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Noninvasive Brain-Computer Interface

DECODING



‚Brain Pong‘ with BBCI



[From Birbaumer et al.] [From Pfurtscheller et al.]

Noninvasive BCI: clinical applications

Brain-Computer Interface

Signal Processing

EEG
Acquisition

EEG
Acquisition

Application
Interface

Application
Interface

FES Device
Grasp-Pattern

3 channel
Stimulation

BBCI: Leitmotiv: ›let the machines learn‹



EEG based noninvasive BCI



The cerebral cocktail party problem

• use ICA/NGCA 

projections for artifact 

and noise removal

• feature extraction and 

selection  

[cf. Ziehe et al. 2000, Blanchard et al. 2006]



BBCI paradigms

- healthy subjects (BCI untrained)  perform "imaginary” movements (ERD/ERS)

- instruction: imagine 

- squezzing a ball, 

- kicking a ball, 

- feel touch

Leitmotiv: ›let the machines learn‹



Towards imaginations: Modulation of Brain Rhythms

IMAGINATION of left arm

Single channel



Variance I: Single-trial vs. Averaging

Single channel



Variance II: Trial to trial variability



Variance III: inter subject variability [l vs r]



BCI with machine learning: training



BBCI paradigms

- healthy subjects untrained for BCI

A:  training 20min: right/left hand imagined movements

→ infer the respective brain acivities (ML & SP)

B:  online feedback session

Leitmotiv: ›let the machines learn‹



Playing with BCI: training session (20 min)



Machine learning approach to BCI: infer prototypical pattern

Inference by CSP Algorithm



BCI with machine learning: feedback



Lecture Blankertz here



BBCI Set-up

Artifact removal

[cf. Müller et al. 2001, 2007, 2008, Dornhege et al. 2003, 2007, Blankertz et al. 2004, 2005, 2006, 2007, 2008]



What can Machine Learning tell us about physiology?

[cf. Blankertz et al. 2001, 2006]
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ML for knowledge discovery



Results: Exploring the limits of untrained users



BCI: 1st session performance for novices



Spelling with BBCI: a communication for the disabled I



Spelling with BBCI: a communication for the disabled II 



Variance IV: covariate shift: from training to feedback

Need for adaptation !

[cf. Sugiyama & Müller 2005, Shenoy et al. 2005, 

Sugiyama et al. 2007]



Neurophysiological analysis

[cf. Krauledat et al. submitted]



Weighted Linear Regression for covariate shift compensation

yields unbiased estimator even under 

convariate shift
, choosing

[cf. Sugiyama & Müller 2005, Sugiyama et al. 2007]



BCI Illiteracy

Screening Study (N=80):

Cat I: good calibration (cb), good feedback (fb)

Cat II: good cb, no good fb

Cat III: no good cb

Percentage of  ~20% of naïve users: 

BCI accuracy does not reach level criterion,

i.e., control not accurate enough to control applications

design a predictor !



SMR-Predictor

Calculate the power spectral density (PSD) in  three Laplacian channels C3, Cz, 
C4 under rest cond.

Model each resulting curve by g = g1 + g2, with

g1 = g1 (x, λ, k) = k1 + k2 / xλ (estimated noise)

g2 = g2 (x, μ, σ, k) = k3 φ(x ; μ1 , σ1) + k4 φ (x ; μ2 , σ2) (2 peaks)

Proposed predictor: Average height of the larger peak



SMR-Predictor (Results)

As much as R2 = 30% (calibration) and R2 = 26% (feedback) of variability in BCI accuracy 

can be explained by the SMR predictor in our study sample!

Pearson R = 0.55 Pearson R = 0.51

[cf. Blankertz, Kübler, Müller et al. 2009]



Approach to „Cure“ BCI Illiteracy
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• Direct feedback -> Unspecific LDA classifier.

• Each trial, perform adaptation of the cls.

• Features: log band power (alpha and beta).

• Laplacian channels C3, C4 and Cz.

• Compute CSP and sel. Laps. from runs 1-3.

• Fixed CSP filters, automated laps. selection.

• Each trial retrain the classifier.

• Compute CSP from runs 4-6.

• Perform unsupervised adaptation of pooled mean.

• Update the bias of the classifier.

