Prototype Vector Machine for Large Scale Semi-supervised Learning

Kai Zhang¹ James T. Kwok² Bahram Parvin¹

¹Life Science Division, Lawrence Berkeley National Lab

²Department of Computer Science and Engineering Hong Kong University of Science and Technology

ENERGY

(日) (日) (日) (日) (日) (日) (日)

Outline

Semi-supervised Learning

- Transductive SVM
- Graph-based Methods
- Scaling up graph-based SSL

Prototype Vector Machine

- Approximation via Prototypes
- Low-rank Approximation Prototype
- Label Reconstruction Prototype
- Optimization

3 Experiments

Outline

Semi-supervised Learning

- Transductive SVM
- Graph-based Methods
- Scaling up graph-based SSL
- Prototype Vector Machine
 - Approximation via Prototypes
 - Low-rank Approximation Prototype
 - Label Reconstruction Prototype
 - Optimization

3 Experiments

4 Conclusion

Setting:

- limited supervision: $\{x_i, y_i\}_{i=1}^{I}$
- unlabeled data: $\{x_i\}_{i=l+1}^n$

Goal:

• prediction using both labeled and unlabeled samples

Semi-supervis	ed Learning
0000	

Experiments

Conclusion

Transductive SVM

Transductive SVM

Transductive SVM

$$\min_{\substack{\{\vec{y}_i\}_{i=1}^u, w, b, \{\xi_i^*\}_{i=1}^u, \{\xi_i\}_{i=1}^l \\ \text{ s.t. }} \frac{\frac{1}{2} \|w\|^2 + C \sum_{i=1}^l \xi_i + C^* \sum_{i=l+1}^n \xi_i^* }{y_i(w'x_i + b) \le 1 - \xi_i}$$

- transductive SVM (text classification) [Joachims et al. 1999]
- linear SVM [Fung and Mangasarian 2001]
- SDP relaxations [Bie and Cristianini 2004] [Xu et al. 2008]
- CCCP optimization [Collobert et al. 2006]

Semi-supe	rvised	Learning	
0000			

Experiments

Conclusion

(日) (日) (日) (日) (日) (日) (日)

Transductive SVM

Graph-based Methods

Graph Regularization (transductive)

$$\min_{\mathbf{f} = [\mathbf{f}'_{l} \mathbf{f}'_{u}]'} \underbrace{\operatorname{tr}(\mathbf{f}' \mathcal{S} \mathbf{f})}_{smoothness} + \underbrace{C_{1} L(\mathbf{f}_{l}, \mathbf{Y}_{l})}_{loss} + \underbrace{C_{2} \|\mathbf{f}_{u}\|_{F}^{2}}_{complexity}$$
(1)

S: (normalized) Graph Laplacian

Examples:

- local and global consistency [Zhou et al. 2003]
- Gaussian fields and harmonic function [Zhu et al. 2003]
- nonparametric function induction [Delalleau et al. 2005]

Prototype Vector Machine

Experiments

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Transductive SVM

Graph-based Methods

Manifold Regularization (inductive)

$$\min_{f} \sum_{i=1}^{I} L(f(\mathbf{x}_{i}), \mathbf{y}_{i}) + \gamma_{\mathcal{A}} \|f\|_{\mathcal{K}} + \gamma_{I} \|f\|_{\mathcal{G}}$$

$$\Rightarrow f(\mathbf{x}) = \sum_{i=1}^{l+u} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$

- manifold regularization [Belkin 2002]
 - Lap-RLS, Lap-SVM

Experiments

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

Scaling up graph-based SSL

Fast graph-based SSL Methods

Fast algorithms $(O(m^2 n))$

- Harmonic mixture [Zhu et al. 2002]
 - combine generative model with graph-method
- Nonparametric function induction [Delalleau et al. 2005]
 - label reconstruction by landmark points
 - ignores important regularization
- Nyström method [Gustavo et al. 2007]
 - speed up kernel matrix inverse

Survey

- Semi-supervised learning literature survey [Zhu]
- Large scale semi-supervised learning [Weston]

