ψ

∂n2 (x) + ...

Therefore

−∆ψ′α = 0 ψ′α|Γ = −α∂ψ
∂n

, −∆ψ′′α = 0 ψ′′α|Γ = −α∂ψ
′
α

∂n
− α2

2
∂2ψ

∂n2
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Optimality Conditions

Consider the Wind Tunnel Problem with Sε = {x + εαn : x ∈ S}. Think
of the PDE as the implicit definition of S → ψ(S). Then J() is a
function of S only:

J(Sε) =

∫
D
|ψε − ψd |2 =

∫
D
|ψ − ψd |2 + 2ε

∫
D

(ψε − ψd )ψ′α + o(ε)

with ∆ψ′α = 0, ψ′α|S = −α∂ψ∂n , ψ′α|Γ−S = 0.
If J is Frechet differentiable there exists ξ such that J ′α =

∫
S ξα. To find

ξ we must use the adjoint trick and introduce

−∆p = (ψε − ψd )ID, p|Γ = 0

Then

2
∫

D
(ψε − ψd )ψ′α = −2

∫
Ω
ψ′α∆p = −2

∫
Ω

∆ψ′αp +

∫
Γ
(
∂p
∂n
ψ′α +

∂ψ′α
∂n

p)

Corollary J ′α = 2
∫

S
∂p
∂n

∂ψ
∂nα
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Conceptual Algorithm

0. Choose a shape S0, a small number ρ > 0 and set m=0.
1. Compute ψm and pm by solving

−∆ψm = 0, ψm|Sm = 0, ψm|Γd = ψd
−∆pm = (ψm − ψd )ID, p|Γm = 0

2. Set

α = −ρ∂pm

∂n
∂ψm

∂n
Sm+1 = {x + αn : x ∈ Sm}

3. Set m← m + 1 and go to 1.

It works because

J(Sm+1) = J(Sm) +

∫
Sm
ξα = J(Sm)− 2ρ

∫
Sm

(
∂pm

∂n
∂ψm

∂n
)2 + o(α)

Notice that there is a loss of regularity from Sm to Sm+1!
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Implementation with freefem++

real xl = 5, L=0.3;
mesh th = square(30,30,[x,y*(0.2+x/xl)]);
func D=(x>0.4+L && x<0.6+L)*(y<0.1);
func psid = 0.8*y;
fespace Vh(th,P1);
Vh psi,p,w;
problem streamf(psi,w)=int2d(th)(dx(psi)*dx(w) + dy(psi)*dy(w))

+on(1,4,psi = y/0.2)+on(2,psi=y/(0.2+1.0/xl)) + on(3,psi=1);

problem adjoint(p,w)=int2d(th)(dx(p)*dx(w) + dy(p)*dy(w))
- int2d(th)(D*(psi-psid)*w)+ on(1,2,3,4,p=0);

Vh a=0.2+x/xl, gradE;
for(int i=0;i<100;i++){

streamf; adjoint;
real E = int2d(th)(D*(psi-psid)^2)/2;
gradE = dx(psi)*dx(p) + dy(psi)*dy(p);
a=a(x,0)-50*gradE(x,a(x,0))*x*(1-x);
th = square(30,30,[x,y*a(x,0)]);

}

Execute
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Oscillations

12.0739
11.4384
10.803
10.1675
9.53203
8.89656
8.2611
7.62563
6.99016
6.35469
5.71922
5.08375
4.44828
3.81281
3.17734
2.54188
1.90641
1.27094
0.635469
1.85629e-11

12.4313
11.777
11.1228
10.4685
9.8142
9.15992
8.50564
7.85136
7.19708
6.5428
5.88852
5.23424
4.57996
3.92568
3.2714
2.61712
1.96284
1.30856
0.65428
1.9174e-11
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Regularity Preserving Algorithms: Sobolev Gradients

α = −ρ∂p
∂n

∂ψ

∂n
Sm+1 = {x + αn : x ∈ Sm}

can be replaced by

d2α̃

ds2 = ρ
∂p
∂n

∂ψ

∂n
α̃(s0) = α̃(s1) = 0. Sm+1 = {x + α̃n : x ∈ Sm}

⇒ J(Sm+1)− J(Sm) =
2
ρ

∫
Sm
α̃

d2α̃

ds2 = −2
ρ

∫
Sm

(
dα̃
ds

)2 + o(ρ)

Alternatively one may use a smoothing operator like

β → γ(β) = v where v is solution of −∆v = 0
∂v
∂n
|Γ = β.

