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Important Applications

@ Aerodynamics: Shape optimization to improve airplanes, cars,
ventilators, turbines...

@ Hydrodynamics: wave drag of boats, pipes, by-pass, harbors...

@ Electromagnetics: Stealth airplane, antenna, missiles...

JiL
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Important Applications

@ Aerodynamics: Shape optimization to improve airplanes, cars,
ventilators, turbines...

@ Hydrodynamics: wave drag of boats, pipes, by-pass, harbors...

@ Electromagnetics: Stealth airplane, antenna, missiles...
@ Combustion: Car and airplane engines, scramjets...

@ Turbulence: delay the separation of boundary layers, reduce
turbulent drag (active control, deformable airplane...) il
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Main Topics for Shape Optimization

min  E(v)
veVCcRa

@ Black Box Optimization: use only v — E(v)

@ Differentiable Optimization: use also grad,E(V)

E(v+dév) = E(v)+ < gradE(v),dv > +o(|lov||)
ov = —pgradE(v) = E(v +6v) — E(v) =~ —pl|/gradE(v)|?

@ Constrained Optimization: V={ve H : f(v)=0, g(v) <0}
@ Multi-criteria and Pareto optimality:

E(v) = Za,-E,-(V) 73w E(w) < E(v) Vi
i .l’ll

@ Topological Optimization: Embed the problem into a larger class
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An Academic Problem

e
c RE—

S | D | ) ]

g — S

min{/Drw—wdz  AG=0,inC—-8, wls=0 bloc = a}

SeSy

Wind tunnel Design by adapting S so that flow is uniform in D. Flow is
irrotational inviscid and 2D.

JiL
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Existence of Solution

Theorem
min  E(v)

veVcRrd

has a solution if V is closed, E is bounded from below, |.s.c. and
either V' is bounded or lim| || E(X) = +00

JiL
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Existence of Solution
Theorem
min  E(v)
veVcRrd
has a solution if V is closed, E is bounded from below, |.s.c. and
either V' is bounded or lim| || E(X) = +00
Thus if one can show that the criteria of the OSD problem is |.s.c. a

solution will exist. It has been shown by Sverak that this is so if the
number of connected component of Q2 is bounded.

In Allaire, Bucur, Delfour et al, it is shown that a penalization of the
perimeter of the unknown surface also induce existence in 2D.

Theorem The following problem has at least one solution:

min{/D|w—wd|2+e|S|2  AG=0,inC-8, wls=0 dloc = va}

SeSy ,_l’ll
Uniqueness is almost impossible to prove;
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Sensitivity Analysis

—AyY =1 inQ° Ye=0onT“:={x+ean: xerl}

Definition If4/, := lim 1 (v — 1) exists then +) is Gateau differentiable
with respect to T in the direction «. If+)!, is linear in « then ) is Frechet
differentiable. Similarly /

7/’ =9+ 67/104 + 1/1 ‘ g / — T

To compute ' and ¥ notice that, by Ilnearlty, they satlsfy the same
PDE but with f = 0. By Taylor expansion, x € I':

_ e _ €EQ 8wea azd)

0= (X +can) = (%) + ca— —(X) + 5 55 (X) + ..
Therefore
A 0 O O, PP
Ao =0 Wglr = —am, Ay =0 ylr = —a— 2 onal]
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Optimality Conditions

Consider the Wind Tunnel Problem with S = {x + ecan: x € S}. Think
of the PDE as the implicit definition of S — (S). Then J() is a
function of S only:

J(S) = /D [ — pal? = /D [ — gl + 2¢ /D (4 — )il + 0e)

with Ay, =0, Wl |s = —ags. ¥lr-s=0.
If J is Frechet differentiable there exists ¢ such that J/, = [ £a. To find
& we must use the adjoint trick and introduce

—Ap = (¥ = ¢a)lp, plr=0

Then
€ ! / / 8/17/)/
2 [ wd)wazz/%Ap:z/Awam/( o, + Lep)
D Q Q on
Corollary =2 [ R, -
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Conceptual Algorithm

@ 0. Choose a shape S°, a small number p > 0 and set m=0.
@ 1. Compute ¥ and p™ by solving

7A¢m = 07 ¢m|S'" = Oa ¢m|rd = 7/)d
—Ap™ = (™ —1pg)Ip, Plrm =0

@ 2. Set
__ opToy" mt _ . m

@ 3.Setm«— m+1andgoto1.

