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ULB Machine Learning Group (MLG)

10 researchers (2 prof, 4 PostDoc, 4 PhD students).

Research topics: Classification, Computational statistics, Data
mining, Regression, Time series prediction, Stochastic
optimization.

Applications: Bioinformatics, Biomedical, Industry, Sensor
networks, Spatial data mining, Fraud detection.

Computing facilities: cluster of 16 processors, Wireless Sensor
Lab.

Website: www.ulb.ac.be/di/mlg.
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CENAERO

Private Non-Profit Research Centre

3 universities (ULB, UCL, ULg)

1 research center (VKI)

50 industry members

incorporated in 2002 in Gosselies

35 employees

Activities and Skills:

development of simulation softwares for multidisciplinary
problems in aeronautics

R&D in supercomputing, advanced numerical methods,
parallel computing

advanced engineering studies for the industry

High Performance Computing (HPC) center
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Design space exploration with physical simulator

Complex phenomenon modeled by a complex parametric
simulator taking into account physics law and human
expertise.

Need of designing appropriate parameters in order to
maximize some (complex) cost function.
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Design space exploration with machine learning
approximator

Two possible configurations
1 model replaces simulator
2 model allows a parmonious use of simulator (experimental

design)



Design space exploration and machine learning Local Learning for DSE Lazy Learning Heat pipe Experimental results Experimental

Motivations

Computational and economic cost of the simulator.

Slowness of the simulator.

Understanding of the role of the design parameters.

Dimensionality reduction.

Sensitivity analysis.

Taking advantage of historical observations.

Generalization to other cost functions.

Large range of applications: aeronautics [10, 11, 6],
electronics [12], multimedia.
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System design: formalization

A vector x ∈ X ⊂ R
n of design parameters (also design

configuration), where X is called the design space.

A vector y ∈ Y ⊂ R
m of design objectives to be maximized

which are used to assess the quality of a design.

An evaluation or objective function E : X → Y which maps
the design space into the objectif space.

A search strategy π which explores the design space in order
to find good or optimal configurations x according to the
evaluation vector E (x).

A strategy dependent evaluation function Eπ : X → Y where

Eπ(x ;K ) = max
x (k),k=0,...,K

E (x(k)),

where x(0) = x and x(k) is the set of states explored by the
search strategy π starting in x and proceeding for K steps.
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Strategy dependent evaluation function
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Turbine example

In the case of tubine design

the design parameters x define the blade geometry

a design objectif y is the outlet flow angle,

the role of evaluation function E (x) could be played by
Navier-Stokes simulator
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Machine Learning and system design

Two existing approaches

1 estimation of the evalution function E from a set of N
observed (simulated) pairs 〈xi , yi 〉, i = 1, . . . ,N independently
of the search strategy

2 estimation of the strategy dependent evalution function Eπ

for a given search strategy π on the basis of a set of N

observed search trajectories 〈x
(k)
i , y

(k)
i 〉, i = 1, . . . ,N,

k = 0, . . . ,K (STAGE algorithm by Boyan and Moore [8]).
The training dataset is then

D = {x
(0)
i ,max

k
(y

(k)
i )}, i = 1, . . . ,N

Note that E and Eπ can be quite different! Also the amount of
simulation required to setup the training set in the second case is
much higher.
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Machine Learning and system design

Once a number N of input/output pairs is obtained by running the
simulator (and the optimization) the problem boils down to a
supervised learning problem with some specificites:

possibility of multiple outputs (multi-criteria problems)

possible large dimensionality

few samples

on line or adaptive learning

In litterature local learning techniques appear to be often employed
for performing such tasks.
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Locally weighted regression
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Local Learning for DSE

Local learning presents a set of specific features which make of it a
promising tool in system design.

No a priori knowledge on the process underlying the

data:no assumption on the existence of a global function
describing the data and no assumptions on the properties of
the noise. This feature is particularly relevant in real datasets
where problems of missing features, non stationarity and
measurement errors make appealing a data-driven and
assumption-free approach .

On-line learning capability: LL can easily deal with on-line
learning tasks where the number of training samples increases
with time. In this case, the adaptiveness of the method is
obtained by simply adding new points to the stored dataset.
This is convenient in design problems where the number of
available samples increases all along the exploration of the
design space.
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Local Learning for DSE

Effective feature selection: The usefulness of a local
modeling approach for reducing the cost of feature selection
was first presented by Maron and Moore [9]. The idea consists
in assessing a large number of feature subsets by performing
cross-validation only on a reduced test set. On the basis of
well-known statistical results, it is possible to show that
families of good feature subsets can be rapidly found by
quickly discarding the bad subsets and concentrating the
computational effort on the better ones (Hoeffding race with
reference to Hoeffding’s formula which puts a bound on the
accuracy of a sampled mean of N observations as an
estimator of the expected value).