Let Sm+1 = {x + γ(β)n : x ∈ Sm} with β = ∂p
∂n

∂ψ
∂n

J(Sm+1)− J(Sm) = 2ρ
∫

Γ
γ(β)β = 2ρ

∫
Γ

v
∂v
∂n

= −2ρ
∫

Ω
|∇v |2
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Geometric Constraints

Projected Gradient: the case
∫

Ω = 1.

Γ′ = {x + αn(x) : x ∈ Γ} ⇒ δJ =

∫
Γ
χαds + o(|α|)

n

X G

aΓ′ = {x + (α− 1
|Γ|

∫
Γ
α)n(x) : x ∈ Γ}

⇒ δ

∫
Ω

=

∫
Γ
(α− 1

|Γ|

∫
Γ
α) + o(|α|) = o(|α|)

δJ =

∫
Γ
(χ− 1

|Γ|

∫
Γ
χ)(α− 1

|Γ|

∫
Γ
α)ds + o(|α|)

Penalization: replace J by

J +
1
ε
|F (Ω)+|2 +

1
ω
|G(Ω)|2

to maintain F (Ω ≤ 0), G(Ω) = 0
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State Constraints

min
v
{J(u, v) : Au = g(v), F (u, v) ≤ 0}

where A is a linear invertible operator.

δJ = J ′uδu + J ′vδv with Aδu = g′vδv , F ′uδu + F ′vδv ≤ 0 if F (u, v) = 0

Introducing AT p = J ′u, AT q = F ′u leads to

J ′uδu = δu·AT p = p·Aδu = p·g′vδv F ′uδu = δu·AT p = q·Aδu = q·g′vδv

δJ = (p · g′v + J ′v )δv with (q · g′v + F ′v )δv ≤ 0 if F (u, v) = 0

A direction of descent is built from this.
Notice that two adjoint vectors are needed
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Example

Build a stealth airfoil with "good" aerodynamic properties

minS J :=
∫

D |u|
2 :

∫
S
∂ψ
∂n = a

ω2u + ∆u = 0, in Ω u|Γ = g
−∆ψ = 0, in Ω ψ|Γ = ψd

Requires the following
Lemma

Γ′ = {x + αn : x ∈ Γ} ⇒ δ

∫
Γ

f =

∫
Γ
α(
∂f
∂n
− f

R
)

where R is the mean radius of curvature.
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Example

Computed by A. Baron
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The Minimum Drag Problem

J(Ω) ≡ min
Ω∈C,vol(C)=1

∫
Ω

1
2
||∇u||2dx : u|∂Ω = g

u∇u +∇p − ν∆u = 0, ∇ · u = 0,

The solution exists in 2D if the nb of connected component is
bounded. In 3D ? but probably yes because the criteria is the energy
of the system. For safety regularize by adding εcall(C).
Proposition

∂Ω′ = {x + αn(x) : x ∈ ∂Ω} ⇒? δJ =

∫
∂Ω
χαds + o(|α|)

δJ =

∫
∂Ω
α
∂u
∂n
· (1

2
∂u
∂n

+
∂w
∂n

) + o(|α|)

where −u∇w + w∇uT +∇q − ν∆w = ν∆u, ∇ · w = 0, w |∂Ω = 0

From JFM 73. See also, Modi, Gunzberger, Tasan, Jameson... Q?
What minimal norm on α?
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Proof

Recall that δ
∫

Ω f =
∫

Γ αf . Then

δJ =

∫
Ω
∇u · ∇δu +

1
2

∫
∂Ω
α|∇u|2 + o(|α|)

and δu∇u + u∇δu +∇δp − ν∆δu = 0, ∇ · δu = 0, δu|Γ = −α∂u
∂n

So
∫

Ω
∇u · ∇δu = −

∫
Ω
δu∆u

= −1
ν

∫
Ω

(−u∇w + w∇uT +∇q − ν∆w)δu

= −1
ν

∫
Ω

(∇ · (u ⊗ δu + δu ⊗ u)− ν∆δu)w −
∫

Γ
ν
∂w
∂n

δu + o(|α|)
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Example

Minimum drag object of given area at Reynold 50 (Courtesy of
Kawahara et al.).
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Compressible Flows

Euler or Navier-Stokes equations

W =

 ρ
ρu
ρE

 ∂tW +∇ · F (W )−∇ ·G(W ,∇W ) = 0

W (0, x) = 0, + B.C.

