Bernstein Focus: Neurotechnology Berlin (BFNT-B) Applications to Quality and Usability Measurement

Sebastian Möller, Robert Schleicher, Jan-Niklas Antons

Quality and Usability Lab Deutsche Telekom Laboratories TU Berlin

sebastian.moeller@telekom.de

Motivation Quality of transmitted speech and video.

Quality Involved perception and judgment processes.

. .

Quality Auditory speech transmission quality measurement.

Overall quality judgment:

Quality of the speech:

excellent	good	fair	poor	bad
5	4	3	2	1
			×	

Detectability threshold:

Degradation:

degradation is inaudible	degradation is audible but not annoying	degradation is slightly annoying	degradation is annoying	degradation is very annoying
5	4	3	2	1
			×	

(ITU-T Rec. P.800, 1996)

Quality Taxonomy of quality aspects.

. . .

Quality Taxonomy of quality aspects.

Example 2:

Quality aspects of an interactive speech-based service.

Quality Measuring and predicting speech transmission quality.

Idea:

Quality Measuring and predicting interactive system usability.

Idea:

Quality and Usability Prediction Approach.

Potential model components:

Quality and Usability Prediction Speech transmission quality.

Signal-based model:

(e.g. ITU-T Rec. P.862, 2001; Hauenstein, 1997; Hansen, 1998)

Quality and Usability Prediction Speech transmission quality.

Signal comparison: Internal Representation

Quality and Usability Evaluation

Current work involving neurotechnology.

First steps:

- Determine the detectability threshold of typical degradations of speech samples using neurotechnology
- Compare thresholds to the ones obtained in absolute category scaling and degradation category rating
- Compare thresholds for different types of degradations (noise, interruptions, sound quality) and speech samples of different length and complexity

Future plans:

- Compare different neurotechnological tools (EEG, fMRI, NIRS, etc.)
- Extend to video transmission quality
- Extend to interactive and/or multimodal services

Quality and Usability Evaluation Open issues for neurotechnology.

. . .

Thank you for your attention.

Visit www.qu.tlabs.tu-berlin.de for more information.