It works because
m m
HE™ ) = UM + [ ca=d(sT) -2 [ (BT o)
gm sm on on
L
Notice that there is a loss of regularity from S™ to S+ -
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Implementation with freefem++

real x1 =5, L=0.3;

mesh th = square (30,30, [x,y*(0.2+x/x1)1)

func D=(x>0.4+L && x<0.6+L)* (y<0.1);

func psid = 0.8xy;

fespace Vh(th,P1l);

Vh psi,p,w;

problem streamf (psi,w)=int2d(th) (dx (psi) *dx(w) + dy (psi)xdy (w))
+on(l,4,psi = y/0.2)+on(2,psi=y/(0.2+1.0/x1)) + on(3,psi=1);

problem adjoint (p,w)=int2d (th) (dx(
— int2d(th) (Dx (psi-psid) »w)+ on
Vh a=0.2+x/x1, gradg;
for(int i=0;1i<100;i++) {
streamf; adjoint;
real E = int2d(th) (D (psi-psid) "2)/2;
gradkE = dx(psi)«*dx(p) + dy(psi)xdy(p);
a=a(x,0)-50+«gradE (x,a(x,0) ) *xx (1-x);
th = square (30,30, [x,y*a(x,0)1);

) i

Execute
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Regularity Preserving Algorithms: Sobolev Gradients

_ @% m+1 __ . m

= ~P5nan S™={x+an: xe 8™}
can be replaced by
d?a dp o

92 =P o (S0) =d(s1) =0. S™V={x+an: x e 8™}

25 &
= ™ - s =2 [ ags =2 [ (GF o)

pJs p
Alternatively one may use a smoothing operator like
, . 0
B — ~v(B) = v where v is solution of — Av =20 a—;\r =f.

Let S™1 = {x + y(B)n: x € S™} with 5 = L%

J(S™1) —J(S™) = 2p/r’v(ﬂ)ﬁ = 2P/r V% = 2,0/9 N il
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Geometric Constraints
@ Projected Gradient: the case [, = 1.

M= {x+an(x): xer} = 5J:/Xads+o(|a|)
r

r

_{x—i—(a—‘; a)n(x): xerl} - X‘én B
- 6/ / ‘r/ )+ ofjal) = of/al)
5J = / = /X) /a)ds+ o|a)

JiL
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Geometric Constraints
@ Projected Gradient: the case [, = 1.

M= {x+an(x): xer} = 5J:/Xads+o(|a|)
r

={x+ (a— ‘1r a)n(x): x €T} ey Ql_,,/

- - / ‘r/ )+ ofjal) = of/al)
5J = / |F|/X) /a)ds+o(a|)

@ Penalization: replace J by

r

.1

1
+—|F(QT 2+ —|G(Q)]?
€ w

to maintain F(Q < 0), G(Q) =0 JiL
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State Constraints

mvin{J(u, v): Au=g(v), F(u,v) <0}
where Ais a linear invertible operator.
6J = J,0u+ J,6v with Asu = g|dv, Flou+ F,6v<0if F(u,v)=0
Introducing A"p = J/,, ATq = F/ leads to

Jou=06uA"p=pAsu=pg,iv  Flou=éuA"p=qgAsu=qgdg,ov
u v u

§d=(p-g,+J,))svwith (q- g, + F,)ov < 0if F(u,v) =0
A direction of descent is built from this. il
Notice that two adjoint vectors are needed
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Example

Build a stealth airfoil with "good" aerodynamic properties

mingJ = [|u]? : [ =a
Wu+Au=0,inQ ur=g
*AQ/) :07 in Q 1/)|r :¢d
Requires the following
Lemma

of  f
! _ . — _
F_{x+an.xer}:>5/rf_/ra(an H)

where R is the mean radius of curvature.
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Computed by A. Baron
JiL
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The Minimum Drag Problem

"1

J(Q) = _ min —||Vul[Pdx : Ulao —

@) QeC,voll(c)1/QgH | lon = g
UVUTva*VAU:O‘ V.UZO7

The solution exists in 2D if the nb of connected component is
bounded. In 3D ? but probably yes because the criteria is the energy
of the system. For safety regularize by adding ecall(C).