Involves an adjoint equation

∂tP + (F ′(W )−G′,1(W ,∇W )T∇P −∇ · (G′,2(W ,∇W )T∇P) = 0
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Some Realizations - A. Jameson (I)

Plain vs Sobolev Gradients

Before & after optimization
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Some Realizations - A. Jameson (II)

Optimization of the Boeing 747: 10% wing drag saving (5% aircraft drag)
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Some Realizations - A. Jameson (III)

Falcon jet: CD decreases from 234 to 216
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Summary

Optimal Shape Design of S relies on Optimization

min
S

J(u,S) : A(S)u = f

The Continuous problem is well posed after regularization

min
S

J(u,S) + ε|S|2 : A(S)u = f

The L2 local gradient χ is computable by calculus of variation:

δJ =

∫
S
χα + o(|α|), S(α) = {x + α(x)n(x) : x ∈ S}

The Sobolev gradient is the right tool for gradient methods:

−∆Sβ = χ, Sn+1 = {x − ρβ(x)n(x) : x ∈ Sn}
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C

S

G

D

T

Š

min
S∈Sd

J(S) := {
∫

D
|ψ − ψd |2 : −∆ψ = 0, in C − Ṡ, ψ|S = 0 ψ|∂C = ψd}

Discretization of gradients J ′α = ∇ψ∇p where −∆p = 2ID(ψ − ψd ),
p|Γ = 0 or derivation of gradient for the discrete problem?

Optimization of the Discrete Problem

• The Finite Element Method,
• Discrete Gradients
• Finite Volume Methods
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The Finite Element Method

Ω is covered with triangles Tk and qi are the vertices. The PDE of the
wind tunnel problem is approximated by∫

Ω
∇ψh∇wh = 0, ψh|S = 0, ψh|Γ = ψd

for all wh continuous and affine on each Tk and zero on ∂Ω.

J =

∫
D
||ψh − ψd ||2 + ε

∫
S
|d

2α

dn2 |
2

Let δqh(x) =
∑

i δqiw(x), the basis {w j}, the hat function of qj .
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Summary: Continuous versus Discrete Gradient

min
S∈Sd

J(S) := {
∫

D
|ψ − ψd |2 : −∆ψ = 0, in C − Ṡ, ψ|S = 0 ψ|∂C = ψd}

δJ =

∫
S

∂p
∂n

∂ψ

∂n
with −∆p = 2(ψ − ψd )ID

use normal displacement ≈ v : −∆v = 0,
∂v
∂n
|Γ =

∂p
∂n

∂ψ

∂n

For the discrete system

min
qi∈Qd

J(Sh) = {
∫

D
|ψh − ψd |2 :

∫
Ω

∇ψh · ∇w j = 0, ∀j ψh|S = 0 ψh|∂C = ψd}

δJ =

∫
Ω

(∇ψh(∇δqh +∇δqT
h )∇ph −∇ψh · ∇ph∇ · δqh) =

∑
χjδq j

with
∫

Ω

∇ph∇w j = 2
∫

D
(ψh − ψd )w j , ph ∈ V0h

And use a smoothed version of χj to move the vertices and find the new
shape (and triangulation).
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Topological Optimization

• Applies when the topology is not known
• Black-box favors Genetic algorithm (yet slow)
• Combine topological and geometrical shape design?

From T. Borrval and J. Petterson From Schoenauer et al
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Topological Derivatives

Following the work of L. Tartar and N. Kikuchi, J. Sokolowski came with
the following idea (f has zero mean, B(0,1) the unit ball)

−∆u = f in Ω, u|Γ = 0,
−∆uε = f in Ω\B(x0, ε), uε|Γ = 0,

Neumann or Dirichlet on ∂B(x0, ε) = 0,
u′x0

(x) = limε→0
1
εγ (uε − u)

exists and is not identically 0 or +∞ for some value of γ.
Theorem For the Neumann (resp Dirichlet) problem γ = 2 (resp logε)
in 2D and u′ solves ∫

