

Grammatical Inference as a Principal Component Analysis

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

ICML 2009

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

Overview	Automata	Residuals	PCA	Algorithm	Results	Experiments	Conclusion and Future works
Ov	erview						

Automata

Residuals

PCA

Algorithm

Results

Experiments

Conclusion and Future works

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

Grammatical Inference as a Principal Component Analysis

LIF, Marseille CNRS, Aix-Marseille Université

S =ACGTGACTGGTA, GTAACTGACGTGACTGACTG, CCGTACCT, GTACCTGATCT-TAACCGATCTGAC,...

Strings from Σ^*

 \Downarrow

points of $l^2(\Sigma^*) \subset \mathbb{R}^{\Sigma^*}$

ps. Aps. Cps. Gps. Tps. ...

Grammatical Inference \Leftrightarrow Finding the *d*-dimensional vector subspace wich minimizes the distance to the set of points

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

Overview	Automata	PCA		Conclusion and Future works

Overview

Automata

Residuals

PCA

Algorithm

Results

Experiments

Conclusion and Future works

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

Grammatical Inference as a Principal Component Analysis

・ロト・1回ト・1日ト・1日・1000

LIF, Marseille CNRS, Aix-Marseille Université

Overview Automata Residuals PCA Algorithm Results Experiments Conclusion and Future works

Probabilistic Automata (PA) \simeq (HMM)

- starts on state p₀ with probability 1
- moves to state p₁ emitting symbol a with probability 1/4
- stops on state p_1 with probability 1/3

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

Probabilistic Automata

$$I = \begin{pmatrix} 1 \\ 0 \end{pmatrix} T = \begin{pmatrix} 0 \\ 1/3 \end{pmatrix} M_a = \begin{pmatrix} 0 & 1/4 \\ 0 & 1/3 \end{pmatrix} M_b = \begin{pmatrix} 1/2 & 1/4 \\ 0 & 1/3 \end{pmatrix}$$

$$P(ba) = I \times M_b \times M_a \times T \sim 0,069$$

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

Probabilistic Grammatical Inference

From a sample, find an automaton wich computes a probability distribution close to the underlying sample distribution

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

Algorithm: Baum-Welch [Baum et al. 1970]

- Structure of automaton known a priori (authorized states and transition)
- Sets coefficients to maximize likelihood of a training sample

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

Weighted Automata

► Coefficients in ℝ

$$\blacktriangleright p(a_0 \dots a_n) = I \times M_{a_0} \dots \times M_{a_n} \times T$$

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

Overview	Residuals	PCA		Conclusion and Future works

Overview

Automata

Residuals

PCA

Algorithm

Results

Experiments

Conclusion and Future works

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

Grammatical Inference as a Principal Component Analysis

<□> <@> < => < => < => < => <</p>

LIF, Marseille CNRS, Aix-Marseille Université

Residuals

- $\dot{u}: \mathbb{R}^{\Sigma^*} \mapsto \mathbb{R}^{\Sigma^*}$ for $u \in \Sigma^*$
- ir(w) = r(uw)
- Residuals of r: linear combination of ur
- Residual space of r: vector space spanned by the residuals of r
- A mapping r is computed by a WA (i.e is a rational series) if and only if its Residual space has a finite dimension

Overview	Residuals	PCA		Conclusion and Future works

- States ⇔ Residuals (Minimal Case: base of the Residual space)
- Coefficients: linear relations between residuals

•
$$\dot{b}p_0 = \frac{1}{2}p_0 + \frac{1}{4}p_1$$

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

Overview	Residuals	PCA		Conclusion and Future works

- I: p in the base (p_0, p_1)
- $\blacktriangleright p = 1 \times p_0 + 0 \times p_1$
- matrix M_a: matrix of à in the base (p₀, p₁)

•
$$\dot{a}p_0 = \frac{1}{4}p_1$$
, $\dot{a}p_1 = \frac{1}{3}p_1$

$$I = \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$$

$$M_{a} = \left(\begin{array}{cc} 0 & 1/4 \\ 0 & 1/3 \end{array}\right)$$

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

Consequences

- ▶ B a base of the Residual space of r (dimension d) ⇔ Transition matrices of a d-state automaton wich computes r
- I = coordinates of r in this base
- T =empty word probability of the base residuals

Overview		PCA		Conclusion and Future works

PCA

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

Grammatical Inference as a Principal Component Analysis

ж

LIF, Marseille CNRS, Aix-Marseille Université

Principal Component Analysis

- {x_i} a set of points in a vector space E with a distance
- For a given dimension d, one looks for a vector subspace F_d of E wich minimizes the sum of the squares of the distances from x_i to F_d (Reconstruction Error)

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

PCA- Dot product

If E is equipped with a dot product, F_d is spanned by $v_1 \dots v_d$, eigenvectors associated to the *d* first eigenvalues of M=variance matrix of $\{x_i\}$

The sum of the remaining eigenvalues is equal to the reconstruction error

LIF, Marseille CNRS, Aix-Marseille Université

Elbow and Dimension

After the eigenvalue "elbow", the eigenvectors are meaningless.

