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Semi-supervised Learning

Setting:
limited supervision: {xi , yi}l

i=1
unlabeled data: {xi}n

i=l+1
Goal:

prediction using both labeled and unlabeled samples
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Transductive SVM

Transductive SVM

Transductive SVM

min
{−→y i}u

i=1,w ,b,{ξ∗i }
u
i=1,{ξi}l

i=1

1
2‖w‖

2 + C
∑l

i=1 ξi + C∗ ∑n
i=l+1 ξ∗i

s.t. yi(w ′xi + b) ≤ 1− ξi

y∗i (w ′xi + b) ≤ 1− ξ∗i

transductive SVM (text classification) [Joachims et al. 1999]

linear SVM [Fung and Mangasarian 2001]

SDP relaxations [Bie and Cristianini 2004] [Xu et al. 2008]

CCCP optimization [Collobert et al. 2006]
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Transductive SVM

Graph-based Methods

Graph Regularization (transductive)

min
f=[f′l f′u ]′

tr(f′Sf)︸ ︷︷ ︸
smoothness

+ C1L(f l , Yl)︸ ︷︷ ︸
loss

+ C2‖fu‖2
F︸ ︷︷ ︸

complexity

(1)

S: (normalized) Graph Laplacian

Examples:

local and global consistency [Zhou et al. 2003]

Gaussian fields and harmonic function [Zhu et al. 2003]

nonparametric function induction [Delalleau et al. 2005]
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Transductive SVM

Graph-based Methods

Manifold Regularization (inductive)

minf
∑l

i=1 L(f (x i), y i) + γA‖f‖K + γI‖f‖G

⇒ f (x) =
∑l+u

i=1 αiK (x, x i)

manifold regularization [Belkin 2002]

Lap-RLS, Lap-SVM
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Scaling up graph-based SSL

Fast graph-based SSL Methods

Fast algorithms (O(m2n))
Harmonic mixture [ Zhu et al. 2002]

combine generative model with graph-method

Nonparametric function induction [Delalleau et al. 2005]

label reconstruction by landmark points
ignores important regularization

Nyström method [Gustavo et al. 2007]

speed up kernel matrix inverse

Survey
Semi-supervised learning literature survey [Zhu]

Large scale semi-supervised learning [Weston]
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Observation

Regularization : bottleneck of graph-based SSL

manipulation of n × n kernel matrix
multiplication

inverse

lead to complex model
spans over labelled and unlabeled data
f (x) =

∑l+u
i=1 αiK (x, x i)

slow training and testing
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Approximation via Prototypes

Basic Idea

Basic idea: approximate regularization via prototypes

1 Low-rank approximation prototypes
preserve structures of kernel matrix

crucial for manifold regularization

less space

2 Label-reconstruction prototypes
reduce model complexity

fast testing
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Low-rank Approximation Prototype

Low-rank Approximation

Given n × n kernel matrix K (on X )

find K ≈ GG′, G ∈ Rn×m (m � n)

Nyström Method
1 Choose m � n columns En×m

corresponds to landmark set Z, |Z|=m

Wm×m: kernel matrix on Z
2 Reconstruct by K ≈ EW−1E ′
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Low-rank Approximation Prototype

Low-rank Approximation

z′is ∈ Z: low-rank approximation prototypes

can be chosen as k-means clustering centers for
Gaussian
linear
polynomial

detailed analysis in [Zhang et. al. 2008]

Nyström low-rank approximation quality depends on the
encoding power of landmark points.
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Label Reconstruction Prototype

Label Reconstruction

A small set of prototypes (with labels estimated) can
reconstruct the overall label landscape.
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Label reconstruction: g(x) =
∑k

i=1 f iK (x, v i) or f = Hfv

v i ’s: label reconstruction prototypes



Semi-supervised Learning Prototype Vector Machine Experiments Conclusion

Label Reconstruction Prototype

Information Theoretic Measures

Using g to approximate f :

minβi ,v i D(
l+u∑
i=1

αiK (x, x i)︸ ︷︷ ︸
f (x)

,

m∑
i=1

βiK (x, v i)︸ ︷︷ ︸
g(x)

)

αi ’s unknown

alternative: basis in f should be well-coded by those in g.