Ω
∇u · ∇w = c∇u∇w |x0

This is sufficient for gradient type algorithm, but convergence is
usually a problem.
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Applications of Topological Optimization

Stokes flow drag optimization (courtesy of M. Masmoudi)
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Micro Channel flow (Borrval and Petterson)
Optimization of a micro channel flow averaged vertically gives

min
z(x)∈Z

j(u) :=

∫
D

(u − ud )2 :
5

2z2 u −∆u +∇p = 0, ∇ · u = 0, u|Γ = g

where the pointwise values of functions of Z are equal to ε or h. Let
ρ = 2.5z−2; notice that

[ρu] = ρ̄[u] + [ρ]ū ā =
a1 + a2

2
[a] = a1 − a2

Therefore if u′ exists, the derivative w/r “ρ2 becoming ρ1" at x0, it must
be

ρ̄u′ + ρ′ū −∆u′ +∇p′ = 0 ∇ · u′ = 0 with ρ′ = [ρ]δ(x − x0), u′| Γ = 0

But u is continuous so ū = u. Introduce the adjoint state v ,q

ρ̄v −∆v +∇q = 0 ∇ · q = 2(u − ud )χD, v | Γ = 0
⇒ j ′ = −[ρ]u(x0)p(x0)

Replace : ρ2 by ρ1 at x0 when [ρ]u(x0)p(x0) > 0
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Important Applications

Solid mechanics: Weight optimization of airplanes, cars, parts...

Topological optimization of the weight of a stool for a given strength
(courtesy of F. Jouve et al)
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Steepest Descent with Mesh Refinement

Now consider the same algorithm with parameter refinement

Algorithm
(Steepest descent with refinement)
. while h > hmin do
. {
. while ‖ gradzJh(zm)‖ > εhγ do
. {
. zm+1 = zm − ρ gradzJh(zm) where ρ such that,

. − βρ‖w‖2 < Jh(zm − ρw)− Jh(zm) < −αρ‖w‖2

. with w = gradzJh(zm). Set m := m + 1;

. }

. h := h/2;

. }
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Steepest Descent and Inexact Gradients

• Convergence obvious : it is either S.Descent or gradJh → 0 because
h→ h/2.
• Gain in speed : we do not need the exact gradient gradzJh!
• Let N be an iteration parameter and Jh,N ≈ Jh and
gradzJh,N ≈ gradzJh in the sense that

lim
N→∞

Jh,N(z) = Jh(z) lim
N→∞

gradzNJh,N(z) = gradzJh(z)

Add K and N(h) with N(h)→∞ when h→ 0 :
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Inexact Gradient (II)

Algorithm
(E. Polak et al)(Steepest descent with Goldstein’s rule mesh
refinement and approximate gradients)
. while h > hmin{
. while | gradzNJm| > εhγ{
. try to find a step size ρ with w = gradzNJ(zm)

. − βρ‖w‖2 < J(zm − ρw)− J(zm) < −αρ‖w‖2

. if success then

. {zm+1 = zm − ρ gradzNJm; m := m + 1;}

. else N := N + K ;

. }

. h := h/2; N := N(h);

. }
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algorithm

The convergence could be established from the observation that
Goldstein’s rule gives a bound on the step size:

−βρ gradzJ · h < J(z + ρh)− J(z) = ρ gradzJ · h +
ρ2

2
J ′′hh

⇒ ρ > 2(β − 1)
gradzJ · h
J ′′(ξ)hh

so Jm+1 − Jm < −2
α(1− β)

‖J ′′‖
| gradzJ|2

Thus at each grid level the number of gradient iterations is bounded by
O(h−2γ). Therefore the algorithm does not jam hence convergence.
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Mesh Refinements
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Finite Difference Gradient

f (x + h)− f (x)

h
= f ′(x) + f (2) h

2
− f (3) h2

6
+ ...