Gradient estimation: Local search algorithms may take
advantage of the local approximation of the objective function.



Design space exploration and machine learning Local Learning for DSE Lazy Learning Heat pipe Experimental results Experimental

Lazy Learning [3, 4]

Locally weighted regression which addresses the bias/variance
dilemma.

Automatic selection of the number of neighbors (aka
bandwidth selection) by PRESS cross-validation

Recursive least-squares to speed up the estimation of the
alternative locally linear models

Combination of local models.

Confidence intervals associated to each prediction.

Multi-input multi-output version [5].

Available implementation in MATLAB and R.
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Leave-one-out for linear models

PARAMETRIC IDENTIFICATION 

ON N SAMPLES

- PARAMETRIC IDENTIFICATION

- PUT THE  j-th SAMPLE ASIDE

- TEST ON THE  j-th SAMPLE 

ON N-1 SAMPLES

TRAINING SET

PRESS STATISTIC

LEAVE-ONE-OUT

N TIMES
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Leave-one-out for linear models

ecv
j = yj − x′j β̂−j =

yj − x′j β̂

1 − hjj

,

where wii =
√

K (d(xi , xq)/h), Z = WX, z′j is the j th row of Z

and therefore zj = wjjxj , and where hjj is the j th diagonal element
of the Hat matrix H = Z(Z′Z)−1Z′.
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Recursive leave-one-out

If the weight function K (·) is the indicator function



































P(k + 1) = P(k) −
P(k)x(k + 1)x′(k + 1)P(k)

1 + x′(k + 1)P(k)x(k + 1)

γ(k + 1) = P(k + 1)x(k + 1)

e(k + 1) = y(k + 1) − x′(k + 1)β̂(k)

β̂(k + 1) = β̂(k) + γ(k + 1)e(k + 1)

where P(k) = (Z′Z)−1 when h = h(k), and where x(k + 1) is the
(k + 1)th nearest neighbor of the query point.

ecv
i (k + 1) =

yi − x′i β̂(k + 1)

1 − x′iP(k + 1)xi

k̂ = arg min
k

MSE(k) = arg min
k

∑k
i=1 ωi (e

cv
i (k))2

∑k
i=1 ωi
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LL model selection

MSE (k  ), mβ(k  )m q
MSE (k  ), Mβ(k  )M q

MSE (k  ), mβ(k  )m
loo

MSE (k  ), Mβ(k  )M
loo

TRAINING
     SET

LOCAL WEIGHTED REGRESSION

IDENTIFICATION
STRUCTURAL

DIFFERENT BANDWIDTHS

LEAVE-ONE-OUT

yq
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Heat pipes

Since a couple of decades, the heat pipe technology has
proven its efficiency in the thermal control of highly dissipative
equipments such as the electronic component of satellites.

A heat pipe is a closed thermodynamic system in which a
liquid evaporates in the vicinity of a dissipative source and
condenses in contact with a cold region. To insure its passive
working in a microgravity environment, the heat pipe is
composed of a vapour duct surrounded by a capillary
structure.

This structure allows for the fluid to return from the cold zone
to the heat source.

By using a large latent heat fluid, the heat pipe absorbs an
important energy quantity during the phase change process,
inducing a very high thermal transport capacity for weak
variations in temperature.
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A heat pipe

Heat enters the pipe and causes the liquid to boil. The resulting vapors

expand into the pipe, carrying that heat. When they reach the cold end,

the vapors condense back into a liquid, releasing the heat. Inside the

pipe, a thin layer of material draws the liquid back along the pipe to the

beginning point, where the cylcle is repeated.
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The Heat Pipe simulator

Heat pipes are being used very often in particular applications when
conventional cooling methods are not suitable. Once the need for
heat pipe arises, the most appropriate heat pipe parameters need to
be selected.

In collaboration with Euro Heat Pipes (Nivelles, Belgium),
CENAERO is continuously improving a thermohydraulic model
Hea-P able to predict the heat transport capacity of grooved heat
pipes for microgravity and gravity assisted applications.

Hea-P includes a one-dimensional hydraulic model able to predict
the maximum heat transport capacity of grooved heat pipes. The
code relies on the equilibrium between the friction losses induced by
the liquid and the vapor motions and the capillary pressure
developed in the grooves. The convergence criterion imposed to
calculate the maximum heat transport capacity assumes the
maximum capillary pressure is reached at the end of the evaporator
section.

