Grammatical Inference as a Principal Component Analysis

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille
CNRS, Aix-Marseille Université
ICML 2009

Overview

Automata

Residuals

\square

Algorithm

Results

Experiments

Conclusion and Future works

Strings from Σ^{*}

$$
\begin{gathered}
S=A C G T G A C T G G T A, \\
\text { GTAACTGACGTGACTGACTG, } \\
\text { CCGTACCT, GTACCTGATCT- } \\
\text { TAACCGATCTGAC, } \ldots
\end{gathered}
$$

\Downarrow
points of $I^{2}\left(\Sigma^{*}\right) \subset \mathbb{R}^{\Sigma^{*}}$
$p_{S}, \dot{A} p_{S}, \dot{C} p_{S}, \dot{G} p_{S}, \dot{T} p_{S}, \ldots$

Grammatical Inference \Leftrightarrow
Finding the d-dimensional vector subspace wich minimizes the distance to the set of points

Automata

Residuals

PCA

Algorithm

Results

Experiments

Conclusion and Future works

Probabilistic Automata $(P A) \simeq(H M M)$

- starts on state p_{0} with probability 1
- moves to state p_{1} emitting symbol a with probability $1 / 4$
- stops on state p_{1} with probability $1 / 3$

Probabilistic Automata

$$
\begin{aligned}
& I=\binom{1}{0} T=\binom{0}{1 / 3} M_{a}=\left(\begin{array}{ll}
0 & 1 / 4 \\
0 & 1 / 3
\end{array}\right) M_{b}=\left(\begin{array}{cc}
1 / 2 & 1 / 4 \\
0 & 1 / 3
\end{array}\right) \\
& \bullet p(b a)=I \times M_{b} \times M_{a} \times T \sim 0,069
\end{aligned}
$$

Probabilistic Grammatical Inference

From a sample, find an automaton wich computes a probability distribution close to the underlying sample distribution

Algorithm: Baum-Welch [Baum et al. 1970]

- Structure of automaton known a priori (authorized states and transition)
- Sets coefficients to maximize likelihood of a training sample

Weighted Automata

- Coefficients in \mathbb{R}
$-p\left(a_{0} \ldots a_{n}\right)=I \times M_{a_{0}} \cdots \times M_{a_{n}} \times T$

Automata

Residuals

Algorithm

Results

Experiments

Conclusion and Future works

Residuals

- $\dot{u}: \mathbb{R}^{\Sigma^{*}} \mapsto \mathbb{R}^{\Sigma^{*}}$ for $u \in \Sigma^{*}$
- $\dot{u r}(w)=r(u w)$
- Residuals of r : linear combination of ur
- Residual space of r : vector space spanned by the residuals of r
- A mapping r is computed by a WA (i.e is a rational series) if and only if its Residual space has a finite dimension

- States \Leftrightarrow Residuals (Minimal Case: base of the Residual space)
- Coefficients: linear relations between residuals
- $\dot{b} p_{0}=\frac{1}{2} p_{0}+\frac{1}{4} p_{1}$

- I: p in the base $\left(p_{0}, p_{1}\right)$
- $p=1 \times p_{0}+0 \times p_{1}$

$$
I=\binom{1}{0}
$$

- matrix M_{a} : matrix of à in the base $\left(p_{0}, p_{1}\right)$
$-\dot{a} p_{0}=\frac{1}{4} p_{1}, \dot{a} p_{1}=\frac{1}{3} p_{1}$

$$
M_{a}=\left(\begin{array}{ll}
0 & 1 / 4 \\
0 & 1 / 3
\end{array}\right)
$$

Consequences

- B a base of the Residual space of r (dimension $d) \Leftrightarrow$ Transition matrices of a d-state automaton wich computes r
- $I=$ coordinates of r in this base
- $T=$ empty word probability of the base residuals

Automata

Residuals

PCA

Algorithm

Results

Experiments

Conclusion and Future works

Grammatical Inference as a Principal Component Analysis

Principal Component Analysis

- $\left\{x_{i}\right\}$ a set of points in a vector space E with a distance
- For a given dimension d, one looks for a vector subspace F_{d} of E wich minimizes the sum of the squares of the distances from x_{i} to F_{d} (Reconstruction Error)

PCA- Dot product

If E is equipped with a dot product, F_{d} is spanned by $v_{1} \ldots v_{d}$, eigenvectors associated to the d first eigenvalues of $M=$ variance matrix of $\left\{x_{i}\right\}$

The sum of the remainig eigenvalues is equal to the reconstruction error

Elbow and Dimension

After the eigenvalue "elbow", the eigenvectors are meaningless.

