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Games
Game:

I agents N = {1, . . . , n}

drivers

I ∀i ∈ N : finite strategy space Σi

possible paths from si to ti

I ∀i ∈ N : cost function ci : Σ1 × · · · × Σn → R

travel time

(S ∈ Σ1 × · · · × Σn is called state.)

Example: Network Congestion Games

latency function `e : N→ R for every edge e

c1(S) = 8 c2(S) = 8 c3(S) = 2

We consider only games with complete information.
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Nash Equilibria

c1(S) = 4
c2(S) = 1
c3(S) = 5
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Definition
pure Nash Equilibrium S ∈ Σ1 × · · · × Σn

⇐⇒ no player can unilaterally improve his payoff in S

I Nash Equilibrium = stable
(if players are uncoordinated, rational, selfish)

I We do not consider mixed Nash equilibria in this tutorial.



Nash Equilibria

c1(S) = 3
c2(S) = 1
c3(S) = 4

2/3

1/8

4

12

s1

s2

s3 t1

t2

t3

Definition
pure Nash Equilibrium S ∈ Σ1 × · · · × Σn

⇐⇒ no player can unilaterally improve his payoff in S

I Nash Equilibrium = stable
(if players are uncoordinated, rational, selfish)

I We do not consider mixed Nash equilibria in this tutorial.



Nash Equilibria

c1(S) = 3
c2(S) = 1
c3(S) = 4

2/3

1/8

4

12

s1

s2

s3 t1

t2

t3

Definition
pure Nash Equilibrium S ∈ Σ1 × · · · × Σn

⇐⇒ no player can unilaterally improve his payoff in S

I Nash Equilibrium = stable
(if players are uncoordinated, rational, selfish)

I We do not consider mixed Nash equilibria in this tutorial.



Properties of Equilibria

A lot of research on static properties of equilibria:
How much does society suffer from selfish behavior?

I Let cost be some measure for social cost, e.g.,
cost(S) =

∑
i∈N ci (S) or cost(S) = maxi∈N ci (S).

I

price of anarchy = max
S∈NE

cost(S)

cost(Opt)

Focus of this tutorial: Questions about dynamics

I Do uncoordinated agents reach an equilibrium?

I How long does it take?

I Do they quickly reach a state with small social cost?
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Congestion Game:

I set of players N
I set of resources R

e.g., edges of a graph or set of servers
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I set of strategies, ∀i ∈ N : Σi ⊆ 2R

Σi = {P ⊆ R | P path si → ti} (network congestion game)
Σi = {P ⊆ R | P path s → t} (symmetric congestion game)
Σi = {{r} | r ∈ R} (singleton congestion game)

I latency functions ∀r ∈ R : `r : N→ N
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Nash Dynamics

I Nash Dynamics: Sequence of best responses of players.
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I Nash Dynamics with Liveness Property: Each player gets a
chance to play his/her best response after at most t steps.

I Random Nash Dynamics: Players are chosen uniformly at
random.

I ε-Nash Dynamics: Players change their strategy only if they
can improve their own cost by a factor of at least 1 + ε.

Other dynamics are discussed later.



Nash Dynamics

I Nash Dynamics: Sequence of best responses of players.

c1(S) = 4
c2(S) = 1
c3(S) = 5

2/3

1/8

4

12

s1

s2

s3 t1

t2

t3

I Nash Dynamics with Liveness Property: Each player gets a
chance to play his/her best response after at most t steps.

I Random Nash Dynamics: Players are chosen uniformly at
random.

I ε-Nash Dynamics: Players change their strategy only if they
can improve their own cost by a factor of at least 1 + ε.

Other dynamics are discussed later.



Nash Dynamics

I Nash Dynamics: Sequence of best responses of players.

c1(S) = 3
c2(S) = 1
c3(S) = 4

2/3

1/8

4

12

s1

s2

s3 t1

t2

t3

I Nash Dynamics with Liveness Property: Each player gets a
chance to play his/her best response after at most t steps.

I Random Nash Dynamics: Players are chosen uniformly at
random.

I ε-Nash Dynamics: Players change their strategy only if they
can improve their own cost by a factor of at least 1 + ε.

