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Grammatical Inference as a Principal Component Analysis



Overview Automata Residuals PCA Algorithm Results Experiments Conclusion and Future works

Overview

Automata

Residuals

PCA

Algorithm

Results

Experiments

Conclusion and Future works
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Strings from Σ∗

S =ACGTGACTGGTA,
GTAACTGACGTGACTGACTG,
CCGTACCT, GTACCTGATCT-

TAACCGATCTGAC,...

⇓

points of l2(Σ∗) ⊂ RΣ∗

pS , ȦpS , ĊpS , ĠpS , Ṫ pS , ...

Grammatical Inference ⇔
Finding the d-dimensional

vector subspace wich minimizes
the distance to the set of points

Raphaël BAILLY, François DENIS, Liva RALAIVOLA LIF, Marseille CNRS, Aix-Marseille Université
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Grammatical Inference as a Principal Component Analysis



Overview Automata Residuals PCA Algorithm Results Experiments Conclusion and Future works

Probabilistic Automata (PA) ' (HMM)

Grammatical Inference as a PCA Problem

Algorithm 2 Building an automaton corresponding to a
sample S and a dimension d

Data : A sample S = {si ∈ Σ∗, 1 ≤ i ≤ |S|} i.i.d.
according to a distribution p, a dimension d

Result : A Multiplicity Automaton A

W = {wi, 1 ≤ i ≤ |W |} ← prefixes of S
U = {ui, 1 ≤ i ≤ |U |} ← suffixes of S
X ← a |W | ×| U | matrix
Xi,j ← ẇipS(uj)− 1

|U |
∑

v∈U u̇pS(v)
N = X ′X
(λi, qi) ← eigenvalues of N in decreasing order, and
corresponding eigenvectors
B ← (q1, . . . , qd)
/*ΠB = orth. proj. on the vector subspace spanned by
B*/
for i from 1 to d do

ι(qi) ← the i-th coordinate of ΠB(pS) in B
τ(qi) ← qi(ε)
for each x ∈ Σ do

for j from 1 to d do
ϕ(qi, x, qj) ← the j-th coordinate of ΠB(ẋqi) in
B

end for
end for

end for
return A = 〈Σ, {q1, . . . , qn}, ϕ, ι, τ〉

Table 1. First rows and columns of XS (before centering).

XS ε a b aa ab ba bb . . .
ε 0.0 0.091 0.08 0.027 0.026 0.074 0.058
a 0.091 0.027 0.026 0.009 0.01 0.008 0.007
b 0.08 0.074 0.058 0.016 0.026 0.055 0.052

. . .

Figure 1 shows the automaton output by the learning algo-
rithm for d = 1 and d = 2. The quadratic distance between
the target and the learned automaton is 1.758 · 10−2 for
the first automaton (d = 1), 1.487 · 10−4 for the second
(d = 2) and 2.325 · 10−4 for d = 3 (the automaton is not
represented). We can remark that the distance is minimal
when the number of states is correct. Table 2 shows the first
values computed by the target and the learned automaton.

5. Consistency
5.1. Consistency when the rank of the target is known

We show that the solution computed by the algorithm con-
verges to the target as the size of the sample S increases.

Proposition 2. Let S be a sample i.i.d. according to
a rational stochastic language p with rank d. Then

Table 2. The first values computed with the target automaton A
(Fig. 1 (a)), the first learned MA A1 (Fig. 1 (b)), the second
learned MA A2 (Fig. 1 (c)) and the stochastic language prA2

de-
rived from A2 by using algorithm RandomDraw.

ε a b aa ab ba bb
pA 0.0 0.083 0.083 0.028 0.028 0.069 0.069
rA1 0.057 0.021 0.041 0.007 0.015 0.015 0.030
rA2 0.000 0.092 0.080 0.025 0.028 0.071 0.066
prA2

0.000 0.10 0.086 0.028 0.030 0.077 0.072

(a) p01

b,1/2

p1

a,1/3
b,1/3

1/3
a,1/4
b,1/4

(b) p00.17

a,0.36
b,0.72

0.33

(c) p10.17

a,0.36
b,0.72

0.33

p2

a,0.04
b,0.36

-0.91

0.06

a,-0.41
b,-0.23

a,-0.08
b,0.11

normalsize
Figure 1. A target stochastic language defined by the probabilistic
automaton (a). The learned automaton with d = 1 (b) and d = 2
(c). The parameters have been trunked after the second decimal.
The quadratic distance between the target (a) and the learned au-
tomaton is 1.76 · 10−2 for the first automaton (b) and 1.49 · 10−4

for the second (c).

E[‖ΠV ∗
S,d

(ẇpS)− ẇp‖] → 0 uniformly wrt w as the size of
S increases.

Proof. Let w ∈ Σ∗. As pS(w) is a binomial dis-
tribution with parameters |S| and p(w), V[pS(w)] =
p(w)(1−p(w))

|S| ≤ p(w)
|S| . Thus, E[‖ẇpS − ẇp‖2] ≤∑

u E[pS(wu) − p(wu)]2 ≤ ∑
u

p(wu)
|S| = p(wΣ∗)

|S| . There-
fore, E[‖ẇpS − ẇp‖2] tends to 0 as the size of S increases.

We have ‖ẇpS −ΠV ∗
p
(ẇpS)‖ ≤ ‖ẇpS − ẇp‖ since ẇp ∈

V ∗
p . Furthermore,

∑
w E[‖ẇpS − ẇp‖2] ≤ ∑

w
p(wΣ∗)

|S| =∑
n∈N

p(Σ≥n)
|S| ≤ ∑

n∈N
O(ρn)

|S| = O(1/|S|) for some 0 <
ρ < 1.

