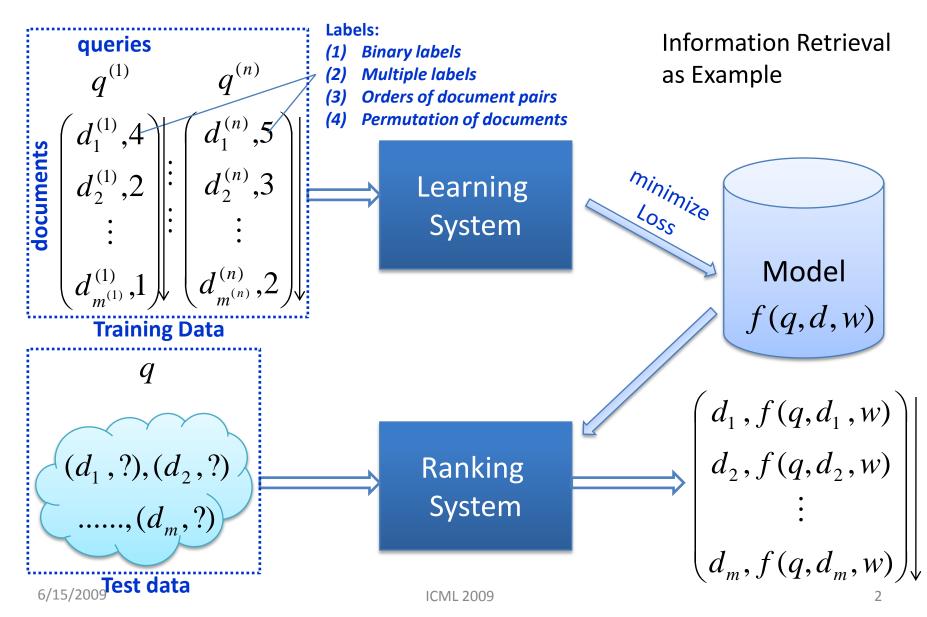
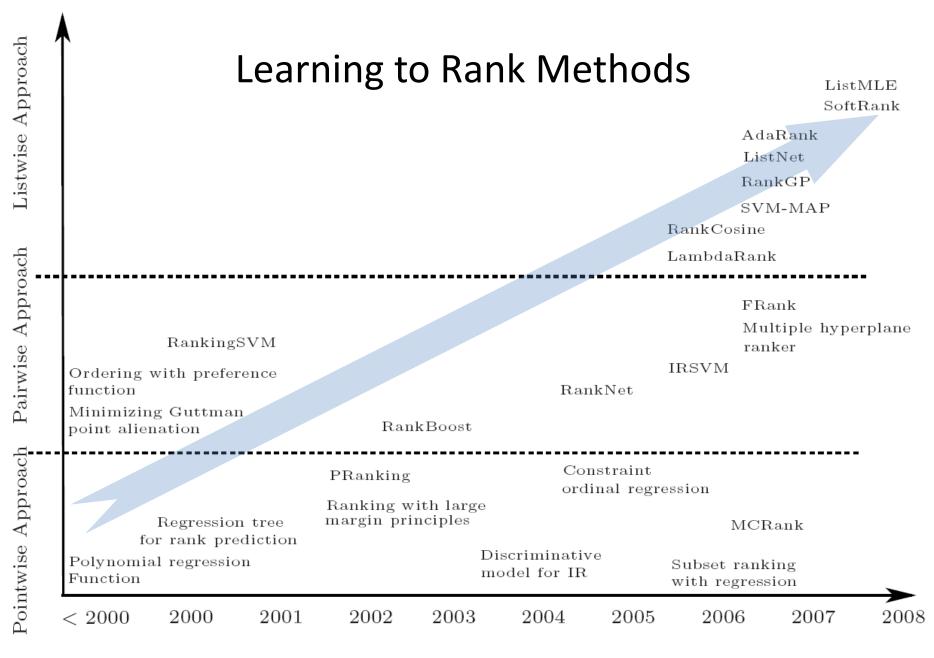
Generalization Analysis of Listwise Learning-to-Rank Algorithms

Yanyan Lan, Tie-Yan Liu, Zhiming Ma, and Hang Li Microsoft Research Asia Chinese Academy of Sciences

Learning to Rank





Problem Studied in This Work

• Generalization ability of listwise algorithms

Related Work

 A two-layer learning framework was proposed and query-level generalization ability of pairwise algorithms was discussed