Other dynamics are discussed later.



Nash Dynamics

I Nash Dynamics: Sequence of best responses of players.

c1(S) = 3
c2(S) = 1
c3(S) = 4

2/3

1/8

4

12

s1

s2

s3 t1

t2

t3

I Nash Dynamics with Liveness Property: Each player gets a
chance to play his/her best response after at most t steps.

I Random Nash Dynamics: Players are chosen uniformly at
random.

I ε-Nash Dynamics: Players change their strategy only if they
can improve their own cost by a factor of at least 1 + ε.

Other dynamics are discussed later.



Nash Dynamics

I Nash Dynamics: Sequence of best responses of players.

c1(S) = 3
c2(S) = 1
c3(S) = 4

2/3

1/8

4

12

s1

s2

s3 t1

t2

t3

I Nash Dynamics with Liveness Property: Each player gets a
chance to play his/her best response after at most t steps.

I Random Nash Dynamics: Players are chosen uniformly at
random.

I ε-Nash Dynamics: Players change their strategy only if they
can improve their own cost by a factor of at least 1 + ε.

Other dynamics are discussed later.



Nash Dynamics

I Nash Dynamics: Sequence of best responses of players.

c1(S) = 3
c2(S) = 1
c3(S) = 4

2/3

1/8

4

12

s1

s2

s3 t1

t2

t3

I Nash Dynamics with Liveness Property: Each player gets a
chance to play his/her best response after at most t steps.

I Random Nash Dynamics: Players are chosen uniformly at
random.

I ε-Nash Dynamics: Players change their strategy only if they
can improve their own cost by a factor of at least 1 + ε.

Other dynamics are discussed later.



Nash Dynamics

I Nash Dynamics: Sequence of best responses of players.

c1(S) = 3
c2(S) = 1
c3(S) = 4

2/3

1/8

4

12

s1

s2

s3 t1

t2

t3

I Nash Dynamics with Liveness Property: Each player gets a
chance to play his/her best response after at most t steps.

I Random Nash Dynamics: Players are chosen uniformly at
random.

I ε-Nash Dynamics: Players change their strategy only if they
can improve their own cost by a factor of at least 1 + ε.

Other dynamics are discussed later.



The State Graph
state graph G = (V ,E )

V = states E = better/best responses
There is an edge from state S to S ′ with label i if player i
improves her cost from S to S ′.

Properties of dynamics can be phrased in terms of state graph:

I pure Nash equilibrium = sink nodes of state graph

I potential game = acyclic state graph
⇒ players eventually reach equilibrium.
Example: Congestion Games

I non-potential games = best responses may cycle.
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Rosenthal’s Potential Function for Congestion Games
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Rosenthal (Int. Journal of Game Theory 1973)

Every congestion game admits an exact potential function.

I Φ: Σ1 × · · · × Σn → N with 0 ≤ Φ ≤ n ·m · dmax

I player decreases his delay by x ∈ N ⇒ Φ decreases by x as
well

I nr = number of players i with r ∈ Si ∈ Σi

φ(S) =
∑
r∈R

nr∑
i=1

dr (i)

⇒ The state graph is acyclic.
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Fabrikant, Papadimitriou, Talwar (STOC 04)

There exist network congestion games with an
initial state from which all better response
sequences have exponential length.

Ieong, McGrew, Nudelman, Shoham, Sun
(AAAI 05)

In singleton games all best response sequences
have length at most n2 ·m.

Ackermann, Röglin, Vöcking (FOCS 06)

I In spanning tree congestion games all best
response sequences have length at most
n2 ·m · number of vertices.

I In matroid congestion games all best
response sequences have length at most
n2 ·m · rank.
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Singleton Games

I Idea: Reduce delays without
affecting the game!

