Structure Preserving Embedding

Blake Shaw and Tony Jebara Columbia University 6/15/2009

Introduction

SPE is a graph embedding algorithm

Graph Embedding

Applications

- Many different objectives for graph embedding [Chung '97][Battista et al. '99]
 - Planarity drawing graphs such that edges never cross, possible for some graphs in 2D, possible for all in 3D
 - Approximating NP-hard sparsest cut problem [Arora '04]
- Our focus: visualization and compression
 - Real-world data from observing binary interactions, e.g. links between websites, and synthetic data such as interesting classical graphs

Graph Embedding

Background

- Spring embedding simulate physical system where edges are springs, use Hooke's law to compute forces, converges to local optimium
- Spectral embedding decompose adjacency matrix A with an SVD and use eigenvectors with highest eigenvalues for coordinates
- Laplacian eigenmaps [Belkin, Niyogi '02] form graph laplacian from adjacency matrix, L = D A, apply SVD to L and use eigenvectors with smallest non-zero eigenvalues for coordinates

SDP & SVD

- I. SDP to learn an embedding $K \mbox{ from } A$
 - Linear constraints on K preserve the global topology of the input graph
 - Convex objective favors low-rank K close to the spectral solution, ensuring low-dimensional embedding
- 2. Use eigenvectors of K with largest eigenvalues as coordinates for each node
- Similar to MVU and MVE [Weinberger et al. '05] [Shaw, Jebara '07]

Möbius Ladder Graph

Outline

• Introduction

- Applications, background, SDP + SVD, Möbius example
- Structure Preserving Embedding
 - A low-rank objective
 - Graph topology from linear constraints
 - Algorithm details, implementation
- Experiments
 - Classical graphs, molecules, political blogs
- Dimensionality Reduction
- Review

Low-Rank Objective

• Low-rank K corresponds to low-dimensional embedding

SPE objective: $\max_{K \in \mathcal{K}} \operatorname{tr}(KA)$ $\mathcal{K} = \{ K \succeq 0, \operatorname{tr}(K) \leq 1, \sum_{ij} K_{ij} = 0 \}$

Lemma 1. The objective function $\max_{K \succeq 0} \operatorname{tr}(KA)$ subject to $\operatorname{tr}(K) \leq 1$ recovers a low-rank version of spectral embedding.

• Proof in paper/poster

Preserving Structure

A connectivity algorithm G(K) such as k-nearest neighbors should be able to recover the edges from the coordinates such that G(K) = A

Preserving Graph Topology

Using linear constraints

$\mathcal{G}(K)$	Linear constraints on K				
k-nearest neighbors	$D_{ij} > (1 - A_{ij}) \max_{m} (A_{im} D_{im})$				
ϵ -neighborhoods	$D_{ij}(A_{ij} - \frac{1}{2}) \le \epsilon(A_{ij} - \frac{1}{2})$				

Distance is linear function of K

 $D_{ij} = K_{ii} + K_{jj} - 2K_{ij}$

Constraints prevent blue nodes from invading the neighborhood of the red node

Structure Preserving Embedding

Algorithm for nearest-neighbor graphs

Input	$A \in \mathbb{B}^{N \times N}$, connectivity algorithm \mathcal{G} ,
	and parameter C .
Step 1	Solve SDP $\tilde{K} = \arg \max_{K \in \mathcal{K}} \operatorname{tr}(KA) - C\xi$
	s.t. $D_{ij} > (1 - A_{ij}) \max_m (A_{im} D_{im}) - \xi$
Step 2	Apply SVD to \tilde{K} and use the top
	eigenvectors as embedding coordinates

Preserving Graph Topology

Using linear constraints

$\mathcal{G}(K)$	Linear constraints on K			
<i>b</i> -matching or max- weight spanning tree	???			

b-matching:

 $\mathcal{G}(K) = \operatorname{argmax}_{\tilde{A}} \sum_{ij} W_{ij} \tilde{A}_{ij} \text{ s.t. } \sum_{j} \tilde{A}_{ij} = b_i, \tilde{A}_{ij} = \tilde{A}_{ji}, \tilde{A}_{ii} = 0, \tilde{A}_{ij} \in \{0, 1\}$

max weight spanning tree: $\mathcal{G}(K) = \arg \max_{\tilde{A}} \sum_{ij} W_{ij} \tilde{A}_{ij} \text{ s.t. } \tilde{A} \in \mathcal{T}$