JiL
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The Minimum Drag Problem

"1
J(Q) = min _Ivullldx - o
(@) QGC,VOII(C)1/QZH ul[=dx Ulpa =g

uVu+Vp—-—vAu=0, V-u=0,
The solution exists in 2D if the nb of connected component is
bounded. In 3D ? but probably yes because the criteria is the energy

of the system. For safety regularize by adding ecall(C).
Proposition

0 = {x +an(x): x €I} =7 5J:/ xads + o(|al)
o0
ou 10u ow
aQa%'(E%JF%)—FO(‘O{D

where —uVw + wVu' +Vq—vAw =vAu, V- -w=0, wlspo=0

od =

From JFM 73. See also, Modi, Gunzberger, Tasan, Jameson... Q7
What minimal norm on «?
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Proof

Recall that § [, f = [ af. Then

1
5J:/w-v5u+/ o VUl + o(|a))
2 Jaq

and suVu+ uVéu+ Vép —vAsu=0, V- -éu=0, dulr = —a@

on
So /Vu Véu = — /5uAu

:—V/( uvw +wvuT +Vq - vAw)su
Q

:_1/(v.(u®6u+5u® u)—yA(Su)W—/V(?WMJrO(IOél)
v o Jr on

JiL
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Minimum drag object of given area at Reynold 50 (Courtesy of
Kawahara et al.).

Pironneau (LJLL) Differentiable and quasi-differentiable method: MLAO09
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Compressible Flows
Euler or Navier-Stokes equations

P
W= (pu> HW +V - F(W)-V - G(W, VW) =0

W(0,x) =0, +B.C.

Involves an adjoint equation

0P+ (F/(W) — G{(W,VW) VP -V - (Gpo(W, VW) VP) =0

JiL
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Some Realizations - A. Jameson (I)

H
% -
o e

[ i
i A

Plain vs Sobolev Gradients

Before & after optimization ¥/
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Some Realizations - A. Jameson (II)

COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS
B747 WING-BODY
REN=10000 , MACT=03860 . cL=0419

SYMBOL  SOLRCZ  ALPHA  CD
———— STuTDEENS 23 00w

co; Jr:.[m: MCDONNELL DOU LTL{@:.,
Optimization of the Boeing 747: 10% wing drag saving (5% aircraft dragji
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Some Realizations - A. Jameson (lll)

AIRPLAN= AIRPLANE

DENSITY flom 06250t0  1.1000 DENSITY fom D0.6250to  1.1000

Falcon jet: Cp decreases from 234 to 216

Pironneau (LJLL) Differentiable and quasi-differentiable method:

MLA09
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Outline

e Discretization
@ Summary

JiL
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Summary
@ Optimal Shape Design of S relies on Optimization

mSin Jw,S) : A(Slu=f

@ The Continuous problem is well posed after regularization
min J(u, S) +€S]2: ASu=f

@ The L2 local gradient x is computable by calculus of variation:

6J:/Sxa+o(]a), S(a) = {x+a(x)n(x) : x € S}

@ The Sobolev gradient is the right tool for gradient methods:
—Asf=x, S™'={x—pA(x)n(x) : x € 8"}

Pironneau (LJLL) Differentiable and quasi-differentiable method: MLAO09
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M —
c RE—

S [D] . []

min J(S) = {/D\w—wdﬁ . AP =0,inC—8, Yls=0 dloc = vy

Discretization of gradients J!, = V¢)Vp where —Ap = 2Ip(¢) — 14),
p|r = 0 or derivation of gradient for the discrete problem?