Outline

Semi-supervised Learning

- Transductive SVM
- Graph-based Methods
- Scaling up graph-based SSL

Prototype Vector Machine

- Approximation via Prototypes
- Low-rank Approximation Prototype
- Label Reconstruction Prototype
- Optimization

3 Experiments

4 Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Observation

Regularization: bottleneck of graph-based SSL

- manipulation of $n \times n$ kernel matrix
 - multiplication
 - inverse
- lead to complex model
 - spans over labelled and unlabeled data $f(\mathbf{x}) = \sum_{i=1}^{l+u} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$
 - slow training and testing

Semi-supervised Learning	Prototype Vector Machine ●○○○○○○○	Experiments	Conclusion
Approximation via Prototypes			
Basic Idea			

(ロ) (同) (三) (三) (三) (○) (○)

Basic idea: approximate regularization via prototypes

Low-rank approximation prototypes

- preserve structures of kernel matrix
- crucial for manifold regularization
- Iess space
- 2 Label-reconstruction prototypes
 - reduce model complexity
 - fast testing

Prototype Vector Machine

Experiments

Conclusion

Low-rank Approximation Prototype

Low-rank Approximation

Given $n \times n$ kernel matrix K (on \mathcal{X})

• find $K \approx GG'$, $G \in \mathbb{R}^{n \times m}$ ($m \ll n$)

Nyström Method

• Choose $m \ll n$ columns $E_{n \times m}$

- corresponds to landmark set Z, |Z|=m
- $W_{m \times m}$: kernel matrix on \mathcal{Z}

2 Reconstruct by $K \approx EW^{-1}E'$

Prototype Vector Machine

Experiments

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusion

Low-rank Approximation Prototype

Low-rank Approximation

 $\mathbf{z}_i' \mathbf{s} \in \mathcal{Z}$: low-rank approximation prototypes

• can be chosen as k-means clustering centers for

- Gaussian
- linear
- polynomial

detailed analysis in [Zhang et. al. 2008]

Nyström low-rank approximation quality depends on the encoding power of landmark points.

Prototype Vector Machine

Experiments

Conclusion

Label Reconstruction Prototype

Label Reconstruction

A small set of prototypes (with labels estimated) can reconstruct the overall label landscape.

Label reconstruction: $g(\mathbf{x}) = \sum_{i=1}^{k} \mathbf{f}_{i} K(\mathbf{x}, \mathbf{v}_{i})$ or $\mathbf{f} = H\mathbf{f}_{v}$ \mathbf{v}_{i} 's: label reconstruction prototypes

Prototype Vector Machine

Experiments

Conclusion

Label Reconstruction Prototype

Information Theoretic Measures

Using *g* to approximate *f*:

$$\min_{\beta_i, \mathbf{v}_i} D(\underbrace{\sum_{i=1}^{l+u} \alpha_i K(\mathbf{x}, \mathbf{x}_i)}_{f(\mathbf{x})}, \underbrace{\sum_{i=1}^{m} \beta_i K(\mathbf{x}, \mathbf{v}_i)}_{g(\mathbf{x})})$$

• α_i 's unknown

alternative: basis in f should be well-coded by those in g.

$$Q = \sum_{i=1}^{l+u} \sum_{j=1}^{k} \min D_{KL} \left[K(\mathbf{x}, \mathbf{x}_i) || K(\mathbf{x}, \mathbf{v}_j) \right]$$

Gaussian kernel K $\Rightarrow Q = \frac{1}{4\hbar^2} \sum_j \sum_j \min ||\mathbf{x}_j - \mathbf{v}_j||^2 \Rightarrow k$ -means centers as \mathbf{v}_j 's.

