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Classification with Monotonicity
Constraints

Classification problem with additional assumptions

There exists a meaningful order between class labels.

Domains of the attributes (input variables) are at least ordinal.

Monotone relationship between values on attributes of the
object and its class label: an increase in values on attributes
should not decrease the label.

⇒ Inference with monotone functions.
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Example: Windsor House Pricing

Contains n = 546 houses sold in Windsor,
Canada (1987).
Class – selling price of the house discretized
into 4 levels: cheap, moderate, expensive, very
expensive.

Attributes:

Size of the lot (sq. feet).

Number of bedrooms.

Number of bathrooms.

Number of storeys.

Driveway (yes/no).

Recreation room (yes/no).

Basement (yes/no).

Air conditioning (yes/no).

Number of garages.

Desirable location (yes/no).
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Why to Use Knowledge About
Monotonicity?

Monotonicity imposes constraints on the prediction function
⇒ smaller hypothesis space ⇒ less complex model
⇒ increase in accuracy of predictions.

Sometimes only the model consistent with domain knowledge
will be acceptable to the domain experts.
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Outline

1 Probabilistic model based on the stochastic dominance.

2 Nonparametric method of classification.

3 Learning rule ensembles with monotonicity constraints.
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Some Theory of Classification

Objects (x, y), x ∈ X ⊆ Rm, y ∈ Y = {1, . . . ,K} generated
i.i.d. according to some probability distribution P (x, y).

Loss function L(y, ŷ), a penalty for predicting ŷ when y is
observed.

The quality of a classifier h : X → Y : expected loss (risk)
according to P (x, y):

R(h) = EL(y, h(x))

The minimizer of the risk, h∗, called Bayes classifier.
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Problem
How can we incorporate monotonicity constraints into this
formalism, i.e. express monotonicity constraints in term of P (x, y)?
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Dominance Relation
For each x, x′ ∈ X, x dominates x′, x � x′, if x has higher or
equal values on all attributes: xk ≥ x′k ∀k = 1, . . . ,m.

Monotone Function
Function f : X → Y is monotone if for any x, x′ ∈ X it holds:

x � x′ → f(x) ≥ f(x′)
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Dominance relation – Example
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Intuitively. . .

If x � x′, then x probably has a higher or equal class label than x′.

Probabilistic Model
Objects are generated according to monotonically constrained
probability distribution P (x, y):

x � x′ → P (y ≥ k|x) ≥ P (y ≥ k|x′) ∀k = 1, . . . ,K.

In other words, for each k, function P (y ≥ k|x) is monotone.

Stochastic dominance relation.
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Monotonicity of the Bayes Classifer

Let P (x, y) be monotonically constrained.
Is the Bayes classifier a monotone function?

Suppose L(y, k) = C(y − k). Then, Bayes classifier is monotone if
and only if C(·) is convex.

⇒ Monotone for absolute or squared error loss, but not for 0-1 loss.

11 / 23



Learning

In general P (x, y) is unknown (and so is h∗).
⇒ Train a classifier using a sample D = {(x1, y1), . . . , (xn, yn)}.

Usually performed by minimization of the empirical risk:

EDh(x, y) =
1
n

n∑
i=1

L(yi, h(xi))

within restricted class of functions (e.g. linear, trees, rules, etc.).

In classification with monotonicity constraints one can consider the
class of all monotone functions.
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Nonparametric Classification

Can be stated as an integer linear program:

min :
∑n

i=1 L(yi, di)
s.t. : xi � xj → di ≥ dj

di ∈ {1, . . . ,K}

Due to unimodularity of the constraints matrix integer
conditions can be relaxed ⇒ linear program.

Interpretation: relabel the objects to remove inconsistencies
with respect to monotonicity constraints.

New labels are always monotone. ⇒ data monotonization.

Convergence to Bayes classifier.
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Original data set with violations of monotonicity constraints.
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Monotonized data set (with use of absolute error loss)
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Prediction.
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Ambiguous prediction.
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Beyond Nonparametric Classification

Problems

Nonparametric classification requires memorization of a large
part of the training set.

Can give an imprecise prediction.

Solution

Apply nonparametric classification to D in order to obtain a
monotonized data set D′.