Here, only the vectors associated to the blue eiegnvalues will be kept.

Automata

Residuals

PCA

Algorithm

Results

Experiments

Conclusion and Future works

Finding the automaton rank

- S a sample, p_{S} the empirical distribution, $N=\left\{\dot{w} p_{S}, w \in \Sigma^{*}\right\}$
- Perform a PCA on N
- Use upper bound of the reconstruction error to find a lower bound of the dimension
- Find the elbow on the eigenvalues curve greater than this bound

Automate A, S i.i.d w.r.t $p_{A},|S|=1000$

Finding the parameters of the Automaton

The dimension d is given.

- PCA on the residuals: base $\left\{w_{1} \ldots w_{d}\right\}$ of eigenvectors, spanning V_{d}
- $\Pi_{V_{d}}$ is the projection upon V_{d}. \dot{a} is the linear mapping: $r \in \Sigma^{*}, r \rightarrow \dot{a} r$
- Given $x \in \Sigma$, the matrix $M_{x}=$ matrix of $\Pi_{V_{d}} \circ \dot{x}$ in the base $\left\{w_{1} \ldots w_{d}\right\}$
- $I=$ cordinates of $\Pi_{V_{d}}\left(p_{S}\right)$ in the base $\left\{w_{1} \ldots w_{d}\right\}$
- $T=\left(w_{1}(\epsilon), \ldots, w_{d}(\epsilon)\right)$

Figure: Computed automata for $d=1\left(A_{1}\right)$ and $d=2\left(A_{2}\right)(|S|=1000)$

	ε	a	b	$a a$	$a b$	$b a$	$b b$
p_{A}	0.0	0.083	0.083	0.028	0.028	0.069	0.069
$p_{r_{2} 2}$	0.000	0.10	0.086	0.028	0.030	0.077	0.072

Automata

Residuals

PCA

Algorithm

Results

Experiments

Conclusion and Future works

Properties

- Identification in the limite of the rank (Number of states)
- Convergence of the automaton's coefficients towards those of the target in $O\left(1 / n^{1 / 2}\right)$

Consequence:

- I_{1}-convergence of the estimated distribution to the target

Automata

Residuals

\square

Algorithm

Results

Experiments

Conclusion and Future works

Toy examples

- 500 randomly generated automata with 4 states on a 2 letters alphabet
- Building automata for several number of states
- Rank selection with several criteria: distance minimization (I_{1}, I_{2} ou $K L$), eigenvalues curve

$\|S\|=100000$	$\left\\|\left\\|\\|_{1}\right.\right.$	$\left\\|\\|_{2}\right.$	KL-divergence	Eigenvalue curve
Correct rank	48%	29%	13%	60%

Figure: Eigenvalues for sample size of 1000, 5000, 20000 and 100000.

Biological data

- Data: DNA sequences of a promoter (C.Jejuni)
- Learning sample: 140 strings of 122 bases, Test sample: 35 strings
- HMM Structure (based on a priori biological knowledge): 11 states [Petersen et al. 03], 10 states [Won et al. 04]
- Comparison between Baum-Welch on HMM, and boosted PCA

Results

- 7-state Weighted Automaton
- Improved likelihood performances on the test sample with PCA method

Figure: Eigenvalues curve for biological data.

Automata

Residuals

PCA

Algorithm

Results

Experiments

Conclusion and Future works

Conclusion

- Probabilistic Grammatical Inference method with convergence theoretical results
- Good performances compared to generally used methods
- Inner product-based method: one can extend to kernel metrics, akin to Kernel PCA [Schölkopf Smola Müller 99], and embedding distribution in an RKHS [Smola Gretton Song Schölkopf 07]