Optimization

Rephrasing Optimization with Prototypes

Two types of prototypes

- low-rank approximation $K \approx \mathbf{E} W^{-1} \mathbf{E}'$
 - $\boldsymbol{E} \in \mathbb{R}^{n \times m}$, $\boldsymbol{W} \in \mathbb{R}^{m \times m}$,
- 2 label reconstruction $f \approx \mathbf{H} \mathbf{f}_{v}$
 - $f \in \mathbb{R}^{n \times 1}$; $\mathbf{f}_v \in \mathbb{R}^{k \times 1}$, $\mathbf{H} \in \mathbb{R}^{n \times k}$

Regularization can be approximated by

$$\mathbf{f}^{\top} \mathcal{S} \mathbf{f} \approx \mathbf{f}'_{V} \underbrace{\mathbf{H}'(\tilde{D} - \mathbf{E} W^{-1} \mathbf{E}^{\top}) \mathbf{H}}_{O((m+k)^{2} n)} \mathbf{f}_{V}$$

・ロト・西ト・西ト・西ト・日・ シック・

Semi-supervised	Learning

Experiments

Conclusion

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Optimization

L₂ Loss Function

- multiclass, L₂-loss function
- labels $\mathbf{Y}_{I} \in \mathbb{R}^{I \times C}$,

$$\min_{\mathbf{f}_{\nu} \in \mathbb{R}^{m \times k}} \operatorname{tr} \left((\mathbf{H}_{\mathbf{f}_{\nu}})' \mathcal{S}(\mathbf{H}_{\mathbf{f}_{\nu}}) \right) + C_{1} \|\mathbf{H}_{I} \mathbf{f}_{\nu} - \mathbf{Y}_{I}\|_{F}^{2} + C_{2} \|\mathbf{H}_{u} \mathbf{f}_{\nu}\|_{F}^{2}$$

training
$$\mathbf{f}_{v}^{*} = (\mathbf{H}' S \mathbf{H} + C_{1} \mathbf{H}'_{I} \mathbf{H}_{I} + C_{2} \mathbf{H}'_{u} \mathbf{H}_{u})^{-1} \mathbf{E}'_{I} \mathbf{Y}_{I}$$

testing $\mathbf{f} = \mathbf{H} \mathbf{f}_{v}$

 $O(n(m+k)^2)$ time

Experiments

Conclusion

Optimization

Hinge Loss Function

• binary, $\mathbf{Y}_{l} \in \{\pm 1\}^{l \times 1}$, Hinge loss,

• $\mathbf{H}_{l} = [\mathbf{e}_{1}, \mathbf{e}_{2}, ..., \mathbf{e}_{l}]^{\top}$

• $\mathbf{A} = \mathbf{H}^{\top} \mathcal{S} \mathbf{H} + \mathbf{C}_2 \mathbf{H}_u^{\top} \mathbf{H}_u \in \mathbb{R}^{k \times k}$

•
$$\mathbf{Q} = \mathbf{H}_I A^{-1} \mathbf{H}_I^{\top} \odot \mathbf{Y}_I \mathbf{Y}_I^{\top} \in \mathbb{R}^{I \times I}$$

$$\begin{array}{ll} \textit{Primal} & \min_{\mathbf{f}_{v} \in \mathbb{R}^{m \times 1}} & \frac{1}{2} \mathbf{f}_{v}^{\top} A \mathbf{f}_{v} + C_{1} \sum_{i=1}^{l} \xi_{i} \\ & \text{s.t.} & y_{i} \mathbf{e}_{i}^{\top} \mathbf{f}_{v} \geq 1 - \xi_{i}, \ \xi_{i} \geq 0 \end{array}$$

Dual max
$$-\frac{1}{2}\beta^{\top}\mathbf{Q}\beta + \mathbf{1}_{I}^{\top}\beta$$

s.t. $0 \leq \beta_{i} \leq C_{1}, i = 1, 2, ..., I.$

Outline

Semi-supervised Learning

- Transductive SVM
- Graph-based Methods
- Scaling up graph-based SSL
- Prototype Vector Machine
 - Approximation via Prototypes
 - Low-rank Approximation Prototype
 - Label Reconstruction Prototype
 - Optimization

3 Experiments

4 Conclusion

Experimental Setting

methods compared

- LGC: local and global consistency;
- Lap-RLS: Laplacian-regularized RLS;
- NYS-LGC: Nyström-based LGC;
- NFI: nonparametric function induction;
- PVM(1): L₂ loss;
- PVM(2) Hinge loss
- 15 data sets (semi-supervised learning, libsvm)
- Gaussian kernel (m = k).
- *m* = 0.1*n* for *n* ≤ 3000; *m* = 200 for larger n
- 50 labels per class; randomly repeat 30 times

Prototype Vector Machine

Experiments

Conclusion

Benchmark Data

Classification errors of different algorithms.