Therefore, (E[‖ẇpS − ΠV ∗
p
(ẇpS)‖])2 ≤ (E[‖ẇpS −

ẇp‖])2 ≤ E[‖ẇpS − ẇp‖2] ≤ ∑
w E[‖ẇpS − ẇp‖2] =

I starts on state p0 with probability 1

I moves to state p1 emitting symbol a with probability 1/4

I stops on state p1 with probability 1/3
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Probabilistic Automata

Grammatical Inference as a PCA Problem

Algorithm 2 Building an automaton corresponding to a
sample S and a dimension d

Data : A sample S = {si ∈ Σ∗, 1 ≤ i ≤ |S|} i.i.d.
according to a distribution p, a dimension d

Result : A Multiplicity Automaton A

W = {wi, 1 ≤ i ≤ |W |} ← prefixes of S
U = {ui, 1 ≤ i ≤ |U |} ← suffixes of S
X ← a |W | ×| U | matrix
Xi,j ← ẇipS(uj)− 1

|U |
∑

v∈U u̇pS(v)
N = X ′X
(λi, qi) ← eigenvalues of N in decreasing order, and
corresponding eigenvectors
B ← (q1, . . . , qd)
/*ΠB = orth. proj. on the vector subspace spanned by
B*/
for i from 1 to d do

ι(qi) ← the i-th coordinate of ΠB(pS) in B
τ(qi) ← qi(ε)
for each x ∈ Σ do

for j from 1 to d do
ϕ(qi, x, qj) ← the j-th coordinate of ΠB(ẋqi) in
B

end for
end for

end for
return A = 〈Σ, {q1, . . . , qn}, ϕ, ι, τ〉

Table 1. First rows and columns of XS (before centering).

XS ε a b aa ab ba bb . . .
ε 0.0 0.091 0.08 0.027 0.026 0.074 0.058
a 0.091 0.027 0.026 0.009 0.01 0.008 0.007
b 0.08 0.074 0.058 0.016 0.026 0.055 0.052

. . .

Figure 1 shows the automaton output by the learning algo-
rithm for d = 1 and d = 2. The quadratic distance between
the target and the learned automaton is 1.758 · 10−2 for
the first automaton (d = 1), 1.487 · 10−4 for the second
(d = 2) and 2.325 · 10−4 for d = 3 (the automaton is not
represented). We can remark that the distance is minimal
when the number of states is correct. Table 2 shows the first
values computed by the target and the learned automaton.

5. Consistency
5.1. Consistency when the rank of the target is known

We show that the solution computed by the algorithm con-
verges to the target as the size of the sample S increases.

Proposition 2. Let S be a sample i.i.d. according to
a rational stochastic language p with rank d. Then

Table 2. The first values computed with the target automaton A
(Fig. 1 (a)), the first learned MA A1 (Fig. 1 (b)), the second
learned MA A2 (Fig. 1 (c)) and the stochastic language prA2

de-
rived from A2 by using algorithm RandomDraw.

ε a b aa ab ba bb
pA 0.0 0.083 0.083 0.028 0.028 0.069 0.069
rA1 0.057 0.021 0.041 0.007 0.015 0.015 0.030
rA2 0.000 0.092 0.080 0.025 0.028 0.071 0.066
prA2

0.000 0.10 0.086 0.028 0.030 0.077 0.072

(a) p01

b,1/2

p1

a,1/3
b,1/3

1/3
a,1/4
b,1/4

(b) p00.17

a,0.36
b,0.72

0.33

(c) p10.17

a,0.36
b,0.72

0.33

p2

a,0.04
b,0.36

-0.91

0.06

a,-0.41
b,-0.23

a,-0.08
b,0.11

normalsize
Figure 1. A target stochastic language defined by the probabilistic
automaton (a). The learned automaton with d = 1 (b) and d = 2
(c). The parameters have been trunked after the second decimal.
The quadratic distance between the target (a) and the learned au-
tomaton is 1.76 · 10−2 for the first automaton (b) and 1.49 · 10−4

for the second (c).

E[‖ΠV ∗
S,d

(ẇpS)− ẇp‖] → 0 uniformly wrt w as the size of
S increases.

Proof. Let w ∈ Σ∗. As pS(w) is a binomial dis-
tribution with parameters |S| and p(w), V[pS(w)] =
p(w)(1−p(w))

|S| ≤ p(w)
|S| . Thus, E[‖ẇpS − ẇp‖2] ≤∑

u E[pS(wu) − p(wu)]2 ≤ ∑
u

p(wu)
|S| = p(wΣ∗)

|S| . There-
fore, E[‖ẇpS − ẇp‖2] tends to 0 as the size of S increases.

We have ‖ẇpS −ΠV ∗
p
(ẇpS)‖ ≤ ‖ẇpS − ẇp‖ since ẇp ∈

V ∗
p . Furthermore,

∑
w E[‖ẇpS − ẇp‖2] ≤ ∑

w
p(wΣ∗)

|S| =∑
n∈N

p(Σ≥n)
|S| ≤ ∑

n∈N
O(ρn)

|S| = O(1/|S|) for some 0 <
ρ < 1.

Therefore, (E[‖ẇpS − ΠV ∗
p
(ẇpS)‖])2 ≤ (E[‖ẇpS −

ẇp‖])2 ≤ E[‖ẇpS − ẇp‖2] ≤ ∑
w E[‖ẇpS − ẇp‖2] =

I =

(
1
0

)
T =

(
0

1/3

)
Ma =

(
0 1/4
0 1/3

)
Mb =

(
1/2 1/4

0 1/3

)
I p(ba) = I ×Mb ×Ma × T ∼ 0, 069
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Probabilistic Grammatical Inference

Grammatical Inference as a PCA Problem

Algorithm 2 Building an automaton corresponding to a
sample S and a dimension d

Data : A sample S = {si ∈ Σ∗, 1 ≤ i ≤ |S|} i.i.d.
according to a distribution p, a dimension d

Result : A Multiplicity Automaton A

W = {wi, 1 ≤ i ≤ |W |} ← prefixes of S
U = {ui, 1 ≤ i ≤ |U |} ← suffixes of S
X ← a |W | ×| U | matrix
Xi,j ← ẇipS(uj)− 1

|U |
∑

v∈U u̇pS(v)
N = X ′X
(λi, qi) ← eigenvalues of N in decreasing order, and
corresponding eigenvectors
B ← (q1, . . . , qd)
/*ΠB = orth. proj. on the vector subspace spanned by
B*/
for i from 1 to d do

ι(qi) ← the i-th coordinate of ΠB(pS) in B
τ(qi) ← qi(ε)
for each x ∈ Σ do

for j from 1 to d do
ϕ(qi, x, qj) ← the j-th coordinate of ΠB(ẋqi) in
B

end for
end for

end for
return A = 〈Σ, {q1, . . . , qn}, ϕ, ι, τ〉

Table 1. First rows and columns of XS (before centering).