Re
f (x + ih)− f (x)

ih
= f ′(x) + O(h2)

f (x + h)− f (x − h)

2h
= f ′(x) + f (3) h2

6
+ f (5) h4

60
+ ...

f (x + h)− f (x − h)

4h
+Re

f (x + ih)− f (x − ih)

4ih
= f ′(x) + O(h6)
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Principle of Automatic Differentiation

Let J(u) = |u − ud |2, then its differential is

δJ = 2(u − ud )(δu − δud )
∂J
∂u

= 2(u − ud )(1.0− 0.0)

Obviously the derivative of J with respect to u is obtained by putting
δu = 1, δud = 0. Now suppose that J is programmed in C/C++ by

double J(double u, double u_d){
double z = u-u_d;
z = z*(u-u_d);
return z;

}
int main(){ double u=2,u_d = 0.1;

cout << J(u,u_d) << endl;
}

A program which computes J and its differential can be obtained by
writing above each differentiable line its differentiated form:
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A simple example (cont)

class ddouble {public: double v,d;
ddouble(double a, double b=0){ v = a; d=b;}
};

ddouble JandDJ(ddouble u, ddouble u_d)
{ ddouble z;

z.d = u.d - u_d.d;
z.v = u.v-u_d.v;
z.d= z.d*(u.v-u_d.v) + z.v*(u.d - u_d.d);
z = z*(u-u_d);
return z;

}
int main()
{

ddouble u(2.,1.), u_d= 0.1, J = JandDJ(u,u_d);
cout << J << " dJ="<<dJ<<endl;

}
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The class ddouble

class ddouble{ public: double v[2];
ddouble(double a, double b=0){ v[0] = a; v[1]=b;}
ddouble operator=(const ddouble& a)
{ val[1] = a.v[1]; val[0]=a.v[0];

return *this;
}

friend ddouble operator-(const ddouble& a,const ddouble& b)
{ ddouble c;

c.v[1] = a.v[1] - b.v[1]; // (a-b)’=a’-b’
c.v[0] = a.v[0] - b.v[0];
return c;

}
friend ddouble operator*(const ddouble& a,const ddouble& b)

{ ddouble c;
c.v[1] = a.v[1]*b.v[0] + a.v[0]* b.v[1];
c.v[0] = a.v[0] * b.v[0];
return c;}

};
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A Simple Example (final)

#include "ddouble.hpp"

ddouble J(ddouble u, ddouble u_d){
ddouble z = u-u_d;
z = z*(u-u_d);
return z;

}
int main(){

ddouble u=2, u_d = 0.1;
u.v[1]=1;
cout << J(u,u_d).v[1] << endl;

}

Simply replace all double by ddouble and link with the class lib.
A few pitfalls: e.g.
ddouble sqrt(ddouble x){ ddouble y;
y.v[1]=x.v[1]/sqrt(fabs{x.v[0])+eps); y.v[0]=sqrt(x.v[0]);
return y; }
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Limitations

program newtontest
x=0.0;
al=0.5 subroutine newton(x,n,al)
call newton(x,10,al) do i=1,n
write(*,*) x f = x-alpha*cos(x)
end fp= 1+alpha*sin(x)

x=x-f/fp
enddo
return
end

2n adjoint variables are needed! while the theory is

f (x , α) = 0 ⇒ x ′f ′x + f ′α = 0 ⇒ x ′ = − f ′α
f ′x

So it is better to understand the output of AD-reverse and clean it. see
www.autodiff.org
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Tapenade

program newtontest CALL PUSHINTEGER4(i-1)
x=0.0 alb = 0.0
xb=2 CALL POPINTEGER4(nb)
al=0.5 DO i=nb,1,-1
call newton_b(x,xb,5,al,alb) CALL POPREAL4(x)
write(*,*) x,xb fb = -(xb/fp)
end fpb = f*xb/fp**2
SUBROUTINE NEWTON_B(x,xb,n,al,alb) CALL POPREAL4(fp)

DO i=1,n alb = alb+SIN(x)*fpb-COS(x)*fb
CALL PUSHREAL4(f) xb = xb + al*COS(x)*fpb
f = x - al*COS(x) & + (al*SIN(x)+1.0)*fb
CALL PUSHREAL4(fp) CALL POPREAL4(f)
fp = 1 + al*SIN(x) ENDDO
CALL PUSHREAL4(x) END
x = x - f/fp

ENDDO
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Optimization of a wing profile

Drag is mostly pressure by the shock. The lift & area are imposed

J(u,p, θ) = F · u∞ +
1
ε
|F × u∞ − Cl |2 +

1
β

(

∫
S

dx − a)2

with F =
∫

S(pn + (µ∇u +∇uT )) and Navier-Stokes + k − ε + wall laws
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Optimization of a 3D Business Jet
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Done by B. Mohammadi in a few hours on a workstation
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Gradient Free Methods