Data(#cls)	LGC	LAP-RLS	NYS-LGC	NFI	PVM(1)	PVM(2)
g241c(2)	21.92	22.02	24.19	28.07	24.50	23.21
g241d(2)	28.10	22.36	30.98	30.82	25.15	24.85
digit1(2)	5.74	5.74	6.68	9.83	4.18	3.72
USPS(2)	4.57	6.11	9.72	5.49	5.29	6.35
$coil_2(2)$	14.37	10.83	16.90	13.98	11.69	14.85
coil(6)	12.38	21.17	18.75	30.93	13.41	-
BCI(2)	44.43	29.16	45.45	45.67	33.59	31.65
Text(2)	23.09	23.99	34.40	32.54	30.4	26.29
usps3589(4)	2.46	4.54	6.89	7.14	3.66	-
splice(2)	22.85	19.78	30.56	34.56	23.47	25.32
dna(3)	27.31	17.72	29.53	43.38	15.87	-
svmgd1a(2)	-	-	6.32	14.21	5.24	6.08
usps-full(10)	-	-	17.68	14.43	7.35	-
satimage(6)	-	-	16.36	19.27	14.97	

Semi-supervised	Learning

Experiments

Conclusion

Benchmark Data

Time consumptions (seconds) of different algorithms.

Data(n/dim)	LGC	LAP-RLS	NYS-LGC	NFI	PVM(1)	PVM(2)
g241c(1500/241)	140.84	129.86	0.86	0.48	3.30	3.19
g241d(1500/241)	129.78	142.65	0.84	0.49	3.31	3.16
digit1(1500/241)	140.51	131.08	0.84	0.48	3.31	3.15
USPS(1500/241)	139.23	131.59	0.74	0.47	3.28	3.14
coil ₂ (1500/241)	151.36	120.48	0.87	0.48	3.26	3.47
coil(1500/241)	146.92	115.22	0.79	0.49	3.35	-
BCI(400/117)	3.08	1.94	0.53	0.22	0.71	1.09
Text(1500/11960)	139.67	216.37	9.14	13.26	30.24	34.24
2-moon(1000/2)	49.76	16.11	0.026	0.24	0.083	0.21
usps3589(719/64)	13.94	13.13	0.15	0.086	0.37	-
splice(3175/60)	1622.51	1439.51	2.49	0.83	4.87	4.24
dna(3186/180)	1566.91	1463.75	3.07	1.22	8.92	-
svmgd1a(7089/4)	-	-	3.22	1.66	8.06	5.38
usps-full(7291/256)	_	-	3.96	2.87	22.48	-
satimage(6435/36)	-	-	3.34	2.57	11.56	_

Semi-su	pervised	Learning

Experiments

Conclusion

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Case Study

Five-class classification

- MNIST digits 3,5,6,8,9
- n = 29270; dim = 784
- algorithm properties
 - scalability
 - performance over # labels
 - performance over prototype size

Experiments

<ロ> (四) (四) (三) (三) (三) (三)

Conclusion

Properties of PVM(1)

From left to right: time v.s. sample size; error v.s. #labels; error v.s.#prototypes.

Outline

Semi-supervised Learning

- Transductive SVM
- Graph-based Methods
- Scaling up graph-based SSL
- Prototype Vector Machine
 - Approximation via Prototypes
 - Low-rank Approximation Prototype
 - Label Reconstruction Prototype
 - Optimization

3 Experiments

Experiments

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusion

Conclusions

Conclusion

- Computational bottleneck of Graph-based SSL
 - the regularization term
 - alleviated by using prototype approximations
- Future work
 - prototype selection
 - under different kernels
 - using label information
 - different label reconstruction schemes

Semi-supervised Learning	Prototype Vector Machine	Experiments	Conclusion
Q & A			

Thank you!