[cf. Vidaurre, Blankertz, Müller et al. in preparation]



Results (Grand Averages)



Example: one subject of Cat. III

!Runs 1 and 2 Runs 7 and 8

[cf. Vidaurre, Blankertz, Müller et al. 2009]



Real Man Machine Interaction

[Tangermann, Müller et al 2009]



Harvest from BCI-gaming

Research platform:
BCI gaming +

Machine Learning + 
Single Trial Analysis (MSM)

Limits of BCI-reaction time?

Mental states
JUST BEFORE

success or failure?

Dynamics: 
limits of temporal
control precision?



Before-after

Future issues: sensors

Popescu et al 2007



Future Issues: Shifting distributions within experiment



Conclusion

•  BBCI: non-invasive with high Information transfer rates for the Untrained

•  BBCI: Untrained, Calibration < 20min, data analysis <<10min, BCI experiment

•  5-8 letters/min mental typewriter on CeBit 06. Brain2Robot@Medica 07, lNdW 09

•  Machine Learning and modern data analysis is of central importance for BCI et al

•  Applications: 

Rehabilitation:  TOBI EU IP

Computational Neuroscience: Bernstein Centers Berlin

Man Machine Interaction: using BCI as a measuring device: brain@work

•  BBCI Sensors, software: IDA spinoffs

•  towards no training, non-cooperative behavior

• ‚illiterates‘, nonstationarity, wireless EEG 

FOR INFORMATION SEE: 

www.bbci.de
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BCI Competitions

For BCI IV Competition see www.bbci.de 



FOR INFORMATION SEE: www.bbci.de

Machine Learning open 

source software initiative: 

MLOSS see

www.jmlr.org
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Topic of This Section

Method:

classi�cation of spatio-temporal features;

shrinkage of the sample covariance matrix to counterbalance
the estimation bias

Application:

classi�cation of single-trial ERPs in an attention-based speller



Some Neurophysiological Background

An infrequent stimulus in a series of standard stimuli evokes a P300
component at central scalp position if attended:

Cz

N1

P3

Cz

The presentation of a visual stimulus elicits a Visual Evoked
Potential (VEP) in visual cortex if focused:

Oz

Oz

N1

P1



Experimental Design

Classic Matrix Speller Attention-based Hex-o-Spell

See Poster W07 (Treder et al.) for a investigation of overt vs.
covert attention and a comparison of those two speller designs.



Experimental Design

Classic Matrix Speller Attention-based Hex-o-Spell

See Poster W07 (Treder et al.) for a investigation of overt vs.
covert attention and a comparison of those two speller designs.



Single-subject ERPs in Hex-o-Spell

Data set for illustration of classi�cation methods:
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Topographies of ERP Components

There are several ERP components that can be used to determine
the attended symbol:
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Classi�cation of Temporal Features

As a �rst step: classi�cation on raw time courses (115�535 ms) in
single channels. The result is displayed as scalp map:
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Extraction of Spatial Features
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Extraction of Spatial Features
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The r2-Matrix of Di�erences

The temporal and spatial structure of the di�erence between ERPs
of di�erent conditions can be investigated by the signed r2-matrix:
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Spatial Features

#01: std #02: std #03: std #04: std #05: dev #06: std

#07: std #08: dev #09: std #10: std #11: std #12: dev

#13: std #14: std #15: std #16: std #17: dev #18: std

#19: std #20: std #21: std #22: std #23: dev #24: dev



Linear Classi�er as Spatial Filter

A linear classi�er that was trained on spatial features can also be
regarded as a spatial �lter.
Let w be the LDA weight vector and X ∈ R#chans×#time points be
continuous EEG signals. Then

Xf := w>X ∈ R1×#time points

is the result of spatial �ltering: each channel of X is weighted with
the corresponding component of w and summed up.

The weight vector of the
classi�er can be display as
scalp map:
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Classi�cation Results for Spatial Features
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Extraction of Spatio-Temporal Features
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Spatio-Temporal Features

Spatio-temporal features are typically high-dimensional (here
59 EEG channels × 7 time intervals = 413 dimensional features):
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Classi�cation Result for Spatio-Temporal Features
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Combined

Although information was added, classi�cation on the concatenated
feature becomes worse: over�tting.