XS ε a b aa ab ba bb . . .
ε 0.0 0.091 0.08 0.027 0.026 0.074 0.058
a 0.091 0.027 0.026 0.009 0.01 0.008 0.007
b 0.08 0.074 0.058 0.016 0.026 0.055 0.052

. . .

Figure 1 shows the automaton output by the learning algo-
rithm for d = 1 and d = 2. The quadratic distance between
the target and the learned automaton is 1.758 · 10−2 for
the first automaton (d = 1), 1.487 · 10−4 for the second
(d = 2) and 2.325 · 10−4 for d = 3 (the automaton is not
represented). We can remark that the distance is minimal
when the number of states is correct. Table 2 shows the first
values computed by the target and the learned automaton.

5. Consistency
5.1. Consistency when the rank of the target is known

We show that the solution computed by the algorithm con-
verges to the target as the size of the sample S increases.

Proposition 2. Let S be a sample i.i.d. according to
a rational stochastic language p with rank d. Then

Table 2. The first values computed with the target automaton A
(Fig. 1 (a)), the first learned MA A1 (Fig. 1 (b)), the second
learned MA A2 (Fig. 1 (c)) and the stochastic language prA2

de-
rived from A2 by using algorithm RandomDraw.

ε a b aa ab ba bb
pA 0.0 0.083 0.083 0.028 0.028 0.069 0.069
rA1 0.057 0.021 0.041 0.007 0.015 0.015 0.030
rA2 0.000 0.092 0.080 0.025 0.028 0.071 0.066
prA2

0.000 0.10 0.086 0.028 0.030 0.077 0.072

(a) p01

b,1/2

p1

a,1/3
b,1/3

1/3
a,1/4
b,1/4

(b) p00.17

a,0.36
b,0.72

0.33

(c) p10.17

a,0.36
b,0.72

0.33

p2

a,0.04
b,0.36

-0.91

0.06

a,-0.41
b,-0.23

a,-0.08
b,0.11

normalsize
Figure 1. A target stochastic language defined by the probabilistic
automaton (a). The learned automaton with d = 1 (b) and d = 2
(c). The parameters have been trunked after the second decimal.
The quadratic distance between the target (a) and the learned au-
tomaton is 1.76 · 10−2 for the first automaton (b) and 1.49 · 10−4

for the second (c).

E[‖ΠV ∗
S,d

(ẇpS)− ẇp‖] → 0 uniformly wrt w as the size of
S increases.

Proof. Let w ∈ Σ∗. As pS(w) is a binomial dis-
tribution with parameters |S| and p(w), V[pS(w)] =
p(w)(1−p(w))

|S| ≤ p(w)
|S| . Thus, E[‖ẇpS − ẇp‖2] ≤∑

u E[pS(wu) − p(wu)]2 ≤ ∑
u

p(wu)
|S| = p(wΣ∗)

|S| . There-
fore, E[‖ẇpS − ẇp‖2] tends to 0 as the size of S increases.

We have ‖ẇpS −ΠV ∗
p
(ẇpS)‖ ≤ ‖ẇpS − ẇp‖ since ẇp ∈

V ∗
p . Furthermore,

∑
w E[‖ẇpS − ẇp‖2] ≤ ∑

w
p(wΣ∗)

|S| =∑
n∈N

p(Σ≥n)
|S| ≤ ∑

n∈N
O(ρn)

|S| = O(1/|S|) for some 0 <
ρ < 1.

Therefore, (E[‖ẇpS − ΠV ∗
p
(ẇpS)‖])2 ≤ (E[‖ẇpS −

ẇp‖])2 ≤ E[‖ẇpS − ẇp‖2] ≤ ∑
w E[‖ẇpS − ẇp‖2] =

From a sample, find an automaton wich computes a probability
distribution close to the underlying sample distribution
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Algorithm: Baum-Welch [Baum et al. 1970]

I Structure of automaton known a priori (authorized states and
transition)

I Sets coefficients to maximize likelihood of a training sample

Grammatical Inference as a PCA Problem

Algorithm 2 Building an automaton corresponding to a
sample S and a dimension d

Data : A sample S = {si ∈ Σ∗, 1 ≤ i ≤ |S|} i.i.d.
according to a distribution p, a dimension d

Result : A Multiplicity Automaton A

W = {wi, 1 ≤ i ≤ |W |} ← prefixes of S
U = {ui, 1 ≤ i ≤ |U |} ← suffixes of S
X ← a |W | ×| U | matrix
Xi,j ← ẇipS(uj)− 1

|U |
∑

v∈U u̇pS(v)
N = X ′X
(λi, qi) ← eigenvalues of N in decreasing order, and
corresponding eigenvectors
B ← (q1, . . . , qd)
/*ΠB = orth. proj. on the vector subspace spanned by
B*/
for i from 1 to d do

ι(qi) ← the i-th coordinate of ΠB(pS) in B
τ(qi) ← qi(ε)
for each x ∈ Σ do

for j from 1 to d do
ϕ(qi, x, qj) ← the j-th coordinate of ΠB(ẋqi) in
B

end for
end for

end for
return A = 〈Σ, {q1, . . . , qn}, ϕ, ι, τ〉

Table 1. First rows and columns of XS (before centering).

XS ε a b aa ab ba bb . . .
ε 0.0 0.091 0.08 0.027 0.026 0.074 0.058
a 0.091 0.027 0.026 0.009 0.01 0.008 0.007
b 0.08 0.074 0.058 0.016 0.026 0.055 0.052

. . .