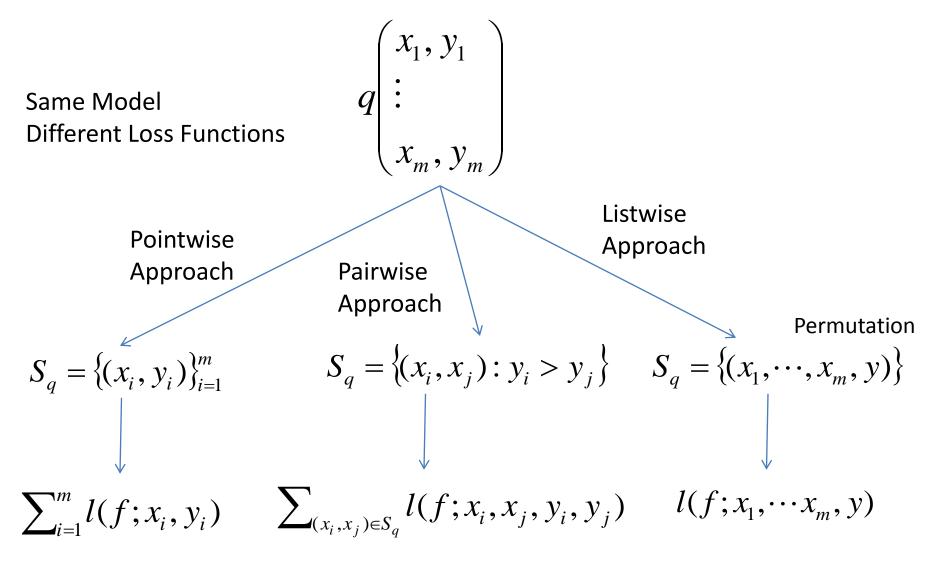
Our Contributions

- Proposal of listwise learning framework
- Analysis on generalization ability of listwise algorithms using Rademacher Average
- Analysis on generalization bounds of ListMLE, ListNet, RankCosine

Outline of Talk

- Introduction
- Listwise Algorithms
- Listwise Learning Framework
- Generalization Analysis of Listwise Algorithms
- Conclusion and Future Work

Pointwise, Pairwise, and Listwise Approaches



Listwise Loss Functions **Transformation Function** $g_{v}(z)$ $\phi(f(z))$ f(z) $\phi(g_{y}(z))$ Z $g_{y}(x_{1})$ $g_{y}(x_{2})$ $\phi(f(x_1))$ $f(x_1)$ $\phi(g_y(x_1))$ \mathcal{X}_1 $f(x_2)$ $\phi(f(x_2))$ $\phi(g_y(x_2))$ X_2 $g_{y}(x_{m})$ $f(x_m)$ $\phi(f(x_m))$ \mathcal{X}_m $\phi(g_{v}(x_{m}))$

Lose Functions in Listwise Algorithms

• LISTMLE $l(f;z,y) = -\log P(y|z;f)$ $P(y|z;f) = \prod_{i=1}^{m} \frac{\phi(f(x_{y(i)}))}{\sum_{j=i}^{m} \phi(f(x_{y(j)}))}$

• ListNet $l(f;z,y) = -\sum_{\forall \pi \in \mathcal{Y}} P(\pi|z;g_y) \log P(\pi|z;f)$

$$P(\pi|z;g_y) = \prod_{i=1}^m \frac{\phi(g_y(x_{\pi(i)}))}{\sum_{j=i}^m \phi(g_y(x_{\pi(j)}))} P(\pi|z;f) = \prod_{i=1}^m \frac{\phi(f(x_{\pi(i)}))}{\sum_{j=i}^m \phi(f(x_{\pi(j)}))}$$

• RankCosine $l(f;z,y) = \frac{1}{2} \left(1 - \frac{\phi(g_y(z))^T \phi(f(z))}{\|\phi(g_y(z))\| \|\phi(f(z))\|} \right)$

Outline of Talk

- Introduction
- Listwise Algorithms
- Listwise Learning Framework
- Generalization Analysis of Listwise Algorithms
- Conclusion and Future Work

Listwise Learning Framework

- Data is represented as(z, y), where z is feature vector set $z = (x_1, \dots, x_m)$ and y is ground-truth permutation
- (z, y) are random variables according to distribution $P(\cdot, \cdot)$
- Training Data: $(z_1, y_1), \cdots, (z_n, y_n)$
- Expected Risk:

$$R_l(f) = \int_{\mathcal{Z} \times \mathcal{Y}} l(f; z, y) P(dz, dy)$$

• Empirical Risk $\widehat{R}_{l}(f;S) = \frac{1}{n} \sum_{i=1}^{n} l(f;z_{i},y_{i})$

Generalization Analysis

- Goal of learning = to minimize expected risk $R_l(f)$
- Distribution is unknown we instead minimize empirical risk $\hat{R}_l(f; S)$
- Generalization analysis is concerned with upper bound of difference between expected and empirical risks $\sup_{f \in \mathcal{F}} (R_l(f) - \widehat{R}_l(f; S))$