Bias in Estimating Covariances

Let x1, . . . ,xn ∈ Rd be n vectors drawn from a d-dimensional
Gaussian distribution N (µ,Σ).
For classi�cation µ and Σ have to be estimated from the data:

µ̂ = 1
n

∑n
k=1 xk

Σ̂ = 1
n−1

∑n
k=1(xk − µ̂)(xk − µ̂)>

But, if the number of samples n is not large relative to the
dimension d, the estimation is error-prone.
There is a systematical bias:

Large Eigenvalues of Σ̂ are too large

Small Eigenvalues of Σ̂ are too small

This a�ects, e.g., classi�cation with LDA:
Normal vector of LDA: w = Σ̂−1(µ1 − µ2).



Bias in Estimating Covariances (2)
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A Remedy for Classi�cation

A simple way that can partly �x the bias is shrinkage: the
empirical covariance matrix is modi�ed to be more spherical.
In LDA the empirical covariance matrix Σ̂ is replaced by

Σ̃(γ) = (1− γ)Σ̂ + γνI

for a γ ∈ [0, 1] and ν de�ned as average Eigenvalue trace(Si)/d.

Since Σ̂ is positive semi-de�nite we can have an Eigenvalue
decomposition Σ̂ = VDV> with orthonormal V and diagonal D.
From

Σ̃ = (1− γ)VDV> + γνI = V ((1− γ)D + γνI) V>

we see that

Σ̃(γ) and Σ̂ have the same Eigenvectors (columns of V)

extreme Eigenvalues (large/small) are shrunk/extended
towards the average ν.

γ = 0 yields LDA without shrinkage, γ = 1 assumes spherical
covariance matrices.
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Modelselection

LDA with shrinkage of the empirical covariance matrix has one free
parameter (γ), also called hyperparameter, that needs to be
selected. There is no general way to do it.
Numerous strategies with di�erent properties exist, e.g.

empirical Bayes shrinkage estimator

MDL: Minimum Description Length

Model-selection based on cross-validation.

...

An easy (and also time-consuming) way is model-selection based on
cross-validation.



Regularized LDA at Work

Cross-validation results for di�erent sizes of training data (250,
500, 2000) for di�erent values of the regularization parameter γ
(x-axis). Features vectors have 250 dimensions.
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Investigating the Impact of Shrinkage

LDA: w = Σ̂−1(µ1 − µ2); shrinkage: Σ̃(γ) = (1− γ)Σ̂ + γνI

γ = 1

w ∼ µ1 − µ2
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Investigating the Impact of Shrinkage

LDA: w = Σ̂−1(µ1 − µ2); shrinkage: Σ̃(γ) = (1− γ)Σ̂ + γνI

γ = 0

w ∼ Σ̂−1(µ1 − µ2)

accounting for
spatial structure of

the noise

γ = 1

w ∼ µ1 − µ2



ERP and Noise

Simple assumption for ERPs: single trial xk(t) is composed of an
ERP s(t) and Gaussian `noise' nk(t):

xk(t) = s(t) + nk(t) for all trials k = 1, . . . ,K
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Spatial Structure of the Noise

The two strongest principal components of the noise (covariance
matrix) in this data set:

Trial-to-trial variation of P3 Visual alpha



Understanding Spatial Filters
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Understanding Spatial Filters

(a)
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Two channel classi�cation of (a): 15% error, (b): 37% error

When disturbing channel Oz is added to the data (3D): 16% error.
Here, channel Oz is required for good classi�cation although itself is
not discriminative.



Impact of Shrinkage on the Spatial Filters

With increasing shrinkage, the spatial �lters (classi�er) look
smoother, but classi�cation may degrade with too much shrinkage.
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Maps of spatial �lters for di�erent values of γ.



A Novel Analytical Method

Recently, a method to analytically calculate the optimal shrinkage
parameter was published ([1]).

Thanks to Nicole Krämer for pointing the BBCI group to this
method.



Optimal Selection of Shrinkage Parameter

Let x1, . . . ,xn ∈ Rd be n feature vectors and let µ̂ = 1
n

∑n
k=1 xk

be the empirical mean.