Figure 1 shows the automaton output by the learning algo-
rithm for d = 1 and d = 2. The quadratic distance between
the target and the learned automaton is 1.758 · 10−2 for
the first automaton (d = 1), 1.487 · 10−4 for the second
(d = 2) and 2.325 · 10−4 for d = 3 (the automaton is not
represented). We can remark that the distance is minimal
when the number of states is correct. Table 2 shows the first
values computed by the target and the learned automaton.

5. Consistency
5.1. Consistency when the rank of the target is known

We show that the solution computed by the algorithm con-
verges to the target as the size of the sample S increases.

Proposition 2. Let S be a sample i.i.d. according to
a rational stochastic language p with rank d. Then

Table 2. The first values computed with the target automaton A
(Fig. 1 (a)), the first learned MA A1 (Fig. 1 (b)), the second
learned MA A2 (Fig. 1 (c)) and the stochastic language prA2

de-
rived from A2 by using algorithm RandomDraw.

ε a b aa ab ba bb
pA 0.0 0.083 0.083 0.028 0.028 0.069 0.069
rA1 0.057 0.021 0.041 0.007 0.015 0.015 0.030
rA2 0.000 0.092 0.080 0.025 0.028 0.071 0.066
prA2

0.000 0.10 0.086 0.028 0.030 0.077 0.072

(a) p01

b,1/2

p1

a,1/3
b,1/3

1/3
a,1/4
b,1/4

(b) p00.17

a,0.36
b,0.72

0.33

(c) p1 p2

normalsize
Figure 1. A target stochastic language defined by the probabilistic
automaton (a). The learned automaton with d = 1 (b) and d = 2
(c). The parameters have been trunked after the second decimal.
The quadratic distance between the target (a) and the learned au-
tomaton is 1.76 · 10−2 for the first automaton (b) and 1.49 · 10−4

for the second (c).

E[‖ΠV ∗
S,d

(ẇpS)− ẇp‖] → 0 uniformly wrt w as the size of
S increases.

Proof. Let w ∈ Σ∗. As pS(w) is a binomial dis-
tribution with parameters |S| and p(w), V[pS(w)] =
p(w)(1−p(w))

|S| ≤ p(w)
|S| . Thus, E[‖ẇpS − ẇp‖2] ≤∑

u E[pS(wu) − p(wu)]2 ≤ ∑
u

p(wu)
|S| = p(wΣ∗)

|S| . There-
fore, E[‖ẇpS − ẇp‖2] tends to 0 as the size of S increases.

We have ‖ẇpS −ΠV ∗
p
(ẇpS)‖ ≤ ‖ẇpS − ẇp‖ since ẇp ∈

V ∗
p . Furthermore,

∑
w E[‖ẇpS − ẇp‖2] ≤ ∑

w
p(wΣ∗)

|S| =∑
n∈N

p(Σ≥n)
|S| ≤ ∑

n∈N
O(ρn)

|S| = O(1/|S|) for some 0 <
ρ < 1.

Therefore, (E[‖ẇpS − ΠV ∗
p
(ẇpS)‖])2 ≤ (E[‖ẇpS −

ẇp‖])2 ≤ E[‖ẇpS − ẇp‖2] ≤ ∑
w E[‖ẇpS − ẇp‖2] =
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Weighted Automata

Grammatical Inference as a PCA Problem

Algorithm 2 Building an automaton corresponding to a
sample S and a dimension d

Data : A sample S = {si ∈ Σ∗, 1 ≤ i ≤ |S|} i.i.d.
according to a distribution p, a dimension d

Result : A Multiplicity Automaton A

W = {wi, 1 ≤ i ≤ |W |} ← prefixes of S
U = {ui, 1 ≤ i ≤ |U |} ← suffixes of S
X ← a |W | ×| U | matrix
Xi,j ← ẇipS(uj)− 1

|U |
∑

v∈U u̇pS(v)
N = X ′X
(λi, qi) ← eigenvalues of N in decreasing order, and
corresponding eigenvectors
B ← (q1, . . . , qd)
/*ΠB = orth. proj. on the vector subspace spanned by
B*/
for i from 1 to d do

ι(qi) ← the i-th coordinate of ΠB(pS) in B
τ(qi) ← qi(ε)
for each x ∈ Σ do

for j from 1 to d do
ϕ(qi, x, qj) ← the j-th coordinate of ΠB(ẋqi) in
B

end for
end for

end for
return A = 〈Σ, {q1, . . . , qn}, ϕ, ι, τ〉

Table 1. First rows and columns of XS (before centering).

XS ε a b aa ab ba bb . . .
ε 0.0 0.091 0.08 0.027 0.026 0.074 0.058
a 0.091 0.027 0.026 0.009 0.01 0.008 0.007
b 0.08 0.074 0.058 0.016 0.026 0.055 0.052

. . .

Figure 1 shows the automaton output by the learning algo-
rithm for d = 1 and d = 2. The quadratic distance between
the target and the learned automaton is 1.758 · 10−2 for
the first automaton (d = 1), 1.487 · 10−4 for the second
(d = 2) and 2.325 · 10−4 for d = 3 (the automaton is not
represented). We can remark that the distance is minimal
when the number of states is correct. Table 2 shows the first
values computed by the target and the learned automaton.

5. Consistency
5.1. Consistency when the rank of the target is known

We show that the solution computed by the algorithm con-
verges to the target as the size of the sample S increases.

Proposition 2. Let S be a sample i.i.d. according to
a rational stochastic language p with rank d. Then

Table 2. The first values computed with the target automaton A
(Fig. 1 (a)), the first learned MA A1 (Fig. 1 (b)), the second
learned MA A2 (Fig. 1 (c)) and the stochastic language prA2

de-
rived from A2 by using algorithm RandomDraw.

ε a b aa ab ba bb
pA 0.0 0.083 0.083 0.028 0.028 0.069 0.069
rA1 0.057 0.021 0.041 0.007 0.015 0.015 0.030
rA2 0.000 0.092 0.080 0.025 0.028 0.071 0.066
prA2
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normalsize
Figure 1. A target stochastic language defined by the probabilistic
automaton (a). The learned automaton with d = 1 (b) and d = 2
(c). The parameters have been trunked after the second decimal.
The quadratic distance between the target (a) and the learned au-
tomaton is 1.76 · 10−2 for the first automaton (b) and 1.49 · 10−4

for the second (c).