“Compress” the monotonized dataset D′ using a set of rules
(rule ensemble).
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Rule ensemble

A (decision) rule is a logical expression of the form “if conditions
then decision”.

condition part is a conjunction of constraints of the form
xi ≤ si or xi ≥ si,
decision is a vote for a given cumulation of classes (“class at
least k” or ”at most k”).

Example

if lot size ≥ 80 000 and nstoreys ≥ 2 then price level ≥ 3.

A single rule is too weak ⇒ a set of rules needed (rule ensemble).
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Combining Rules
Rule ensemble is a set of K − 1 convex combinations of rules.

fk(x) =
Tk∑
t=1

αktrkt(x) k = 2, . . . ,K

where
∑

t αkt = 1 and αkt ≥ 0.

For each k = 2, . . . ,K, fk(x) aims at separating class “at least k”
from class “at most k − 1”.

{rkt, t = 1, . . . , Tk} is a set of rules voting for a class “at least
k” (then rkt(x) = 1) or “at most k − 1” (rkt(x) = −1).

The final response of the classifier is:

h(x) = 1 +
K∑
k=2

sgn(fk(x))

Absolute error of h(x) does not exceed sum of 0-1 errors of fk(x).
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Generating Rules

For each k = 2, . . . ,K:

Let yki = 1 if yi ≥ k and yki = −1 if yi < k. Rules are
generated by maximization of the minimum margin:

max min
i
yikfk(xi)

A linear program. Can be solved efficiently via column
generation algorithm (c.f. LPBoost).

A solution with positive margin exists if and only if the
dataset is monotone.
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Generalization Bound

Theorem
Assume P (x, y) is monotonically constrained. Let h(x) be the final
classifier and let fk(x), k = 2, . . . ,K, be the k-th rule ensemble
trained on the monotonized data set D′k achieving minimum
margin γk. Then, with probability at least 1− δ for every
γ2, . . . , γK :

EL(y, h(x)) − EL(y, h∗(x)) ≤

M

2(K − 1)

√
log 2(K−1)

δ

n
+

√
m

n

K∑
k=2

1
γk


for some universal constant M .
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Experimental Results

Ten datasets for which the monotone relationships are observed.

Five classifiers:

Two state-of-the-art methods in classification with
monotonicity constraints: Ordinal Learning Model (OLM),
Isotonic Separation (IsoSep).

Two classifier which does not take monotonicity into account,
run in the ordinal setting : Support Vector Machines (SVM),
decision tree (J48).

Our methods: Linear Programming Rules (LPRules)

The error measure (and loss function): mean absolute error.

10-fold cross validation, repeated 10 times to improve replicability.
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Results of Experiment
Dataset OLM IS LPRules J48 SVM
DenBosch 0.282 0.183 0.168 0.172 0.202

±0.039 ±0.037 ±0.034 ±0.032 ±0.036

ESL 0.371 0.328 0.323 0.369 0.355
±0.024 ±0.023 ±0.024 ±0.022 ±0.023

SWD 0.452 0.442 0.435 0.442 0.435
±0.017 ±0.018 ±0.017 ±0.016 ±0.016

LEV 0.427 0.398 0.396 0.415 0.444
±0.018 ±0.017 ±0.016 ±0.018 ±0.016

ERA 1.256 1.271 1.263 1.217 1.271
±0.031 ±0.034 ±0.033 ±0.032 ±0.029

Housing 0.527 0.286 0.274 0.332 0.314
±0.032 ±0.02 ±0.021 ±0.023 ±0.025

CPU 0.29 0.099 0.073 0.1 0.371
±0.035 ±0.02 ±0.018 ±0.019 ±0.03

Balance 0.224 0.19 0.063 0.271 0.137
±0.02 ±0.017 ±0.009 ±0.021 ±0.017

Windsor 0.576 0.52 0.516 0.565 0.491
±0.028 ±0.028 ±0.026 ±0.025 ±0.026

Car 0.084 0.045 0.03 0.09 0.078
±0.01 ±0.006 ±0.004 ±0.008 ±0.007
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Summary

Statistical theory of classification with monotonicity
constraints.

Nonparametric classification: no additional assumptions on
the model, learning in the class of all monotone functions.

Compressing the training data with rule ensemble.
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