Aim: get a better estimate of the true covariance matrix Σ
(especially in case n < d) than the sample covariance matrix
Σ̂ = 1

n−1

∑n
k=1(xk − µ̂)(xk − µ̂)> by selecting a γ in

Σ̃(γ) := (1− γ)Σ̂ + γνI.

We denote by (xk)i resp. (µ̂)i the i-th element of the vector xk

resp. µ̂. Furthermore we denote by sij the element in the i-th row

and j-th column of Σ̂. We de�ne

zij(k) = ((xk)i − (µ̂)i) ((xk)j − (µ̂)j)

Then the optimal shrinkage parameter γ? for which
Σ̃(γ?) = argminS||S−Σ||2F can be analytically calculated ([2]) as

γ? =
n

(n− 1)2

∑d
i,j=1 vark(zij(k))∑

i 6=j s
2
ij +

∑
i(sii − ν)2
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Result of Classi�cation with Shrinkage
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Using shrinkage the classi�cation error could be drastically reduced
to 4%.



Results for the Classic Matrix Speller
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Accuracy in letter selection, chance level: 3.33%.



Results for the Classic Matrix Speller
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See Poster W07 (Treder et al), and for other applications of this
technique A02 (Thurlings et al), W10 (Höhne et al).



Summary of Spatio-Temporal Classi�cation

Linear classi�cation with shrinkage is a powerful method.

Complete shrinkage (γ = 1) means neglecting the structure of
the noise. In this case the classi�er is the di�erence of the
ERPs.

The appropriateness of a linear separation depends on the way
features are extracted and transformed.

In contrast to non-linear classi�ers, the weights of a linear
classi�er are informative.

The weights of the trained classi�er can be visualized as a sequence
of scalp topographies:

[−250 ms] [−150 ms] [−50 ms] [50 ms] [150 ms] [250 ms]
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0.02



Topic of This Section

Method:

Classi�cation of spectral features, namely modulations of the
amplitude in speci�c frequency bands.

In particular, Common Spatial Pattern (CSP) analysis to
classify di�erent conditions that are characterized by a
modulation of the amplitude of brain rhythms ([3, 4]).

Application:

Classi�cation of motor imagery conditions in a BCI paradigm.



Neurophysiology: Sensorimotor Rhythms
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Imagining a movement of a limb causes a local blocking of the
corresponding sensorimotor rhythm (SMR), see [5, 6, 7].



Neurophysiology: Sensorimotor Rhythms
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Imagining a movement of a limb causes a local blocking of the
corresponding sensorimotor rhythm (SMR), see [5, 6, 7].



Average Topography of Idle SMR

For each Laplace �ltered channel in a relax recording, the strength
of the local rhythm was estimated. The grand average over 80
participants is displayed as topographic mapping:
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Conclusion
Locations C3 and C4 are good candidates to observe SMR
modulations. These cover the sensorimotor areas of the right and
the left hand.



Spatial Smearing

Raw EEG scalp potentials are known to be associated with a
large spatial scale owing to volumne conduction.

In a simulation of Nunez et al [8] only half the contribution to
one scalp electrode comes from sources within a 3 cm radius.
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The Need for Spatial Filtering
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Analysis of Motor Imagery Conditions: Spectra
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First step: determine a suitable frequency band that shows good
discrimination between the conditions.



ERD Curves of Motor Imagery
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Second step: determine a suitable time interval during which
discrimination is most prominent.

Remark: Simultaneous selection of frequency band and interval is
more appropriate.



Common Spatial Pattern (CSP) Analysis

Goal: Find spatial �lters that optimally capture modulations of
brain rhythms
Observation: power of a brain rhythm ∼ variance of band-pass
�ltered signal.
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CSP Analysis

The goal of CSP:
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CSP analysis yields spatial �lters that can be visualized:
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CSP More Practical

EEG-signals during motor imagery, band-pass �ltered (here 9�13 Hz):
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1) choose eigenvector vi from V having a large eigenvalue di w.r.t. ΣL.
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right rightleft

var(XLvi) = di large

var(XRvi) = 1−di small

In Matlab: � [V,D]= eig(Sigma1, Sigma1+Sigma2).



CSP More Practical

EEG-signals during motor imagery, band-pass �ltered (here 9�13 Hz):
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2) choose eigenvector vi from V having a small eigenvalue di w.r.t. ΣL.
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In Matlab: � [V,D]= eig(Sigma1, Sigma1+Sigma2).