Optimization of the Discrete Problem

e The Finite Element Method,

e Discrete Gradients
e Finite Volume Methods

JiL
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The Finite Element Method

Q is covered with triangles Ty and g’ are the vertices. The PDE of the
wind tunnel problem is approximated by

/QVWVWh =0, Ynls=0, ¥pr =g

for all wy, continuous and affine on each T, and zero on 0f2.

da
_ B 2 2
J= [on—vallt+e [ 1521

| m
Let 5gn(x) = 3, 6q;w(x), the basis {w/}, the hat function of g;. =
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Summary: Continuous versus Discrete Gradient

min J(S) = {/W—wdF: CAG=0,inC- 8, tls=0 Ploc = ta}

od = /(),Odl with —Ap = 2(v) — vg)Ip

~v _qg 9v, _0poy
use normal displacement ~v : — Av =0, \r = 3nan

For the discrete system

min J(S5) —{/ o — ol /vwh VW — 0, Vj dnls = 0 tnloc = da}

ql
od = / (th(Vc)qh + quh )Vph — Vp - VPV - 5C]h = Z X,-(Sqf
Q

with / Vpavw =2 / (o — a)W, Pn € Vo
JQ D

And use a smoothed version of x; to move the vertices and find the new il
shape (and triangulation).
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Topological Optimization

e Applies when the topology is not known
e Black-box favors Genetic algorithm (yet slow)
e Combine topological and geometrical shape design?

'v
A

From T. Borrval and J. Petterson From Schoenauer et al

JiL
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Topological Derivatives

Following the work of L. Tartar and N. Kikuchi, J. Sokolowski came with
the following idea (f has zero mean, B(0, 1) the unit ball)

—Au="finQ, ulr =0,
—Auc = fin Q\B(xo,€), ulr =0,
Neumann or Dirichlet on 90B(xg,¢) = 0,
US(O(X) = lim._o El'y(ue - U)

exists and is not identically 0 or +oc for some value of ~.
Theorem For the Neumann (resp Dirichlet) problem v = 2 (resp loge)
in 2D and v’ solves

/ Vu-Vw = cVuVw|y,
Q

This is sufficient for gradient type algorithm, but convergence is
usually a problem. i
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Applications of Topological Optimization

b »

Stokes flow drag optimization (courtesy of M. Masmoudi)

Pironneau (LJLL) Differentiable and quasi-differentiable method: MLA09
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Micro Channel flow (Borrval and Petterson)
Optimization of a micro channel flow averaged vertically gives

5
i i = — 2 N — A = . = =
z(r)r:;gzj(u) /D(u Uq) 572U u+Vp=0, V-u=0, ur=g

where the pointwise values of functions of Z are equal to € or h. Let

p = 2.5272; notice that

ag + a
2

Therefore if U’ exists, the derivative w/r “p, becoming p¢" at xp, it must
be

[ou] = plu] + [plu &= 8] = a1 — a

pu +pu— AU +Vp =0 V- -U =0with o/ = [p]d(x — x0), U|T=0
But u is continuous so U = u. Introduce the adjoint state v, g

pv—Av+Vq=0 V-g=2(u—ug)xp, Vv|IT=0
= J' = —[plu(x0)p(x0)
Replace : p2 by p1 at xo when [p]u(xp)p(xg) > 0

Pironneau (LJLL) Differentiable and quasi-differentiable method: MLAO09 33/51
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Important Applications

Solid mechanics: Weight optimization of airplanes, cars, parts

Topological optimization of the weight of a stool for a given strength
Pironneau (LJLL)

(courtesy of F. Jouve et al)
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Steepest Descent with Mesh Refinement

Now consider the same algorithm with parameter refinement

(Steepest descent with refinement)

{
while || grad,Jn(z™)|| > eh” do

z™ = zM — p grad,J,(z™) where p such that,
= Bpllw||? < Jn(2™ — pw) — In(2™) < —ap||w|?
withw = grad,Jp(zm) Setm:=m+1;