Here, only the vectors associated to the blue eiegnvalues will be kept.

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

Overview	Automata	Residuals	PCA	Algorithm	Results	Experiments	Conclusion and Future works
Ov	erview						
Au	tomata						

Residuals

PCA

Algorithm

Results

Experiments

Conclusion and Future works

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

Grammatical Inference as a Principal Component Analysis

・ロト・(型ト・(型ト・(型ト・)のへの

LIF, Marseille CNRS, Aix-Marseille Université

Finding the automaton rank

- ► S a sample, p_S the empirical distribution, $N = \{\dot{w}p_S, w \in \Sigma^*\}$
- Perform a PCA on N
- Use upper bound of the reconstruction error to find a lower bound of the dimension
- Find the elbow on the eigenvalues curve greater than this bound

Automate A, S i.i.d w.r.t p_A , |S| = 1000

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

Finding the parameters of the Automaton

The dimension d is given.

- PCA on the residuals: base {w₁...w_d} of eigenvectors, spanning V_d
- Π_{V_d} is the projection upon V_d . \dot{a} is the linear mapping: $r \in \Sigma^*, r \to \dot{a}r$
- Given $x \in \Sigma$, the matrix M_x = matrix of $\prod_{V_d} \circ \dot{x}$ in the base $\{w_1 \dots w_d\}$
- $I = \text{cordinates of } \Pi_{V_d}(p_S) \text{ in the base } \{w_1 \dots w_d\}$

$$\blacktriangleright T = (w_1(\epsilon), \ldots, w_d(\epsilon))$$

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

< ∃ >

Figure: Computed automata for d = 1 (A_1) and d = 2 (A_2)(|S| = 1000)

	ε	а	b	аа	ab	ba	bb
<i>p</i> _A	0.0	0.083	0.083	0.028	0.028	0.069	0.069
$p_{r_{A_2}}$	0.000	0.10	0.086	0.028	0.030	0.077	0.072

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

Overview		PCA	Results	Experiments	Conclusion and Future works
Ov	erview				
Au	tomata				
D					
PC	A				
Alg	gorithm				
Re	sults				

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

Grammatical Inference as a Principal Component Analysis

< ≥ > < LIF, Marseille CNRS, Aix-Marseille Université

э

< 🗇 >

Properties

- Identification in the limite of the rank (Number of states)
- Convergence of the automaton's coefficients towards those of the target in O(1/n^{1/2})

Consequence:

I₁-convergence of the estimated distribution to the target

Overview		PCA		Experiments	Conclusion and Future works
Ov	verview				
Au	tomata				
Re					
PC	CA				
Alg	gorithm				
Re	sults				

Experiments

Conclusion and Future works

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

Grammatical Inference as a Principal Component Analysis

・ロト・西ト・ボット・ボー うろの

LIF, Marseille CNRS, Aix-Marseille Université

Toy examples

- 500 randomly generated automata with 4 states on a 2 letters alphabet
- Building automata for several number of states
- ► Rank selection with several criteria: distance minimization (*l*₁, *l*₂ ou *KL*), eigenvalues curve

<i>S</i> = 100000	1	2	KL-divergence	Eigenvalue curve
Correct rank	48%	29%	13%	60%

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

Figure: Eigenvalues for sample size of 1000, 5000, 20000 and 100000.

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

Biological data

- Data: DNA sequences of a promoter (C.Jejuni)
- Learning sample: 140 strings of 122 bases, Test sample: 35 strings
- HMM Structure (based on a priori biological knowledge): 11 states [Petersen et al. 03], 10 states [Won et al. 04]
- Comparison between Baum-Welch on HMM, and boosted PCA

Results

- 7-state Weighted Automaton
- Improved likelihood performances on the test sample with PCA method

Figure: Eigenvalues curve for biological data.

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

LIF, Marseille CNRS, Aix-Marseille Université

Overview		PCA	Algorithm	Experiments	Conclusion and Future works
Ov	erview				
Au	tomata				
Re					
PC	A				
Al	gorithm				
Re	sults				
Ex	periments				

Conclusion and Future works

Raphaël BAILLY, François DENIS, Liva RALAIVOLA

Grammatical Inference as a Principal Component Analysis

1≣ → LIF, Marseille CNRS, Aix-Marseille Université

э

э

< 0 > < 0 >

Conclusion

- Probabilistic Grammatical Inference method with convergence theoretical results
- Good performances compared to generally used methods
- Inner product-based method: one can extend to kernel metrics, akin to Kernel PCA [Schölkopf Smola Müller 99], and embedding distribution in an RKHS [Smola Gretton Song Schölkopf 07]