E[‖ΠV ∗
S,d

(ẇpS)− ẇp‖] → 0 uniformly wrt w as the size of
S increases.

Proof. Let w ∈ Σ∗. As pS(w) is a binomial dis-
tribution with parameters |S| and p(w), V[pS(w)] =
p(w)(1−p(w))

|S| ≤ p(w)
|S| . Thus, E[‖ẇpS − ẇp‖2] ≤∑

u E[pS(wu) − p(wu)]2 ≤ ∑
u

p(wu)
|S| = p(wΣ∗)

|S| . There-
fore, E[‖ẇpS − ẇp‖2] tends to 0 as the size of S increases.

We have ‖ẇpS −ΠV ∗
p
(ẇpS)‖ ≤ ‖ẇpS − ẇp‖ since ẇp ∈

V ∗
p . Furthermore,

∑
w E[‖ẇpS − ẇp‖2] ≤ ∑

w
p(wΣ∗)

|S| =∑
n∈N

p(Σ≥n)
|S| ≤ ∑

n∈N
O(ρn)

|S| = O(1/|S|) for some 0 <
ρ < 1.

Therefore, (E[‖ẇpS − ΠV ∗
p
(ẇpS)‖])2 ≤ (E[‖ẇpS −

ẇp‖])2 ≤ E[‖ẇpS − ẇp‖2] ≤ ∑
w E[‖ẇpS − ẇp‖2] =

I Coefficients in R
I p(a0 . . . an) = I ×Ma0 · · · ×Man × T
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Residuals

I u̇ : RΣ∗ 7→ RΣ∗
for u ∈ Σ∗

I u̇r(w) = r(uw)

I Residuals of r : linear combination of u̇r

I Residual space of r : vector space spanned by the residuals of r

I A mapping r is computed by a WA (i.e is a rational series) if
and only if its Residual space has a finite dimension
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Grammatical Inference as a PCA Problem

Algorithm 2 Building an automaton corresponding to a
sample S and a dimension d

Data : A sample S = {si ∈ Σ∗, 1 ≤ i ≤ |S|} i.i.d.
according to a distribution p, a dimension d

Result : A Multiplicity Automaton A

W = {wi, 1 ≤ i ≤ |W |} ← prefixes of S
U = {ui, 1 ≤ i ≤ |U |} ← suffixes of S
X ← a |W | ×| U | matrix
Xi,j ← ẇipS(uj)− 1

|U |
∑

v∈U u̇pS(v)
N = X ′X
(λi, qi) ← eigenvalues of N in decreasing order, and
corresponding eigenvectors
B ← (q1, . . . , qd)
/*ΠB = orth. proj. on the vector subspace spanned by
B*/
for i from 1 to d do

ι(qi) ← the i-th coordinate of ΠB(pS) in B
τ(qi) ← qi(ε)
for each x ∈ Σ do

for j from 1 to d do
ϕ(qi, x, qj) ← the j-th coordinate of ΠB(ẋqi) in
B

end for
end for

end for
return A = 〈Σ, {q1, . . . , qn}, ϕ, ι, τ〉

Table 1. First rows and columns of XS (before centering).

XS ε a b aa ab ba bb . . .
ε 0.0 0.091 0.08 0.027 0.026 0.074 0.058
a 0.091 0.027 0.026 0.009 0.01 0.008 0.007
b 0.08 0.074 0.058 0.016 0.026 0.055 0.052

. . .

Figure 1 shows the automaton output by the learning algo-
rithm for d = 1 and d = 2. The quadratic distance between
the target and the learned automaton is 1.758 · 10−2 for
the first automaton (d = 1), 1.487 · 10−4 for the second
(d = 2) and 2.325 · 10−4 for d = 3 (the automaton is not
represented). We can remark that the distance is minimal
when the number of states is correct. Table 2 shows the first
values computed by the target and the learned automaton.

5. Consistency
5.1. Consistency when the rank of the target is known

We show that the solution computed by the algorithm con-
verges to the target as the size of the sample S increases.

Proposition 2. Let S be a sample i.i.d. according to
a rational stochastic language p with rank d. Then

Table 2. The first values computed with the target automaton A
(Fig. 1 (a)), the first learned MA A1 (Fig. 1 (b)), the second
learned MA A2 (Fig. 1 (c)) and the stochastic language prA2

de-
rived from A2 by using algorithm RandomDraw.

ε a b aa ab ba bb
pA 0.0 0.083 0.083 0.028 0.028 0.069 0.069
rA1 0.057 0.021 0.041 0.007 0.015 0.015 0.030
rA2 0.000 0.092 0.080 0.025 0.028 0.071 0.066
prA2

0.000 0.10 0.086 0.028 0.030 0.077 0.072

(a) p01

b,1/2

p1

a,1/3
b,1/3

1/3
a,1/4
b,1/4

(b) p00.17

a,0.36
b,0.72

0.33

(c) p10.17

a,0.36
b,0.72

0.33

p2

a,0.04
b,0.36

-0.91

0.06

a,-0.41
b,-0.23

a,-0.08
b,0.11

normalsize
Figure 1. A target stochastic language defined by the probabilistic
automaton (a). The learned automaton with d = 1 (b) and d = 2
(c). The parameters have been trunked after the second decimal.
The quadratic distance between the target (a) and the learned au-
tomaton is 1.76 · 10−2 for the first automaton (b) and 1.49 · 10−4

for the second (c).

E[‖ΠV ∗
S,d

(ẇpS)− ẇp‖] → 0 uniformly wrt w as the size of
S increases.

Proof. Let w ∈ Σ∗. As pS(w) is a binomial dis-
tribution with parameters |S| and p(w), V[pS(w)] =
p(w)(1−p(w))

|S| ≤ p(w)
|S| . Thus, E[‖ẇpS − ẇp‖2] ≤∑

u E[pS(wu) − p(wu)]2 ≤ ∑
u

p(wu)
|S| = p(wΣ∗)

|S| . There-
fore, E[‖ẇpS − ẇp‖2] tends to 0 as the size of S increases.

