

Berlin July 9, 2009

BRAIN-MACHINE INTERFACES BASED ON NEURONAL ENSEMBLE RECORDINGS Mikhail A. Lebedev

Center for Neuroengineering Duke University, Durham, NC

Encoding (microstimulation)

Macaque Monkey Brain

Cortical Hierarchy according to Fuster (2001)

Cortical Neurons Are Directionally Tuned

Georgopoulos et al. (80s)

00

Frontal Cortex Neurons Modulate Firing During Movement Preparation and Execution

.........

.

.

EN CITE

THE REPORT OF THE PARTY OF THE

MILL C 1 11 68 31 8 141

Crammond and Kalaska (2000)

Multielectrode Implant

Craniotomies

Insertion of Electrode Array

Completed Implant

Multielectrode Implant

Example implants

Decoding with linear model

Real-time predictions of hand position

Recorded from: PMd, SMA, M1, S1

Prediction of Multiple Motor Variables

Reach and grasp task

P. JP. 50.00

Real-Time Predictions

Aurora Reach & Grasp Brain Control

00:51:25:2

Kalman filter in BMI design

State model

Observation model (tuning Curve)

$$\mathbf{x}_{t'} = \mathbf{F}\mathbf{x}_{t-1}$$
$$\mathbf{P}_{t'} = \mathbf{F}\mathbf{P}_{t-1}\mathbf{F}^T + \mathbf{Q}$$

Predict step

 $\mathbf{z}_t = \mathbf{H}\mathbf{x}_{t'}$

$$\mathbf{S}_{t} = \mathbf{H}\mathbf{P}_{t'}\mathbf{H}^{T} + \mathbf{R}$$
$$\mathbf{K}_{t} = \mathbf{P}_{t'}\mathbf{H}^{T}\mathbf{S}_{t}^{-1}$$
$$\mathbf{X}_{t} = \mathbf{X}_{t'} + \mathbf{K}_{t}(\mathbf{y}_{t} + \mathbf{Z}_{t})$$
$$\mathbf{P}_{t} = (\mathbf{I} - \mathbf{K}_{t}\mathbf{H})\mathbf{P}_{t'}$$

State (e.g. arm position)
predicted from the previous state

Neuronal rates predicted from the state

State prediction corrected based on the difference between actual and predicted rates

N-th order unscented Kalman filter

Li et al., unpublished

N-th order unscented Kalman filter

Li et al., unpublished

N-th order unscented Kalman filter

Li et al., unpublished

Timing Experiment

Lebedev et al., 2007

Prediction of Time

Monkey Locomotion

Leg Representation

Fitzsimmons et al., unpublished

Decoding of multiple locomotion parameters

Swing

Stance

Fitzsimmons et al., unpublished

Stance

Swing

Decoding of multiple locomotion parameters

Fitzsimmons et al., unpublished

Prediction of Locomotion

Humanoid Robot at ATR, Kyoto, Japan Driven by Monkey Neural Activity (In Real Time!)

Humanoid Robot at ATR, Kyoto, Japan Driven by Monkey Neural Activity (In Real Time!)

Encoding (microstimulation)

Owl monkey reaching experiment

Stimulating electrodes

Microstimulation patterns

Initial training

Psychometric curve

Reversal task

Discrimination of temporal patterns

Discrimination of spatiotemporal patterns

Recordings during microstimulation

Learning with Vibratory Cue

Learning with Microstimulation Cue

Bidirectional BMI

Perspectives

Fully Implantable Multichannel Recording/Stimulating Device

Nicolelis Lab Miguel Nicolelis Nathan Fitzsimmons Joseph O'Doherty lan Peikon **Timothy Hanson** Zheng Li **Jose Carmena Roy Crist**

> <u>ATR</u> Mitsuo Kawato Gorgon Cheng Jun Morimoto