
Introduction Relaxations and Stability Stability Experiments Conclusion References

Solution Stability in
Linear Programming Relaxations:

Graph Partitioning and Unsupervised Learning

Sebastian Nowozin and Stefanie Jegelka

Department Empirical Inference for Machine Learning and Perception
Max Planck Institute for Biological Cybernetics
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Introduction

Combinatorial Problems

Many ML problems take the form

(P1) z∗ := argminz∈B w>z,
where

I B ⊆ {0, 1}n: finite set of binary indicator vectors of length n.
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0
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1

w

I Despite simplicity: very general model
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Introduction

Stability Analysis

Solution stability with respect to w for a single problem instance.

Why?

I w from noisy measurements: stable solutions → robust to noise

I w dependent on model parameters: stable solutions → trust in the
model

I insight into data: multiple stable solutions can indicate different
regimes

I parametrized solutions: solution paths, regularization paths, etc.

How?

I Linear programming analysis on LP relaxations

I Running example: graph partitioning
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Introduction

Example: Graph Partitioning / Clustering

I Graph G = (V ,E ), undirected,
connected, simple

I z∗ := argminz∈B w>z

I Variables z ∈ {0, 1}E ,
I zi,j = 1 “different partition”,
I zi,j = 0 “same partition”,

I Solutions B ⊂ {0, 1}E : all valid
graph partitionings (multicut
polytope)

I Weights w ∈ RE :
I wi,j > 0 “prefer to be in the

same partition”,
I wi,j < 0 “prefer to be in

different partition”.

π(·) = 2

π(·) = 3

π(·) = 1

j

i

zi,j = 1zk,l = 0

k

l
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Introduction

Example (cont’)

Setting covers popular methods

Method Weights
Correlation Clustering wi,j = similarity ratings
Clustering Aggregation w(i , j) = 1

m

∑m
k=1

(
1− 2rk

i,j

)
,∀(i , j) ∈ V × V

(Expected similarity with proposal clusterings)

Modularity Clustering w(i , j) = 1
2|E |

(
ηi,j − deg(i)deg(j)

2|E |
)

, ∀(i , j) ∈ V × V

Difference between achieved and expected
fraction of intra-cluster edges

Relative Performance (Generalization of modularity clustering to
Significance Clustering more general measures of performance)

Bias: diff. of cluster sizes λ
∑K

k,l=1(|Ck | − |Cl |)2

Bias: squared cluster sizes λ
∑K

k=1 |Ck |2
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Relaxations and Stability

Linear Programming Relaxations

I B is a finite but large set

I Optimization over the convex hull conv(B) is exact, i.e.

argminz∈B w>z = argminz∈conv(B) w>z.

B conv(B)
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Relaxations and Stability

Linear Programming Relaxations (cont)

I B and thus conv(B) is hard to describe

I Idea: approximate conv(B) by a larger set B̂
argminz∈conv(B) w>z ≥ argminz∈B̂ w>z.

conv(B) B̂
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Relaxations and Stability

Facets and Valid Inequalities

Convex polytopes have two equivalent
representations

I As a convex combination of extreme
points

I As a set of facet-defining linear
inequalities

A linear inequality with respect to a
polytope can be

I valid, does not cut off the polytope,

I representing a face, valid and touching,

I facet-defining, representing a face of
dimension one less than the polytope.

Z

d>1 y ≤ 1

d>2 y ≤ 1
d>3 y ≤ 1
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Relaxations and Stability

Solving Linear Relaxations

Delayed constraint
generation

I Optimize over a
subset of linear
inequalities

I Identify violated
inequalities over
the full set

Returns solution and
lower bound on the
optimal objective

1: S ← [0, 1]n {Initial feasible set}
2: loop
3: z← argminz∈S w>z {Solve LP relaxation}
4: Sviolated ← SeparateInequalities(B, z)
5: if no violated inequality found then
6: break
7: end if
8: S ← S ∩ Sviolated {Cut z from feasible set}
9: end loop

10: optimal← (z ∈ {0, 1}n) {Integrality check}
11: (f , z∗)← (w>z, z)
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Stability

Stability Range

Setting

I optimal solution
z∗ := argminz∈conv(B) w>z,

I perturbation vector d ∈ Rn,

I modified weights w′(θ) = w + θd

Stability Range

I stability range: θ-interval
[ρd,−, ρd,+] ∈ ({−∞,∞} ∪ R)2 for
which z∗ remains optimal

I perturbed problem
minz∈conv(B) w′(θ)>z.

z∗

w

θd

z′
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Stability

Stability Analysis (1)

I LP geometry: solution becomes
suboptimal when w + θd leaves the
cone of negative constraint normals at
z∗

I Standard LP stability analysis: basis
matrix approach

I Here: does not work, not all binding
constraints at z∗ are known,
additionally degeneracy

z∗

w

θd

z′
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Stability

Stability Analysis (2)

Idea from Jansen [7]
I explicitly search cone of constraint normals

min
α∈R,z∈Rn

w>z + αw>z∗

sb.t. (
1

α
z) ∈ conv(B),

(d>z∗)α− d>z = t : λ,

0 ≤ zi ≤ α, i = 1, . . . , n.