Q =
l+u∑
i=1

k∑
j=1

min DKL
[
K (x, x i)||K (x, v j)

]
Gaussian kernel K ⇒ Q = 1

4h2

∑
i
∑

min ‖x i − v j‖2 ⇒ k -means
centers as v j ’s.
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Optimization

Rephrasing Optimization with Prototypes

Two types of prototypes
1 low-rank approximation K ≈ EW−1E′

E ∈ Rn×m, W ∈ Rm×m,

2 label reconstruction f ≈ Hfv

f ∈ Rn×1; fv ∈ Rk×1,H ∈ Rn×k

Regularization can be approximated by

f>Sf ≈ f′v H′(D̃ − EW−1E>)H︸ ︷︷ ︸
O((m+k)2n)

fv
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Optimization

L2 Loss Function

multiclass, L2-loss function

labels Yl ∈ Rl×C ,

min
fv∈Rm×k

tr ((Hfv )′S(Hfv )) + C1‖Hl fv − Yl‖2
F + C2‖Hufv‖2

F

training f∗v = (H′SH + C1H′
lHl + C2H′

uHu)−1E′lYl

testing f = Hfv

O(n(m + k)2) time
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Optimization

Hinge Loss Function

binary, Yl ∈ {±1}l×1, Hinge loss,

Hl = [e1, e2, ..., el ]
>

A = H>SH + C2H>u Hu ∈ Rk×k

Q = HlA−1H>l � YlY
>
l ∈ Rl×l

Primal min
fv∈Rm×1

1
2

f>v Afv + C1

l∑
i=1

ξi

s.t. yie
>
i fv ≥ 1− ξi , ξi ≥ 0

Dual max −1
2
β>Qβ + 1>l β

s.t. 0 ≤ βi ≤ C1, i = 1, 2, ..., l .
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Experimental Setting

methods compared
LGC: local and global consistency;
Lap-RLS: Laplacian-regularized RLS;
NYS-LGC: Nyström-based LGC;
NFI: nonparametric function induction;
PVM(1): L2 loss;
PVM(2) Hinge loss

15 data sets (semi-supervised learning, libsvm)

Gaussian kernel (m = k ).

m = 0.1n for n ≤ 3000; m = 200 for larger n

50 labels per class; randomly repeat 30 times
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Benchmark Data

Classification errors of different algorithms.
Data(#cls) LGC LAP-RLS NYS-LGC NFI PVM(1) PVM(2)
g241c(2) 21.92 22.02 24.19 28.07 24.50 23.21
g241d(2) 28.10 22.36 30.98 30.82 25.15 24.85
digit1(2) 5.74 5.74 6.68 9.83 4.18 3.72
USPS(2) 4.57 6.11 9.72 5.49 5.29 6.35
coil2(2) 14.37 10.83 16.90 13.98 11.69 14.85
coil(6) 12.38 21.17 18.75 30.93 13.41 –
BCI(2) 44.43 29.16 45.45 45.67 33.59 31.65
Text(2) 23.09 23.99 34.40 32.54 30.4 26.29
usps3589(4) 2.46 4.54 6.89 7.14 3.66 –
splice(2) 22.85 19.78 30.56 34.56 23.47 25.32
dna(3) 27.31 17.72 29.53 43.38 15.87 –
svmgd1a(2) – – 6.32 14.21 5.24 6.08
usps-full(10) – – 17.68 14.43 7.35 –
satimage(6) – – 16.36 19.27 14.97 –
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Benchmark Data

Time consumptions (seconds) of different algorithms.
Data(n/dim) LGC LAP-RLS NYS-LGC NFI PVM(1) PVM(2)
g241c(1500/241) 140.84 129.86 0.86 0.48 3.30 3.19
g241d(1500/241) 129.78 142.65 0.84 0.49 3.31 3.16
digit1(1500/241) 140.51 131.08 0.84 0.48 3.31 3.15
USPS(1500/241) 139.23 131.59 0.74 0.47 3.28 3.14
coil2(1500/241) 151.36 120.48 0.87 0.48 3.26 3.47
coil(1500/241) 146.92 115.22 0.79 0.49 3.35 –
BCI(400/117) 3.08 1.94 0.53 0.22 0.71 1.09
Text(1500/11960) 139.67 216.37 9.14 13.26 30.24 34.24
2-moon(1000/2) 49.76 16.11 0.026 0.24 0.083 0.21
usps3589(719/64) 13.94 13.13 0.15 0.086 0.37 –
splice(3175/60) 1622.51 1439.51 2.49 0.83 4.87 4.24
dna(3186/180) 1566.91 1463.75 3.07 1.22 8.92 –
svmgd1a(7089/4) – – 3.22 1.66 8.06 5.38
usps-full(7291/256) – – 3.96 2.87 22.48 –
satimage(6435/36) – – 3.34 2.57 11.56 –
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Case Study

Five-class classification

MNIST digits 3,5,6,8,9

n = 29270; dim = 784
algorithm properties

scalability

performance over # labels

performance over prototype size
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Properties of PVM(1)
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v.s.#prototypes.
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Conclusions

Conclusion
Computational bottleneck of Graph-based SSL

the regularization term
alleviated by using prototype approximations

Future work
prototype selection

under different kernels
using label information

different label reconstruction schemes
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Q & A

Thank you!
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