We have ‖ẇpS −ΠV ∗
p
(ẇpS)‖ ≤ ‖ẇpS − ẇp‖ since ẇp ∈

V ∗
p . Furthermore,

∑
w E[‖ẇpS − ẇp‖2] ≤ ∑

w
p(wΣ∗)

|S| =∑
n∈N

p(Σ≥n)
|S| ≤ ∑

n∈N
O(ρn)

|S| = O(1/|S|) for some 0 <
ρ < 1.

Therefore, (E[‖ẇpS − ΠV ∗
p
(ẇpS)‖])2 ≤ (E[‖ẇpS −

ẇp‖])2 ≤ E[‖ẇpS − ẇp‖2] ≤ ∑
w E[‖ẇpS − ẇp‖2] =

I States ⇔ Residuals (Minimal Case: base of the Residual
space)

I Coefficients: linear relations between residuals

I ḃp0 = 1
2p0 + 1

4p1
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Grammatical Inference as a PCA Problem

Algorithm 2 Building an automaton corresponding to a
sample S and a dimension d

Data : A sample S = {si ∈ Σ∗, 1 ≤ i ≤ |S|} i.i.d.
according to a distribution p, a dimension d

Result : A Multiplicity Automaton A

W = {wi, 1 ≤ i ≤ |W |} ← prefixes of S
U = {ui, 1 ≤ i ≤ |U |} ← suffixes of S
X ← a |W | ×| U | matrix
Xi,j ← ẇipS(uj)− 1

|U |
∑

v∈U u̇pS(v)
N = X ′X
(λi, qi) ← eigenvalues of N in decreasing order, and
corresponding eigenvectors
B ← (q1, . . . , qd)
/*ΠB = orth. proj. on the vector subspace spanned by
B*/
for i from 1 to d do

ι(qi) ← the i-th coordinate of ΠB(pS) in B
τ(qi) ← qi(ε)
for each x ∈ Σ do

for j from 1 to d do
ϕ(qi, x, qj) ← the j-th coordinate of ΠB(ẋqi) in
B

end for
end for

end for
return A = 〈Σ, {q1, . . . , qn}, ϕ, ι, τ〉

Table 1. First rows and columns of XS (before centering).

XS ε a b aa ab ba bb . . .
ε 0.0 0.091 0.08 0.027 0.026 0.074 0.058
a 0.091 0.027 0.026 0.009 0.01 0.008 0.007
b 0.08 0.074 0.058 0.016 0.026 0.055 0.052

. . .

Figure 1 shows the automaton output by the learning algo-
rithm for d = 1 and d = 2. The quadratic distance between
the target and the learned automaton is 1.758 · 10−2 for
the first automaton (d = 1), 1.487 · 10−4 for the second
(d = 2) and 2.325 · 10−4 for d = 3 (the automaton is not
represented). We can remark that the distance is minimal
when the number of states is correct. Table 2 shows the first
values computed by the target and the learned automaton.

5. Consistency
5.1. Consistency when the rank of the target is known

We show that the solution computed by the algorithm con-
verges to the target as the size of the sample S increases.

Proposition 2. Let S be a sample i.i.d. according to
a rational stochastic language p with rank d. Then

Table 2. The first values computed with the target automaton A
(Fig. 1 (a)), the first learned MA A1 (Fig. 1 (b)), the second
learned MA A2 (Fig. 1 (c)) and the stochastic language prA2

de-
rived from A2 by using algorithm RandomDraw.
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pA 0.0 0.083 0.083 0.028 0.028 0.069 0.069
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Figure 1. A target stochastic language defined by the probabilistic
automaton (a). The learned automaton with d = 1 (b) and d = 2
(c). The parameters have been trunked after the second decimal.
The quadratic distance between the target (a) and the learned au-
tomaton is 1.76 · 10−2 for the first automaton (b) and 1.49 · 10−4

for the second (c).

E[‖ΠV ∗
S,d

(ẇpS)− ẇp‖] → 0 uniformly wrt w as the size of
S increases.

Proof. Let w ∈ Σ∗. As pS(w) is a binomial dis-
tribution with parameters |S| and p(w), V[pS(w)] =
p(w)(1−p(w))

|S| ≤ p(w)
|S| . Thus, E[‖ẇpS − ẇp‖2] ≤∑

u E[pS(wu) − p(wu)]2 ≤ ∑
u

p(wu)
|S| = p(wΣ∗)

|S| . There-
fore, E[‖ẇpS − ẇp‖2] tends to 0 as the size of S increases.

We have ‖ẇpS −ΠV ∗
p
(ẇpS)‖ ≤ ‖ẇpS − ẇp‖ since ẇp ∈

V ∗
p . Furthermore,

∑
w E[‖ẇpS − ẇp‖2] ≤ ∑

w
p(wΣ∗)

|S| =∑
n∈N

p(Σ≥n)
|S| ≤ ∑

n∈N
O(ρn)

|S| = O(1/|S|) for some 0 <
ρ < 1.

Therefore, (E[‖ẇpS − ΠV ∗
p
(ẇpS)‖])2 ≤ (E[‖ẇpS −

ẇp‖])2 ≤ E[‖ẇpS − ẇp‖2] ≤ ∑
w E[‖ẇpS − ẇp‖2] =

I I : p in the base (p0, p1)
I p = 1× p0 + 0× p1

I matrix Ma: matrix of ȧ in
the base (p0, p1)

I ȧp0 = 1
4p1, ȧp1 = 1

3p1

I =

(
1
0

)

Ma =

(
0 1/4
0 1/3

)
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Consequences

I B a base of the Residual space of r (dimension d) ⇔
Transition matrices of a d-state automaton wich computes r

I I = coordinates of r in this base

I T = empty word probability of the base residuals
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Principal Component Analysis

I {xi} a set of points in a
vector space E with a
distance

I For a given dimension d ,
one looks for a vector
subspace Fd of E wich
minimizes the sum of the
squares of the distances
from xi to Fd

(Reconstruction Error)

O

vxi
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PCA- Dot product

If E is equipped with a dot
product, Fd is spanned by
v1 . . . vd , eigenvectors associated
to the d first eigenvalues of M=
variance matrix of {xi}
The sum of the remainig
eigenvalues is equal to the
reconstruction error

O

vxi
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Elbow and Dimension

After the eigenvalue ”elbow”,
the eigenvectors are
meaningless.