Outline of Talk

- Introduction
- Listwise Algorithms
- Listwise Learning Framework
- Generalization Analysis of Listwise Algorithms
- Conclusion and Future Work

Our Analysis Technique

- Using Rademacher Average
- Generalization Bound based on Rademacher Average of Compound Function
- Further Deriving Bounds of the Rademacher Average for Different Algorithms

Rademacher Average

• For a function class \mathcal{G}_i , empirical Rademacher Average is defined as: $\widehat{\mathcal{R}}(\mathcal{G}) = E_{\sigma} \sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \sigma_i g(X_i)$

where $X_i, i = 1, \dots, n$ are i.i.d. random variables, and $\sigma_i, i = 1, \dots, n$ are i.i.d. random variables, with probability ½ to take 1 or -1, σ stands for $\{\sigma_1, \dots, \sigma_n\}$

Generalization Bound based on Rademacher Average of Compound Function

• Generalization bound based on Rademacher Average :

$$\sup_{f\in\mathcal{F}}(R_{l_{\mathcal{A}}}(f)-\widehat{R}_{l_{\mathcal{A}}}(f;S))\leq 2\widehat{\mathcal{R}}(l_{\mathcal{A}}\circ\mathcal{F})+\sqrt{\frac{2\ln\frac{2}{\delta}}{n}}$$

R(l_A • F) Rademacher Average of the compound function class, whose outer function is listwise loss function and inner function is ranking function.

$$\widehat{\mathcal{R}}(l_{\mathcal{A}} \circ \mathcal{F}) = E_{\sigma} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} l_{\mathcal{A}}(f; z_{i}, y_{i})$$

ICML 2009

Upper Bounds of Rademacher Average

• Upper bounds of $\widehat{\mathcal{R}}(l_{\mathcal{A}} \circ \mathcal{F})$ of ListMLE, ListNet, and RankCosine can be represented as $\widehat{\mathcal{R}}(l_{\mathcal{A}} \circ \mathcal{F}) \le C_{\mathcal{A}}(\phi) N(\phi) \widehat{\mathcal{R}}(\mathcal{F})$ $N(\phi) = \sup_{x \in [-BM, BM]} \phi'(x)$ $C_{ListMLE}(\phi) = \frac{2}{\phi(-BM)(\log m + \log \frac{\phi(BM)}{\phi(-BM)})}$ $C_{ListNet}(\phi) = \frac{2m!}{\phi(-BM)(\log m + \log \frac{\phi(BM)}{\phi(-BM)})}$ $C_{RankCosine}(\phi) = \frac{\sqrt{m}}{2\phi(-BM)}$

 $\widehat{\mathcal{R}}(\mathcal{F})$ has been studied in previous work, e.g., for linear function class, $\widehat{\mathcal{R}}(\mathcal{F}) \leq \frac{2BM}{\sqrt{n}}$, where $\forall x \in \mathcal{X}, \forall f \in \mathcal{F}, |f(x)| \leq BM$

Generalization Bound

• With probability at least $1 - \delta$

$$\sup_{f \in \mathcal{F}} (R_{l_{\mathcal{A}}}(f) - \widehat{R}_{l_{\mathcal{A}}}(f;S)) \leq \frac{4BM}{\sqrt{n}} C_{\mathcal{A}}(\phi) N(\phi) + \sqrt{\frac{2\ln\frac{2}{\delta}}{n}}$$

- The bound is related to:
 - $C_A(\phi)$, algorithm-dependent factor, determined by loss function and transformation function ϕ
 - $N(\phi)$, algorithm-independent factor, only determined by transformation function ϕ

- Order
$$O(\frac{1}{\sqrt{n}})$$

Discussions

- When number of training samples $\rightarrow \infty$, the generalization bounds $\rightarrow 0$ at rate of $O(\frac{1}{\sqrt{n}})$
- When length of list ≥ 6, bound of ListMLE is tightest among the three algorithms
- In most cases, the use of a linear transformation function will result in a tighter bound than sigmoid and exponential transformation functions

Outline of Talk

- Introduction
- Listwise Algorithms
- Listwise Learning Framework
- Generalization Analysis of Listwise Algorithms
- Conclusion and Future Work

Conclusions

- Proposal of framework, which enables theoretical analysis on the listwise approach
- Proof of theorem that gives a general generalization bound of listwise ranking algorithms on the basis of Rademacher Average
- Investigations on generalization bounds of three listwise algorithms

Future Work

- Investigate approximation error the difference between surrogate loss and true loss of ranking
- Experimentally verify the correctness of our theoretical findings
- Apply the proof technique to other approaches

Thank you!