Training CSP-based Classi�cation

To obtain features from the CSP �ltered EEG, in each channel and
trial, the variance across time is calculated and the logarithm is
applied. This is a scatter plot of the resulting CSP features:
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Here, only two dimensions are shown. Note, that applying the
logarithm to the band power features makes the distribution more
Gaussian and therefore enhances linear separability.



Training CSP-based Classi�cation

Determine most discriminative frequency band,

band-pass �lter EEG in that band,

extract single trials using an appropriate time interval,

calculate and select CSP �lters,

and apply them to EEG single trials,

calculate the log variance within trials.

This results in a low dimensional feature vector for each trial
(dimensionality equals number of selected CSP �lters).

Train a linear classi�er like LDA on the features.
(Since these features are low-dimensional, shrinkage is typically
not necessary.)



Summary: Training CSP-based Classi�cation
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Applying CSP-based Classi�cation

Project EEG with spatial CSP �lters and apply band-pass �lter,

calculate the variance in short windows (e.g. last 500 ms),

take the logarithm,

and apply the classi�er weighting.

Remark: One nice feature of CSP is that the length of the
classi�cation window can be changed at runtime (i.e. during
feedback).

For more theoretical considerations as well as practical hints see [3].



Section: Caveats in Validation

When machine learning techniques are used for classi�cation of
EEG single-trials, the expected performance of a method has to be
evaluated carefully, and there are several possible pitfalls.

The estimation of generalization performance requires a training
and a test set. The estimation is only proper

if the test set was not used in any way to determine
parameters of the method, and

if the samples in the test set are independent from the samples
in the training set.

Although these principles are quite obvious, it happens that they
are violated.
Unfortunately, even some published journal articles lack a proper
validation of the proposed methods.



Hall of Pitfalls in Single-Trial EEG Analysis

preprocessing methods that use statistics of the whole data set
like ICA, or normalization of features
(particularly severe for methods that use label information)

features are selected on the whole data set, including trials
that are later in the test set

select parameters by cross validation on the whole data set
and report the performance for the selected values

artifacts/outliers are rejected from the whole data set
(resulting in a simpli�ed test set)

unsu�cient validation for paradigms with block design

In this presentation we highlight the last issue.



Block Design

Assume the task is to discriminate between mental states in
di�erent conditions.
We say that an experiment has a block design, if the periods for
which there is no alternation between conditions are longer than
the intended change of states in online operation.

cond #1 cond #1cond #2 cond #2cond #1 cond #2 cond #1

block #1 block #2 block #3 block #4 block #5 block #6 block #7

A problem arises, if the performance is estimated for such a data
set by cross validation.



Slowly Changing Variables

Training set

Test set

In EEG there are many slowly changing variables of background
activity, therefore the single-trials are not independent. For an
ordinary cross validation in a block design data set, the requirement
of independence between training and test set is violated.



A Validation Test

To demonstrate impact of block design in cross validation, we
perform cross validation in the following setting. Taking an
arbitrary EEG data set, we assign fake labels (regardless of what
happened during the recording) like this:
nBlocksPerClass=1:

class #2class #1

nBlocksPerClass=2:

class #1 class #2class #1class #2

nBlocksPerClass=3:

class #1 class #2 class #1 class #2class #2 class #1

and so on.



Results of the Validation Test

From each block single-trials are extracted of length 1s. This
procedure was performed for 80 EEG data sets. Blue boxplots show
the results of cross-validation:
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Results of the Validation Test

From each block single-trials are extracted of length 1s. This
procedure was performed for 80 EEG data sets. Blue boxplots show
the results of cross-validation:
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For comparison, results for leave-one-block-out validation are
shown in green.



Further Comments and Summary

The severeness of the underestimation of the true error
depends on the complexity of the features and the classi�er.

Cross validation in block design data might also give the
correct result � but alternative evaluation is required.

The situation gets worse if trials are extracted from
overlapping segments.

The most realistic validation is to train the methods on the
�rst N − 1 runs and to evaluate on the last run.

Leave-one-block-out and leave-one-run-out have larger
standard errors than cross validation.
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