}
h:=h/2;
}
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Steepest Descent and Inexact Gradients

e Convergence obvious : it is either S.Descent or gradJ, — 0 because
h— h/2.

e Gain in speed : we do not need the exact gradient grad,Jp!

e Let N be an iteration parameter and J, y =~ J; and

grad,Jp n = grad,J in the sense that

Nlim JIn.n(Z) = Jn(2) Nlim grad, nJhn(2) = grad,Jdp(2)

Add K and N(h) with N(h) — oo when h — 0 :

JiL
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Inexact Gradient (Il)

(E. Polak et al)(Steepest descent with Goldstein’s rule mesh
refinement and approximate gradients)
while h > hpin{
while | grad,,J™| > eh?{
try to find a step size p with w = grad,,J(z™)

= Bpllwl® < J(Z" — pw) — J(27) < —ap|wlf?

if success then
{zM1 = zM — p grad,\,J™; m:=m+1,}
else N:.=N+K;
}
h:=h/2; N:= N(h);
}
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algorithm

The convergence could be established from the observation that
Goldstein’s rule gives a bound on the step size:

—Bpgrad,J - h < J(z+ ph) —
grad,J - h
J"(§)hh

2
J(z) = pgrad,J - h+ p—J”hh

= p>2(6-1) so JJ™ —ym < 2 (1

[[J7]]
Thus at each grid level the number of gradient iterations is bounded by
O(h—27). Therefore the algorithm does not jam hence convergence.

)| grad,J|?

00355 f

cossf |

0.034 \
3 ooms
8
o0m
uuuuu
o052
003t

o £l m %
Pironneau (LJLL)
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Mesh Refinements
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Finite Difference Gradient

h2
(3) L
6 +

f&+2f“”:FuﬂJ®g—f
Ref(x+l?f)’—f(x)
f(x + h) — f(x = h)

= f'(x) + O(h?)

h? h*
— f(x) + 3 )T
fi(x)+f 6+f 60+

2h
F(x + h)— f(x — h) F(x +ih) — f(x —ih)
4h +Re 4ih

= f'(x) + O(hP)

JiL
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Principle of Automatic Differentiation

Let J(u) = |u — ugl?, then its differential is

0d =2(u — ug)(du — duy) gz =2(u—uy)(1.0-0.0)
Obviously the derivative of J with respect to u is obtained by putting
ou=1, dug = 0. Now suppose that J is programmed in C/C++ by

double J(double u, double u_d) {
double z = u-u_d;
z = zx(u-u_d);
return z;

}
int main(){ double u=2,u_d = 0.1;
cout << J(u,u_d) << endl;

}

A program which computes J and its differential can be obtained by
writing above each differentiable line its differentiated form: J
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A simple example (cont)

class ddouble ({public: double v,d;
ddouble (double a, double b=0){ v = a; d=b;}
bi

ddouble JandDJ (ddouble u, ddouble u_d)
{ ddouble z;
z.d = u.d - u_d.d;

zZz.v = u.v-u_d.v;
z.d= z.dx(u.v-u_d.v) + z.vx(u.d - u_d.d);
z = zx(u-u_d);

return z;
}
int main ()
{
ddouble u(2.,1.), u_d= 0.1, J = JandDJ(u,u_d);
cout << J << " dJ="<<dJ<<endl;

} il
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The class ddouble

class ddouble{ public: double v[2];
ddouble (double a, double b=0){ vI[0] = a; vI[l]l=b;}
ddouble operator=(const ddouble& a)
{ val[l] = a.v[1l]; val[0O]l=a.v[0];
return *this;

}
friend ddouble operator-(const ddouble& a,const ddouble& b)

4

{ ddouble c;
c.v[1] = a.v[1] - b.v[1]; // (a-b)’'=a’-b’
c.v[0] = a.v[0] = b.v[0];

return c;
}
friend ddouble operatorx (const ddouble& a,const ddouble& b)

{ ddouble c;
c.v[1l] = a.v[1l]l*b.v[0] + a.v[0]* b.v[1];
c.v[0] = a.v[0] * b.v[0];
return c;}
bi il
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A Simple Example (final)