The main motivation is the non access to the source and the
prototyping speed

Powells’ NEWUOA
Evolutionary algorithms
Hybrid methods

[width=5cm]rastrigin Rastrigin’s test with 20 param
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Proposed by L. Dumas

• Random initialization of a population
• Until convergence do:

GA evolution (selection, crossover and mutation)
If stagnation during three generations then three iterations of
BFGS on the current best individual

• Repeat

drag. Indeed, it is worth noticing that the main changes on the drag when changing the shape deal
with the pressure force. Moreover, as only 30% of the drag coefficient depends on the front of the
shape, the slanted surfaces and vertical base surface of the rear end will contribute strongly to the
pressure drag.

Unfortunately, both theories cannot be considered separately. Indeed, a little rear base exists
when the three rear angles have a high value but the latter induce important recirculation on the
back-light, boat-tail, ramp faces which, as we have seen before, is a direct production of drag.
Thus, a 3D Navier–Stokes analysis is applied in order to explain the flow associated to the op-
timized shape.

To illustrate the aerodynamic optimization, we present two computational results in the
symmetry plane and in the middle transverse plane for two different shape configurations with an
decreasing drag: ða;b; cÞ equal to ð14:5; 7:6; 14:3Þ and ða; b; cÞ equal to ð23:1; 13:6; 23:3Þ. In Fig. 6,
the wake behind the body is characterized by a large recirculation zone. At the symmetry plane
two vortices are clearly visible. The separation bubble has a length slightly greater than a third of
the vehicle length. The large flow separation on the rear base permits to predict a large contri-
bution of this part to the pressure drag. The second shape depicted in Fig. 7 presents a 0.023
weaker drag. The rear base surface is indeed smaller than before and the effect of the back-light,
ramp and boat-tail angles tends to minimize the length of the separation zone as well as the rear
vortices intensity. The flow behind this shape is characterized by two well balanced upper and

Fig. 6. 3D vehicle-like body wake for ða; b; cÞ ¼ ð14:5; 7:6; 14:3Þ. Top: contour of total pressure on the symmetry plane
(left) and on the middle transverse plane (right). Bottom: path line on the symmetry plane coloured by longitudinal
velocity (left) and on the rear coloured by velocity magnitude (right).

856 F. Muyl et al. / Computers & Fluids 33 (2004) 849–858

The convergence is assumed after stabilization of the drag and lift aerodynamic coefficients.
Concerning the sensitivity evaluations, a specific study of the numerical stability and accuracy
permits to determine the discretization step for the finite differences computations.

4.2. Results

Before showing the results, the optimization based on the hybrid method is described. The GA
is running during five generations but it evolves only at the third one. Then the deterministic
method is applied to the current best individual. The GA restarts just for three generations and
the deterministic process is used again. Fig. 4 presents the results obtained by three methods: the
GA, the hybrid and the BFGS methods. Though the BFGS method has been initialized with the
best indivudual obtained after the first generation of the GA, the improvement rate of the drag
coefficient that has been achieved is smaller than for the other methods.The hybrid method
permits to minimize the drag coefficient more efficiently than the GA in less than 70% of its
computational time.

To interpret the mechanisms modifying the drag coefficient, two different view points, either
aerodynamic or ‘‘geometric’’, can be taken [8]: on an aerodynamic view point, it has been ob-
served by Morelli [9] and Hucho [1] that minimizing the trailing vortices in the wake will reduce
drag. On a geometric view point, it seems to be interesting to minimize the rear base to reduce the

Fig. 5. Schematic sketch of a vehicle-like body rear end flow (issued from [10]). Left: strong longitudinal vortices
corresponding to a high drag. Right: weak longitudinal vortices corresponding to a low drag.

Fig. 4. Convergence results for 3D shape optimization with 3 parameters.

F. Muyl et al. / Computers & Fluids 33 (2004) 849–858 855

Optimization of a mockup car with 4 param. (Dumas-Muyr)
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Perspectives

Parallel and Stream Computing (MPI and CUDA)
Enormous systems: automatic Differentiations ?
Link with CAD
Progresses of G.A. algorithms

Bis petit obscurum et condit se Luna tenebris (Nostradamus)

"For Optimal Shape Design the future lies in mixing Gradient Free methods
with Differentiable Optimization”.

The End
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