I equivalent delays d r (x) ≤ n ·m

r r′

dr(nr) > dr′(nr′ + 1)

2/100/120/150 1/5/10/15

However, delay reduction works also for matroid games.
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PLS: Polynomial Local Search Problems

Local Search Problem Π

I set of instances IΠ

I for I ∈ IΠ: set of feasible solutions F(I )

I for I ∈ IΠ: objective function c : F(I )→ Z
I for I ∈ IΠ and S ∈ F(I ): neighborhood N (S , I ) ⊆ F(I )

Johnson, Papadimitriou, Yannakakis (FOCS
85)

Π is in PLS if polynomial time algorithms exist
for

I finding initial feasible solution S ∈ F(I ),

I computing the objective value c(S),

I finding a better solution in the
neighborhood N (S , I ) if S is not locally
optimal.
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PLS-reductions

PLS-reduction

I Polynomial-time computable
function f : IΠ1 → IΠ2 .

I Polynomial-time computable
function (S2 ∈ F(f (I )))
g : S2 7→ S1 ∈ F(I )

I S2 locally optimal ⇒
g(S2) locally optimal.

Π1

IΠ1 IΠ2

Π2

f

F(I) F(f (I))
g

I local opt. of Π2 easy to find ⇒ local opt. of Π1 easy to find

I local opt. of Π1 hard to find ⇒ local opt. of Π2 hard to find

I Tight reduction implies exponential running time.
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Network Congestion Games and PLS

Fabrikant, Papadimitriou, Talwar (STOC 04),Ackermann,
Röglin, Vöcking (FOCS 06)

Network congestion games are PLS-complete for (un)directed
networks with linear delay functions.

⇒ Computing a pure NE is hard.
Also, the PLS-reduction is tight.
⇒ There exist states exponentially far from all sinks in the state
graph.
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Positive Result:

Chien, Sinclair (SODA 07)

In any symmetric congestion game with α-bounded jump
condition, the (1 + ε)-Nash dynamics converges after at most
poly(n, α, ε−1, log(dmax)) steps, assuming liveness property.

Idea: high-cost player moves ⇒ significant potential drop
S not (1 +ε)-equilibrium⇒ ∃ high-cost player that has an incentive
to move. (due to α-bounded jump condition and symmetry)
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Approximate Equilibria

What happens if players are lazy?

Approximate Equilibria

A state S = (S1, . . . ,Sn) is called (1 + ε)-approximate equilibrium
if ∀i ∈ N : delay of player i ≤
(1 + ε) ·min achievable delay of player i

Negative Result:

Skopalik, Vöcking (STOC 2008)

It is PLS-hard to compute an (1 + ε)-approximate equilibrium for
any polynomial-time computable ε.

⇒ Exponentially many steps until (1 + ε)-approx. eq. is reached.
Very involved reduction from Circuit/Flip.
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Non-potential Games

Sink equilibrium:strongly connected comp. of state graph w/o
outgoing edges[Goemans, M., Vetta]

⇒ random Nash dynamics eventually reaches sink equilibrium

Interesting class: Games with only singleton sink equilibria
Example: player-specific singleton congestion games.

Milchtaich, Games and Economics Behaviour, 1996
In player-specific singleton congestion games the best-response
dynamics can cycle. From every state there is a sequence of
best-responses to a pure equilibrium.
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How to find a stable marriage?

Let’s get to the really important problems. . .
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Formal Definition

Stable Matching

A matching is stable if there does not exist a blocking pair.

w m

w′ m′

(w ,m′) is blocking pair
⇐⇒

1) w prefers m′ to m
2) m′ prefers w to w ′

Theorem [Gale, Shapley 1962]

A stable matching can be computed efficiently.
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Applications and Previous Work

I Many Applications: Interns/Hospitals, College Admission,
Labor market.

I Many further results since the 60s: roommates, ties,
incomplete preferences, many-to-many matchings, etc.

I Mechanism Design Questions: Can players benefit from lying?
[Roth 1982]

Main Question
What happens without central authority?

I Do players reach a stable matching?

I How long does it take?
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Best Response Dynamics

Good news:

Theorem
From every matching there exists a sequence of 2n2 best responses
to a stable matching.

⇒ Random best-response dynamics reaches a stable matching with
probability 1.
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If every married woman is happy, every sequence of best responses
terminates after at most n2 steps.
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Best Response Dynamics – Good News

Claim 2
If every married woman is happy, every sequence of best responses
terminates after at most n2 steps.