#include "ddouble.hpp"

ddouble J(ddouble u, ddouble u_d) {
ddouble z = u-u_d;
z = zx(u-u_d);
return z;
}
int main () {
ddouble u=2, u_d = 0.1;
u.v[1l]=1;
cout << J(u,u_d).v[1] << endl;
}

Simply replace all double by ddouble and link with the class lib.
A few pitfalls: e.qg.

ddouble sqgrt (ddouble x) { ddouble y;
y.v[1l]=x.v[1l]/sqgrt (fabs{x.v[0]) +eps); y.v[0]=sqrt(x.v[0tzj
return vy; }
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Limitations

program newtontest
x=0.0;

al=0.5

call newton(x,10,al)
write(*,*) x

end

subroutine newton (x,n,al)
do i=1,n
f = x—alphax*cos (x)
fp= l+alphaxsin (x)
x=x-f/fp
enddo
return
end

2n adjoint variables are needed! while the theory is

f(x,a)=0 = Xfi+f =0 = x'=

f/

A

So it is better to understand the output of AD-reverse and clean it. see

www.autodiff.org
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Tapenade

program newtontest

x=0.0

xb=2

al=0.5

call newton_b(x,xb,5,al,alb)
write (x,*) x,xb

end

SUBROUTINE NEWTON_B (x,xb,n,al,alb)

DO i=1,n alb
CALL PUSHREAL4 (
f = x - alxCOS(
CALL PUSHREAL4 (
fp = 1 + al*SIN
CALL PUSHREAL4 (
x = x - f/fp

ENDDO

f)
x)
fp)
(x)
x)

Pironneau (LJLL)

CALL PUSHINTEGER4 (i-1)
alb = 0.0

CALL POPINTEGER4 (nb)
DO i=nb,1,-1

CALL POPREAL4 (x)
fb = - (xb/fp)

fpb = fxxb/fp**2
CALL POPREALA4 (fp)

alb+SIN (x) »fpb-COS (x) xfb

xb = xb + al*xCOS (x) ~fpb
(al*SIN(x)+1.0) *fb

CALL POPREALA4 (f)

ENDDO

END

JiL
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Optimization of a wing profile

Drag is mostly pressure by the shock. The lift & area are imposed
1 2 1 2
J(u,p,0) =F - Uso + —|F X Uso — CJ] +B( dx — a)
€ S

with F = [g(pn+ (uVu+ VuT)) and Navier-Stokes + k — € + wall laws

e il
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Optimization of a 3D Business Jet

Done by B. Mohammadi in a few hours on a workstation i
Ji
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Gradient Free Methods

The main motivation is the non access to the source and the
prototyping speed

@ Powells’ NEWUOA

@ Evolutionary algorithms

@ Hybrid methods
[width=5cm]rastrigin Rastrigin’s test with 20 param

Pironneau (LJLL) Differentiable and quasi-differentiable method: MLAO09

JiL

49/51



Proposed by L. Dumas

e Random initialization of a population
e Until convergence do:
@ GA evolution (selection, crossover and mutation)

@ If stagnation during three generations then three iterations of
BFGS on the current best individual

e Repeat
T T—————
Evolution of drag coefficient
\ - GA Phases
0.242 — BFGS Phases
4 Lo w=== BFGS Method
R,
E NN,
. e LR SN S —
- g DRAL N e
e ——— =
@
Symmetry plane Transverse pl 8
0238
go
e 0236
> 0 100 200 300 400

Computing time (in hours)

Optimization of a mockup car with 4 param. (Dumas-Muyr)
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Perspectives

@ Parallel and Stream Computing (MPI and CUDA)
@ Enormous systems: automatic Differentiations ?
@ Link with CAD

@ Progresses of G.A. algorithms

Bis petit obscurum et condit se Luna tenebris (Nostradamus)

"For Optimal Shape Design the future lies in mixing Gradient Free methods
with Differentiable Optimization”.

The End

JiL
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