Here, only the vectors
associated to the blue
eiegnvalues will be kept.
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Grammatical Inference as a Principal Component Analysis



Overview Automata Residuals PCA Algorithm Results Experiments Conclusion and Future works

Finding the automaton rank

I S a sample, pS the empirical distribution, N = {ẇpS ,w ∈ Σ∗}
I Perform a PCA on N

I Use upper bound of the reconstruction error to find a lower
bound of the dimension

I Find the elbow on the eigenvalues curve greater than this
bound
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Grammatical Inference as a PCA Problem

Algorithm 2 Building an automaton corresponding to a
sample S and a dimension d

Data : A sample S = {si ∈ Σ∗, 1 ≤ i ≤ |S|} i.i.d.
according to a distribution p, a dimension d

Result : A Multiplicity Automaton A

W = {wi, 1 ≤ i ≤ |W |} ← prefixes of S
U = {ui, 1 ≤ i ≤ |U |} ← suffixes of S
X ← a |W | ×| U | matrix
Xi,j ← ẇipS(uj)− 1

|U |
∑

v∈U u̇pS(v)
N = X ′X
(λi, qi) ← eigenvalues of N in decreasing order, and
corresponding eigenvectors
B ← (q1, . . . , qd)
/*ΠB = orth. proj. on the vector subspace spanned by
B*/
for i from 1 to d do

ι(qi) ← the i-th coordinate of ΠB(pS) in B
τ(qi) ← qi(ε)
for each x ∈ Σ do

for j from 1 to d do
ϕ(qi, x, qj) ← the j-th coordinate of ΠB(ẋqi) in
B

end for
end for

end for
return A = 〈Σ, {q1, . . . , qn}, ϕ, ι, τ〉

Table 1. First rows and columns of XS (before centering).

XS ε a b aa ab ba bb . . .
ε 0.0 0.091 0.08 0.027 0.026 0.074 0.058
a 0.091 0.027 0.026 0.009 0.01 0.008 0.007
b 0.08 0.074 0.058 0.016 0.026 0.055 0.052

. . .

Figure 1 shows the automaton output by the learning algo-
rithm for d = 1 and d = 2. The quadratic distance between
the target and the learned automaton is 1.758 · 10−2 for
the first automaton (d = 1), 1.487 · 10−4 for the second
(d = 2) and 2.325 · 10−4 for d = 3 (the automaton is not
represented). We can remark that the distance is minimal
when the number of states is correct. Table 2 shows the first
values computed by the target and the learned automaton.

5. Consistency
5.1. Consistency when the rank of the target is known

We show that the solution computed by the algorithm con-
verges to the target as the size of the sample S increases.

Proposition 2. Let S be a sample i.i.d. according to
a rational stochastic language p with rank d. Then

Table 2. The first values computed with the target automaton A
(Fig. 1 (a)), the first learned MA A1 (Fig. 1 (b)), the second
learned MA A2 (Fig. 1 (c)) and the stochastic language prA2

de-
rived from A2 by using algorithm RandomDraw.

ε a b aa ab ba bb
pA 0.0 0.083 0.083 0.028 0.028 0.069 0.069
rA1 0.057 0.021 0.041 0.007 0.015 0.015 0.030
rA2 0.000 0.092 0.080 0.025 0.028 0.071 0.066
prA2
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Figure 1. A target stochastic language defined by the probabilistic
automaton (a). The learned automaton with d = 1 (b) and d = 2
(c). The parameters have been trunked after the second decimal.
The quadratic distance between the target (a) and the learned au-
tomaton is 1.76 · 10−2 for the first automaton (b) and 1.49 · 10−4

for the second (c).

E[‖ΠV ∗
S,d

(ẇpS)− ẇp‖] → 0 uniformly wrt w as the size of
S increases.

Proof. Let w ∈ Σ∗. As pS(w) is a binomial dis-
tribution with parameters |S| and p(w), V[pS(w)] =
p(w)(1−p(w))

|S| ≤ p(w)
|S| . Thus, E[‖ẇpS − ẇp‖2] ≤∑

u E[pS(wu) − p(wu)]2 ≤ ∑
u

p(wu)
|S| = p(wΣ∗)

|S| . There-
fore, E[‖ẇpS − ẇp‖2] tends to 0 as the size of S increases.

We have ‖ẇpS −ΠV ∗
p
(ẇpS)‖ ≤ ‖ẇpS − ẇp‖ since ẇp ∈

V ∗
p . Furthermore,

∑
w E[‖ẇpS − ẇp‖2] ≤ ∑

w
p(wΣ∗)

|S| =∑
n∈N

p(Σ≥n)
|S| ≤ ∑

n∈N
O(ρn)

|S| = O(1/|S|) for some 0 <
ρ < 1.

Therefore, (E[‖ẇpS − ΠV ∗
p
(ẇpS)‖])2 ≤ (E[‖ẇpS −

ẇp‖])2 ≤ E[‖ẇpS − ẇp‖2] ≤ ∑
w E[‖ẇpS − ẇp‖2] =

Automate A, S i.i.d w.r.t pA, |S | = 1000
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Finding the parameters of the Automaton

The dimension d is given.