Proof.
Invariant: No married woman can improve.

⇒ Men are never dumped.
Use the following potential function:

Ψ =
∑

married man m

n + 1− rank of m’s current partner

0 ≤ Ψ ≤ n2 and Ψ increases with every best response.
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Lower Bound for Random Best Responses

Bad news:

Theorem
The best-response dynamics can cycle.

Theorem
There exist instances such that the expected number of best
responses is Ω(cn) for some constant c > 1.
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Further Results – Correlated Instances

Good news: Correlation helps!

Monotone Instances
Input: complete, weighted bipartite graph G = (V ,E ,w).
Every player tries to maximize the weight of her/his relationship.
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Theorem
Random best/better responses converge in polynomial time whp.
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Natural Distributed/Synchronous Dynamics

I Fictitious Play
I Best response to the empirical distribution of the opponents.
I Nash equilibrium is an ”absorbing state”

I Replicator dynamics
I Each strategy survives according to its excess payoff
I Most reasonable variants converge in potential games

[Sandholm JET 01]
I Convergence rate [Racke et al. STOC 06]

I No regret

I Known to converge in specific games to Nash equilibrium

I There exist games on which uncoupled dynamics do not
converge [Hart and Mas-Collel] a simple example for no
regret [Zinkevich 03]



No regret in Congestion Games

I Is there a strategy that guarantees that the total routing time
will take almost as time as the best fixed path in hindsight?

No External Regret

I Is there a strategy that guarantees that the total routing time
when it took path P will take almost as time as the best fixed
path in hindsight for that time steps?

No Internal Regret

We say that algorithm is No X-Regret if its regret to best
static decision, R(T ) is sublinear.



No regret in Congestion Games

I Is there a strategy that guarantees that the total routing time
will take almost as time as the best fixed path in hindsight?

No External Regret

I Is there a strategy that guarantees that the total routing time
when it took path P will take almost as time as the best fixed
path in hindsight for that time steps?

No Internal Regret

We say that algorithm is No X-Regret if its regret to best
static decision, R(T ) is sublinear.



No regret in Congestion Games

I Is there a strategy that guarantees that the total routing time
will take almost as time as the best fixed path in hindsight?

No External Regret

I Is there a strategy that guarantees that the total routing time
when it took path P will take almost as time as the best fixed
path in hindsight for that time steps?

No Internal Regret

We say that algorithm is No X-Regret if its regret to best
static decision, R(T ) is sublinear.



No regret in Congestion Games

I Is there a strategy that guarantees that the total routing time
will take almost as time as the best fixed path in hindsight?

No External Regret

I Is there a strategy that guarantees that the total routing time
when it took path P will take almost as time as the best fixed
path in hindsight for that time steps?

No Internal Regret

We say that algorithm is No X-Regret if its regret to best
static decision, R(T ) is sublinear.



No regret in Congestion Games

I Is there a strategy that guarantees that the total routing time
will take almost as time as the best fixed path in hindsight?

No External Regret

I Is there a strategy that guarantees that the total routing time
when it took path P will take almost as time as the best fixed
path in hindsight for that time steps?

No Internal Regret

We say that algorithm is No X-Regret if its regret to best
static decision, R(T ) is sublinear.



No Regret - Motivation

These properties can influence a rational user to adapt these
algorithms (note that in stochastic setting these algorithms
will converge to the optimal strategy)
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Equilibria Types

Mixed Nash Equilibrium 

Pure Nash Equilibrium

Correlated Equilibrium

No Regret



Correlated Equilibria [Aumann 1974]

I Distribution over N-tuples.

I Nash Equilibrium with a shared signal
I Independent signal - Nash equilibrium
I Public signal - Convex combinations of Nash equilibrium
I Private signal - not necessarily convex hull of Nash

equilibrium (e.g. chicken game)

Properties:

I Contains the convex hull of Nash equilibrium.

I Can be computed efficiently



Correlated Equilibria [Aumann 1974]

I Distribution over N-tuples.
I Nash Equilibrium with a shared signal

I Independent signal - Nash equilibrium
I Public signal - Convex combinations of Nash equilibrium
I Private signal - not necessarily convex hull of Nash

equilibrium (e.g. chicken game)

Properties:

I Contains the convex hull of Nash equilibrium.

