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Labels:
(1) Binary labels
(2) Multiple labels
(3) Orders of document pairs
(4) Permutation of documents
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Information Retrieval
as Example



Learning to Rank Methods
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Problem Studied in This Work
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• Generalization ability of listwise algorithms

• A two-layer learning framework was proposed and 
query-level generalization ability of pairwise
algorithms was discussed

Related Work



Our Contributions

• Proposal of listwise learning framework

• Analysis on generalization ability of listwise 
algorithms using Rademacher Average

• Analysis on generalization bounds of ListMLE, 
ListNet, RankCosine
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Outline of Talk

• Introduction

• Listwise Algorithms

• Listwise Learning Framework

• Generalization Analysis of Listwise Algorithms

• Conclusion and Future Work
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Pointwise, Pairwise, and Listwise Approaches
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Listwise Loss Functions
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Transformation Function



Lose Functions in Listwise Algorithms

• ListMLE

• ListNet

• RankCosine
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Outline of Talk

• Introduction

• Listwise Algorithms

• Listwise Learning Framework

• Generalization Analysis of Listwise Algorithms

• Conclusion and Future Work
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Listwise Learning Framework

• Data is represented as         ,   where    is feature 
vector set                              and    is ground-truth 
permutation  

• are random variables according to distribution

• Training Data: 

• Expected Risk:

• Empirical Risk:
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Generalization Analysis

• Goal of learning = to minimize expected risk

• Distribution is unknown we instead minimize 
empirical risk

• Generalization analysis is concerned with upper 
bound of difference between expected and empirical 

risks
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Outline of Talk

• Introduction

• Listwise Algorithms

• Listwise Learning Framework

• Generalization Analysis of Listwise Algorithms

• Conclusion and Future Work
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Our Analysis Technique

• Using Rademacher Average

• Generalization Bound based on Rademacher Average 
of Compound Function

• Further Deriving Bounds of the Rademacher Average 
for Different Algorithms
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Rademacher Average

• For a function class    , empirical Rademacher
Average is defined as: 

where                          are i.i.d. random variables, and         

are i.i.d. random variables, with 
probability ½  to take 1 or -1,     stands for                 .
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Generalization Bound based on Rademacher
Average of Compound Function 

• Generalization bound based on Rademacher
Average :

• Rademacher Average of the compound 
function class, whose outer function is listwise loss 
function and inner function is ranking function. 
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Upper Bounds of Rademacher Average

• Upper bounds of              of ListMLE, ListNet, and 
RankCosine can be represented as

has been studied in previous work, e.g., for linear 
function class,                      , where 
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Generalization Bound

• With probability at least

• The  bound is related to:

– , algorithm-dependent factor, determined by loss 
function and transformation function 

– , algorithm-independent factor, only determined by 
transformation function

– Order            
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Discussions

• When number of training samples ∞, the 
generalization bounds  0 at rate of 

• When length of list ≥ 6, bound of ListMLE is tightest 
among the three algorithms

• In most cases, the use of a linear transformation 
function will result in a tighter bound than sigmoid 
and exponential transformation functions
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Outline of Talk

• Introduction

• Listwise Algorithms

• Listwise Learning Framework

• Generalization Analysis of Listwise Algorithms

• Conclusion and Future Work
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Conclusions

• Proposal of framework, which enables 
theoretical analysis on the listwise approach

• Proof of theorem that gives a general 
generalization bound of listwise ranking 
algorithms on the basis of Rademacher
Average

• Investigations on generalization bounds of 
three listwise algorithms
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Future Work

• Investigate approximation error - the 
difference between surrogate loss and true 
loss of ranking

• Experimentally verify the correctness of 
our theoretical findings

• Apply the proof technique to other 
approaches
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Thank you!
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