I PCA on the residuals: base {w1 . . .wd} of eigenvectors,
spanning Vd

I ΠVd
is the projection upon Vd . ȧ is the linear mapping:

r ∈ Σ∗, r → ȧr

I Given x ∈ Σ, the matrix Mx = matrix of ΠVd
◦ ẋ in the base

{w1 . . .wd}
I I = cordinates of ΠVd

(pS) in the base {w1 . . .wd}
I T = (w1(ε), . . . ,wd(ε))
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Grammatical Inference as a PCA Problem

Algorithm 2 Building an automaton corresponding to a
sample S and a dimension d

Data : A sample S = {si ∈ Σ∗, 1 ≤ i ≤ |S|} i.i.d.
according to a distribution p, a dimension d

Result : A Multiplicity Automaton A

W = {wi, 1 ≤ i ≤ |W |} ← prefixes of S
U = {ui, 1 ≤ i ≤ |U |} ← suffixes of S
X ← a |W | ×| U | matrix
Xi,j ← ẇipS(uj)− 1

|U |
∑

v∈U u̇pS(v)
N = X ′X
(λi, qi) ← eigenvalues of N in decreasing order, and
corresponding eigenvectors
B ← (q1, . . . , qd)
/*ΠB = orth. proj. on the vector subspace spanned by
B*/
for i from 1 to d do

ι(qi) ← the i-th coordinate of ΠB(pS) in B
τ(qi) ← qi(ε)
for each x ∈ Σ do

for j from 1 to d do
ϕ(qi, x, qj) ← the j-th coordinate of ΠB(ẋqi) in
B

end for
end for

end for
return A = 〈Σ, {q1, . . . , qn}, ϕ, ι, τ〉

Table 1. First rows and columns of XS (before centering).

XS ε a b aa ab ba bb . . .
ε 0.0 0.091 0.08 0.027 0.026 0.074 0.058
a 0.091 0.027 0.026 0.009 0.01 0.008 0.007
b 0.08 0.074 0.058 0.016 0.026 0.055 0.052

. . .

Figure 1 shows the automaton output by the learning algo-
rithm for d = 1 and d = 2. The quadratic distance between
the target and the learned automaton is 1.758 · 10−2 for
the first automaton (d = 1), 1.487 · 10−4 for the second
(d = 2) and 2.325 · 10−4 for d = 3 (the automaton is not
represented). We can remark that the distance is minimal
when the number of states is correct. Table 2 shows the first
values computed by the target and the learned automaton.

5. Consistency
5.1. Consistency when the rank of the target is known

We show that the solution computed by the algorithm con-
verges to the target as the size of the sample S increases.

Proposition 2. Let S be a sample i.i.d. according to
a rational stochastic language p with rank d. Then

Table 2. The first values computed with the target automaton A
(Fig. 1 (a)), the first learned MA A1 (Fig. 1 (b)), the second
learned MA A2 (Fig. 1 (c)) and the stochastic language prA2

de-
rived from A2 by using algorithm RandomDraw.

ε a b aa ab ba bb
pA 0.0 0.083 0.083 0.028 0.028 0.069 0.069
rA1 0.057 0.021 0.041 0.007 0.015 0.015 0.030
rA2 0.000 0.092 0.080 0.025 0.028 0.071 0.066
prA2

0.000 0.10 0.086 0.028 0.030 0.077 0.072
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b,-0.23

a,-0.08
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normalsize
Figure 1. A target stochastic language defined by the probabilistic
automaton (a). The learned automaton with d = 1 (b) and d = 2
(c). The parameters have been trunked after the second decimal.
The quadratic distance between the target (a) and the learned au-
tomaton is 1.76 · 10−2 for the first automaton (b) and 1.49 · 10−4

for the second (c).
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|S| . There-
fore, E[‖ẇpS − ẇp‖2] tends to 0 as the size of S increases.
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Algorithm 2 Building an automaton corresponding to a
sample S and a dimension d

Data : A sample S = {si ∈ Σ∗, 1 ≤ i ≤ |S|} i.i.d.
according to a distribution p, a dimension d

Result : A Multiplicity Automaton A

W = {wi, 1 ≤ i ≤ |W |} ← prefixes of S
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X ← a |W | ×| U | matrix
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|U |
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v∈U u̇pS(v)
N = X ′X
(λi, qi) ← eigenvalues of N in decreasing order, and
corresponding eigenvectors
B ← (q1, . . . , qd)
/*ΠB = orth. proj. on the vector subspace spanned by
B*/
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ι(qi) ← the i-th coordinate of ΠB(pS) in B
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Proof. Let w ∈ Σ∗. As pS(w) is a binomial dis-
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|S| . There-
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p . Furthermore,
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Figure: Computed automata for d = 1 (A1) and d = 2 (A2)(|S | = 1000)

ε a b aa ab ba bb
pA 0.0 0.083 0.083 0.028 0.028 0.069 0.069
prA2

0.000 0.10 0.086 0.028 0.030 0.077 0.072
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Properties

I Identification in the limite of the rank (Number of states)

I Convergence of the automaton’s coefficients towards those of
the target in O(1/n1/2)

Consequence:

I l1-convergence of the estimated distribution to the target
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Toy examples

I 500 randomly generated automata with 4 states on a 2 letters
alphabet

I Building automata for several number of states

I Rank selection with several criteria: distance minimization (l1,
l2 ou KL), eigenvalues curve

|S | = 100000 ‖‖1 ‖‖2 KL-divergence Eigenvalue curve
Correct rank 48% 29% 13% 60%
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Figure: Eigenvalues for sample size of 1000, 5000, 20000 and 100000.
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Biological data

I Data: DNA sequences of a promoter (C.Jejuni)

I Learning sample: 140 strings of 122 bases, Test sample: 35
strings

I HMM Structure (based on a priori biological knowledge): 11
states [Petersen et al. 03], 10 states [Won et al. 04]

I Comparison between Baum-Welch on HMM, and boosted
PCA

Results

I 7-state Weighted Automaton

I Improved likelihood performances on the test sample with
PCA method
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Figure: Eigenvalues curve for biological data.
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Conclusion

I Probabilistic Grammatical Inference method with convergence
theoretical results

I Good performances compared to generally used methods

I Inner product-based method: one can extend to kernel
metrics, akin to Kernel PCA [Schölkopf Smola Müller 99], and
embedding distribution in an RKHS [Smola Gretton Song
Schölkopf 07]
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