I Can be computed efficiently



Correlated Equilibria [Aumann 1974]

I Distribution over N-tuples.
I Nash Equilibrium with a shared signal

I Independent signal - Nash equilibrium

I Public signal - Convex combinations of Nash equilibrium
I Private signal - not necessarily convex hull of Nash

equilibrium (e.g. chicken game)

Properties:

I Contains the convex hull of Nash equilibrium.

I Can be computed efficiently



Correlated Equilibria [Aumann 1974]

I Distribution over N-tuples.
I Nash Equilibrium with a shared signal

I Independent signal - Nash equilibrium
I Public signal - Convex combinations of Nash equilibrium

I Private signal - not necessarily convex hull of Nash
equilibrium (e.g. chicken game)

Properties:

I Contains the convex hull of Nash equilibrium.

I Can be computed efficiently



Correlated Equilibria [Aumann 1974]

I Distribution over N-tuples.
I Nash Equilibrium with a shared signal

I Independent signal - Nash equilibrium
I Public signal - Convex combinations of Nash equilibrium
I Private signal - not necessarily convex hull of Nash

equilibrium (e.g. chicken game)

Properties:

I Contains the convex hull of Nash equilibrium.

I Can be computed efficiently



Correlated Equilibria [Aumann 1974]

I Distribution over N-tuples.
I Nash Equilibrium with a shared signal

I Independent signal - Nash equilibrium
I Public signal - Convex combinations of Nash equilibrium
I Private signal - not necessarily convex hull of Nash

equilibrium (e.g. chicken game)

Properties:

I Contains the convex hull of Nash equilibrium.

I Can be computed efficiently



No internal regret convergence theorem

[Hart and Mas-Collel, Foster and Vohra] If every player plays
a no internal regret algorithm, then the empirical
distributions of play converge almost surely as t →∞ to the
set of correlated equilibrium distributions of the game

The convergence is of the empirical distributions and not at
a specific time.



No internal regret simple algorithm

Regret Matching [Hart and Mas-Collel]

I Inertia
I Switching probability

I R(i , k) - regret of not playing k instead of i
I Switching to action j from action i is proportional to

R(i , j)

There exists many others algorithms, see Foster and Vohra, Blum
and Mansour, Lugosi and Stoltz ,...
Computational side:

I All implementation requires space which is
number of actions2

I No efficient implementation for continuous case

I Influence convergence rate as well.
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No external Regret - generic algorithm

Follow the Regularized Leader

Let `τ be the loss function at time τ

wt+1 = argminw [
T∑
τ=1

η`τ (w) + Regulizer(w)]

Includes, gradient descent, weight majority and more.
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No External Regret - History

Evolution of Bounds
Author and Year Rate Remarks

Hannan 56 O(
√

NT ) Adapted by KV

Blackwell 57 O(
√

NT ) Sufficient conditions

Littlestone and Warmuth 89 O(
√

log(N)T ) weighted majority

Cesa Bianchi et al. 93 O(
√

log(N)T ) Optimal



No External Regret - History

For the bandit setting
Lai and Robinns 85 O(log T ) Normal dist.

Auer et al. 95 O(
√

T ) Simplex

Bartlett et al. 08 O(
√

T ) More sets less efficcent

Aberenthy et al. 09 O(
√

T ) Convex sets efficient
Applications to special cases

Author Settings

Helmbbold and Schapire Prunning Decision trees
Takimoto and Warmuth shortest path
Kalai and Vempala Hannan’s algorithm for many settings
E. et al. MDPs
Zinkevich Convex functions
Aggarwarl at al strongly convex function
Lugosi et al. Bin Packing
E. et al Load balancing



convergence in two players zero sum games

[Freund and Schapire Game and Economic Behavior 98]

I M - the first player loss matrix.

I Minmax/Maxmin strategies: p∗, q∗

I v value of the game, M(p∗, q∗) = v .