I ( 1
αz) ∈ conv(B) still linear (A( 1

αz) ≤ b ⇔ Az− αb ≤ 0)
I Separation routine recycling: given (z, α) we can still separate from

conv(B)
I Complexity: identical to canonical problem

Lagrange multiplier λ provides ρd,− for the left boundary (t = −1) or
ρd,+ for the right boundary (t = 1).
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Stability

Stability Analysis (3)

Theorem (Stability Inclusion)

Let z∗ be the optimal solution of P1 for a given B ⊆ {0, 1}n and weights
w ∈ Rn. For a perturbation d ∈ Rn, let [ξd,−, ξd,+] be the true stability

range for θ on conv(B). If B̂ ⊇ conv(B) is a polyhedral relaxation of B
using only facet-defining inequalities and if z∗ is a vertex of B̂, then the
stability range [ρd,−, ρd,+] on B̂, i.e., for the relaxation minz∈ bB w>z, is
included in the true range: [ρd,−, ρd,+] ⊆ [ξd,−, ξd,+].

Simply put

I estimated stability is conservative

I never overestimates the true stability
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Experiments

Multicut Polytope (1)

I Convex hull of the set of all partitionings of a graph: multicut
polytope

I Extensive results in late eighties and early nineties [5, 6, 2, 3, 4].

I Classes of facet-defining inequalities known

Polynomial-time separable facet-defining inequalities for the multicut
polytope

I Cycle inequalities

I Odd-wheel inequalities
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Experiments

Multicut Polytope: Cycle Inequalities

I generalize triangle inequalities,

I valid graph partitioning z satisfies a transitivity relation: there is no
all-zero path between any two adjacent vertices i , j that are in
different subsets of the partition.

For chord-free cycles ((i , j), p), p ∈ Path(i , j), where Path(i , j) is the set
of paths between i and j , we have the facet-defining inequalities

zi,j ≤
∑

(s,t)∈p

zs,t , (i , j) ∈ E , p ∈ Path(i , j).

I Complete graphs: all cycles longer than three edges contain chords
→ reduces to triangle inequalities,

I Separation procedure: series of shortest path problems.
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Experiments

Multicut Polytope: Odd-wheel Inequalities

I A q-wheel is a connected subgraph
S = (Vs ,Es) with a central vertex
j ∈ Vs and a cycle of the q vertices in
C = Vs \ {j},

I For each i ∈ C there exists an edge
(i , j) ∈ Es .

Then, for every q-wheel, a valid
partitioning z satisfies∑

(s,t)∈E(C)

zs,t −
∑
i∈C

zi,j ≤ b1

2
qc,

I Polynomial-time separable [3, 2]

0 2

1

j

Figure: 3-wheel with center j .
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Experiments

Experiment: Relaxation Tightness

Examine tightness of multicut polytope relaxation

I Maximize modularity objective on popular benchmark data sets [1, 8]

I Kernighan-Lin: popular graph-partitioning heuristic (VLSN)

I LP-C: LP relaxation with cycle-inequalities only

I LP-CO: LP relaxation with cycle- and oddwheel-inequalities

Kernighan-Lin LP-C LP-CO
dolphins 0.5268 0.4s (0.5315) 4.2s 0.5285 9.1s
karate 0.4198 0.1s 0.4198 0.2s 0.4198 0.2s

polbooks 0.5226 7.0s (0.5276) 147.4s 0.5272 148.5s
lesmis 0.5491 1.5s (0.5609) 6.9s 0.5600 11.7s
att180 0.6559 14.5s (0.6633) 302.3s 0.6595 1119.6s

I LP-CO achieves global optimum, LP-C only on smallest problem

I Heuristic fast but suboptimal
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Experiments

Experiment: Tracing Solution Path

I Stability quantifies when the
perturbed solution becomes
suboptimal

I → can be used to compute
solution path

We can efficiently trace all solutions
along a piecewise linear path in
weightspace (“parametric
programming”).
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Experiments

Experiment: Tracing Solution Path

I Data: 26 classes of leaves, w:
pairwise confusion rates from
human experiments (courtesy of
Frank Jäkel)

I Task: clustering leaves by human
“confusion rates similarity”

I d = 1, uniform bias toward
fewer/more clusters

I Trace solution path, identify stable
solutions
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Experiments

Experiment: “Critical” Edges

In some cases, stability can be visualized in the input data.
I Social network data: edges indicate social contact
I Modularity clustering: grouping
I Question: which friendships are essential in that their removal would

change the grouping?
I Answer: for each friendship between i and j , check stability range

for d = w(E \ {(i , j)})−w(E )
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Figure: Critical edges in karate social network.
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Conclusion

Conclusions

I Proposed a general method to quantify solution stability for
combinatorial optimization problems

I Requires only separation oracle
I Works for problems with exponentially many inequalities

I Computed stability is conservative

I Is exact if relaxation is locally exact

I Allows computation of stability ranges and solution paths
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LP-C/LP-CO tightness example
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Figure: Example input
graph with four vertices
and edge weights as
shown.
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Figure: Fractional
solution with
f (z∗) = −1.55, obtained
by the simple LP
relaxation (without odd
wheel inequalities).
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Figure: Integer solution
with f (z∗) = −1.5,
obtained by adding the
odd wheel inequality
z0,2 + z0,3 + z2,3 − z0,1 −
z1,2 − z1,3 ≤ 1.
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Limitations of the Basis Matrix Approach: Example
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Figure: Toy example input graph with signed edge weights shown. The optimal
graph partitioning has an objective of −1.6 and produces the three sets as
shown.
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Figure: Per-edge weight sensitivities at the optimal solution, estimated by the
basis matrix method.
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Figure: Per-edge weight sensitivities at the optimal solution, exact by the
auxiliary linear programming method.
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