More details on Cenaero web page.
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Section of a heat-pipe
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Groove of a heat pipe
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Simulator dataset 1

The first simulator dataset, henceafter D1, is composed of
N = 1260 samples. It has n = 3 inputs and m = 2 outputs. The
input design parameters are

the internal diameter of the heat pipe.

the diameter of the groove (dhyd).

the inclination angle of the heat pipe.

The output design criteria are:

y1: power (in Watt) released by the heat pipe (to be
maximized).

y2: external diameter of the heat pipe (to be minimized).
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Simulator dataset 2

The second simulator dataset, henceafter D2, is composed of
N = 820 samples. It has n = 6 input variables and m = 2 output
variables. The input design parameters are:

The internal diameter of the heat pipe.

The number of groove in the heat-pipe.

The diameter of the groove (dhyd).

The width of the bottom of the grooves (wb).

The width of the top of the grooves (wt).

The depth of the grooves (h).

The two output design criteria are the same as in D1: y1 (to be
maximized) and y2 (to be minimized).
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Experimental setting

Experiments aims to assess the reliability obtained by replacing the
simulator with a learned model.
For each dataset we carried out two experiments

1 prediction of the evaluation function

y = w1y1 − w2y2, w1 + w2 = 1

in a training and test setting. We consider four learners: LIN
(linear model), LL (Lazy Learning), NN (Feedforward Neural
Network), SVM (SVM with radial kernel).

2 prediction of the highest value of the evaluation function y
among the points in the test set. Comparison with random
selection and local search.
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Prediction of the evaluation function

The accuracy is measured in terms of Root Mean Square Error
(averaged over different weightings of the evaluation function and
different test sets)

Dataset D1 (size training sets: 300, . . . , 500)

LIN LL NN SVM

0.231 0.072 0.072 0.082

Dataset D2 (size training sets: 50, . . . , 200)

LIN LL NN SVM

0.43 0.39 1.33 0.44

Input and output data were normalized.
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Prediction of the maximum

The error is the differenc between the real maximum in the test set
and the value of the test instance what is predicted to be maximal.
The accuracy is measured in terms of Root Mean Square Error
(averaged over different weightings of the evaluation function and
different test sets)

Dataset D1

LIN LL NN SVM RAND LOCAL

0.805 0.093 0.193 0.112 2.37 2.02

Dataset D2

LIN LL NN SVM RAND LOCAL

1.17 0.88 1.30 0.91 3.21 2.91
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Dataset D1: Prediction of the maximum

w1 denotes the weight of the criterion 1 in the multicriteria
evaluation function y = w1y1 − w2y2
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Dataset D2: Prediction of the maximum
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Note how the difficulty of the problem strongly varies with the
weighting.
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Experimental design for optimization

So far we have considered the case where the learned model
substitutes the simulator.

There is however another configuration where learned model
can be employed: predict where to perform the next
experiment(s).
Several algorithms have been proposed in machine
learning [1]:

PMAX: next experiment is taken at the point which maximizes
the estimate of E . Maximization can be performed by
conventional optimization algorithms, e.g. evolutionary
algorithms [7].
IEMAX: next experiment is taken at the point which
maximizes the “optimistic model,” i.e. the 95th-percentile
values of the model’s predicted confidence intervals.
Q2 algorithm [2]: it combines PMAX and the principle of
Response Surface Methods by adopting local learning
techniques (local quadratic approximation).
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PMAX [7]
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PMAX
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PMAX
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Considerations

In front of excessive uncertainty, does it make really sense to
take the estimated maximum for next simulation?

Or rather select the point which can improve more the
probability of correct selection?

Exploration vs. exploitation issues.

Confidence returned by learner allows to take advantage of
techniques for dealing with stochastic optimization problems,
e.g. bandit algorithms.

Machine learning does not provide any more the solution but
an ingredient to help finding a solution.
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Conclusions

Design space exploration is a complex task in industrial
settings (e.g. aereonautics) which demands considerable
human intervention and insight.

Most existing simulators are lenghty and expensive to run.

Machine learning techniques can take advantage of collected
simulated data and either replace or support the simulator in
the design optimization process.

In particular, multivariate and multicriteria tasks represent an
important domain of application.

Time for real multi-input multi-output techniques?

Demand for learning techniques able to provide accurate
predictions together with confidence intervals.
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Future work

Development of specific optimization techniques to deal with
estimated value functions. They should take into account

the properties of the learning algorithm in the optimization
strategy

exploration vs. exploitation issues: notions of probability of
correct selection

cost of additional simulations vs. cost of optimization of an
estimated value function

cost of optimization vs. increased uncertainty (e.g. reduction
of dimensionality at the cost of a less accurate evaluation
function).
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