Let pt , qt be the strategies taken at time t:

T∑
t=1

M(pt , qt) ≤ min
p

T∑
t=1

M(p, qt) + R(T ) ≤
T∑

t=1

M(p∗, qt) + R(T )

≤ T · v + R(T )
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No External Regret and Routing Games

I Atomic games specific update rule[Kleinberg, Piliouras
and Tardos STOC 09], Parallel links [Blum, E. and
Ligett PODC 06]

I Splittable traffic [E., Mansour and Nadav STOC 09]

I Infinitesimal users (Wardrop model) [Blum, E. and
Ligett PODC 06]
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Wardrop Model

A change in the model

I Infinitesimal users, assume over all traffic is 1

I All latency function de(x) are non decreasing

I Multi commodity flow with K types



Wardrop Model

S1

S2

T

`(x) = 0
`(x) = x

`(x) = 2x

`(x) = 2x
`(x) = x

`(x) = 0

`(x) = 0
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Convergence type

I L1 convergence

I All users converge to a pure Nash equilibrium

A flow f is at equilibrium if and only if for every player type
i , and paths P1,P2 ∈ Pi with fP1 > 0, `P1(f ) ≤ `P2(f ).

I Pi - possible paths for type i

I fPj
- flow on Pj

We would like both the average flow and the average cost to
converges to Nash equilibrium



Convergence Theorems[Blum, E, Liggett]

Theorem
Let ε′ = ε+ 2

√
sεn. Then for general functions with maximum

slope s, for T ≥ Tε, the time-average flow is ε′-Nash, that is,∑
e∈E

`e(f̂e)f̂e ≤ ε+ 2
√

sεn +
∑

i

ai min
P∈Pi

∑
e∈P

`e(f̂e).

Theorem
In general routing games with general delay functions with
maximum slope s, for all but a (ms1/4ε1/4) fraction of time steps
up to time Tε, f t is a (ε+ 2

√
sεn + 2m3/4s1/4ε1/4)-Nash flow.



Simple theorem and proof for linear latency
functions

Theorem
Suppose the delay functions are linear. Then for T ≥ Tε, the
average flow f̂ is ε-Nash, i.e.

C (f̂ ) ≤ ε+
∑

i

ai min
P∈Pi

∑
e∈P

`e(f̂e).



Simple proof for linear delay functions

Linearity:

I `e(f̂e) = 1
T

∑T
t=1 `e(f t

e )

I `e(f t
e )f t

e is convex

Convexity:

`e(f̂e)f̂e ≤
1

T

T∑
t=1

`e(f t
e )f t

e .

Combining all:

C (f̂ ) ≤ 1
T

∑T
t=1 C (f t)

≤ ε+
∑

i ai minP∈Pi
1
T

∑T
t=1

∑
e∈P `e(f t

e )

= ε+
∑

i ai minP∈Pi

∑
e∈P `e(f̂e).
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Socially concave games

A subclass of concave games [Rosen]

I There exists a combination λ1, ..λn such that∑N
i=1 λiUi (x) is concave

I ui (xi , x−i ) is convex in x−i

Theorem (E., Mansour and Nadav)

If every player in a socially concave games follows a no regret
policy then:

I The average strategy vector converges to ε-Nash equilibrium

I The average utility converges to the payoff at ε-Nash
equilibrium
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Price of Anarchy and Convergence

I Price of anarchy = Social Value of the worst equilibrium
Optimal Social Value .

I Large Price of Anarchy: Need for Central Regulation.

I Small Price of Anarchy: Does not indicate good performance.

I Players may not converge to those equilibria.

I Convergence to equilibria may take exponential time.

Question 1: Potential Games: How fast do players converge
to approximate solutions? (and not to equilibria).

Question 2 : Non-Potential Games: What is the quality of
solutions that players converge to?
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Congestion Games: Convergence to Nearly-Optimal
Solutions

I Question 1 (Potential Games): How fast do players converge
to approximate solutions? (and not to equilibria).

I Price of anarchy: 2.5 (Koutsoupias, Christoudolou,05 and
Awerbuch, Azar, Epstein, 05).

I Congestion games are potential games, but convergence will
take exponential time even for approximate Nash Dynamics

How about convergence time to constant-factor approximate
solutions?
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Convergence to Nearly-optimal Solutions

I Theorem (Awerbuch, Azar, Epstein, M., Skopalik, EC 2008)

Convergence time of Nash dynamics with liveness property to
constant-factor optimal solutions in linear congestion games might
be exponential.

This is in contrast to:

I Theorem (Goemans, M., Vetta, FOCS 2005)

For Random Nash dynamics, convergence time to constant-factor
solutions in linear congestion games is polynomial.

Proof Idea: Three lemmas:
I In any bad state, there exists a player who improves the

average by a large margin, thus there is a state.
I In any bad state, the expected value of the change incurred by

players is not too bad.
I Use induction on the above lemmas.

⇒ The price of anarchy for sink equilibrium is a constant.
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Convergence to Nearly-optimal Solutions

I Theorem (Awerbuch, Azar,Epstein, M., Skopalik, EC 2008)

For a large class of potential games that are β-nice, and satisfy
bounded-jump condition, after polynomial steps of ε-Nash
dynamics with a liveness property, players converge to a solution
with approximation factor of price of anarchy.

I Bounded-jump condition (informal): After a player i plays a
best response, the change in the payoff (cost) of other players
is bounded by the new payoff (cost) of player i .

I For example:
I Congestion games with constant-degree polynomial delay

functions,
I Weighted congestion games with linear delay functions,
I Party affiliation games,
I Market sharing games.
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Summary of Convergence to Nearly-Optimal
Solutions

Convergence to Nash equilibria: exponential
Convergence to nearly-optimal solutions:

Game PoA Nash Rand. Nash ε-Nash

Linear Congestion 2.5 expon poly(70) poly(2.5 + ε)

Deg. d Cong. 2.5 expon poly(O(22d)) poly(O(2d) + ε)

Wei. Lin. Cong. 2.62 expon poly (70) poly(2.62 + ε)

Cut Games 1
2 expon poly. ( 1

6 ) poly( 1
2 − ε)

Market Sharing 1
2 poly( 1

log n ) poly( 1
log n ) poly( 1

2 − ε)

For other games, check the β-nice and bounded jump condition.
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Sink Equilibria and Convergence

I Question 2 (Non-Potential Games): What is the quality of
solutions that players converge to?

I Price of anarchy for mixed NE might be good, but how about
convergence to good-quality solutions in non-potential games?

I In other words, what is the price of anarchy of sink equilibria?

Theorem (Goemans, M., Vetta, FOCS 2005)

For weighted congestion games, the price of anarchy for sink
equilibria is constant.

Theorem (Goemans, M., Vetta, FOCS 2005)

For a general class of market sharing games (aka valid-utility
games), eventhough the price of anarchy for mixed NE is constant,
the price of anarchy for sink equilibria is very poor.

⇒ Players may converge to a bad-quality solution and they
may get stuck there.

I What if players follow other dynamics?
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Quality of playing no regret

I In congestion games same bounds hold through similar
arguments [Roughgarden STOC 09]

I Valid utility games and Hotelling games [Blum et al.
STOC 08]
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Mixed Nash Equilibrium 

Pure Nash Equilibrium

Correlated Equilibrium

No Regret

price of No regret ≥ price of Correlated ≥ price of Mixed N.E
≥ price of Pure N.E
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Load balancing example

Consider n parallel links and n identical users and Makespan metric
then:

Pure N.E and sink : PofA = 1

Mixed N.E: PofA = log n/ log log n

Correlated Eq. and No regret: PofA =
√

n
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Conclusions and Future Directions

I In many realistic games learning algorithms can lead to
Nash equilibrium or high quality state (later)

I Can be used to explain N.E
I Can be used for computing N.E

I What can we say about games where nice behavior is
not guaranteed?

I Different types of regret for computing N.E in large
games [Counterfactual, Zinkevich 07]

I Effect of using machine learning algorithms and game
dynamics in (ad) Auctions (or everywhere...)



Thank You

Special thanks to Heiko Roeglin for sharing his slides with us
from another joint tutorial.
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