> Weight is linear function of K $W_{ij} = -D_{ij} = -K_{ii} - K_{jj} + 2K_{ij}$

Preserving Graph Topology

Using linear constraints

$\mathcal{G}(K)$	Linear constraints on K
<i>b</i> -matching or max- weight spanning tree	$\sum_{ij} W_{ij} A_{ij} \ge \sum_{ij} W_{ij} \tilde{A}_{ij} \text{ s.t } \tilde{A} \in \mathcal{G}$

- Exponential number of constraints of this form
- Use cutting-plane technique to avoid enumeration, similar to SVM-struct [Finley, Joachims '08]
 - Iterate SDP adding worst violating constraint at each iteration

Structure Preserving Embedding

Algorithm for maximum-weight subgraphs

Input	$A \in \mathbb{B}^{N \times N}$, connectivity algorithm \mathcal{G} ,
	and parameters C, ϵ .
Step 1	Solve SDP
	$\tilde{K} = \arg \max_{K \in \mathcal{K}} \operatorname{tr}(\mathrm{KA}) - \mathrm{C}\xi.$
Step 2	Use \mathcal{G}, \tilde{K} to find biggest violator
	$\tilde{A} = \arg \max_A \operatorname{tr}(\tilde{W}A).$
Step 3	If $ tr(\tilde{W}\tilde{A}) - tr(\tilde{W}A) > \epsilon$, add constraint
	$\operatorname{tr}(WA) - \operatorname{tr}(W\tilde{A}) \ge \triangle(\tilde{A}, A) - \xi \text{ and go}$
	to Step 1
Step 4	Apply SVD to \tilde{K} and use the top
	eigenvectors as embedding coordinates

Implementation

- MATLAB
- Using CSDP and SDP-LR [Borchers '99][Burer, Monteiro '03]
- Complexity similar to SDPs for dimensionality reduction
 - $O(N^3 + C^3)$ where C is the number of constraints
 - Many inactive constraints, working-set method
 - SDP-LR takes advantage of low-rank objective
 - Run on graphs with up to 1000 nodes

Outline

- Introduction to graph embedding
 - Applications, background, SDP + SVD, Möbius example
- Structure Preserving Embedding
 - Graph topology as linear constraints
 - A low-rank objective
 - Algorithm details, implementation
- Experiments
 - Classical graphs, molecules, political blogs
- Dimensionality Reduction
- Review

Classical graphs

Classical graphs

Molecules

Political blogs

Link structure between 981 political blogs Red is conservative, blue is liberal, reconstruction error shown as %

Dimensionality Reduction

Preserving distances and graph topology

- SPE is similar to manifold-learning methods for dimensionality reduction such as LLE, MVU, MVE [Roweis, Saul '05] [Weinberger et. al '05] [Shaw, Jebara '07]
- These methods preserve pairwise distances between datapoints
- Adding topology-preserving constraints yields more accurate embeddings, prevents collapsing parts of the underlying manifold

Dimensionality Reduction

Preserving distances and graph topology

For nearest-neighbor graphs

 $K_{ii} + K_{jj} - K_{ij} - K_{ji} > (1 - A_{ij}) \max_{m} (A_{im}(K_{ii} + K_{mm} - K_{im} - K_{mi})) \ \forall_{i,j}$

For maximum-weight graphs

 $\sum_{ij} (-K_{ii} - K_{jj} + K_{ij} + K_{ji}) A_{ij} - \sum_{ij} (-K_{ii} - K_{jj} + K_{ij} + K_{ji}) \tilde{A}_{ij} \ge \Delta(\tilde{A}, A) - \xi \forall_{i,j}$

- 1-nearest-neighbor classifier on UCI datasets
- Compare using 2 dimensions per point vs. using all dimensions

Accuracy % of 1NN classifier

	KPCA	MVU	MVE	MVE+SP	All-Dimensions
Ionosphere	66.0%	85.0%	81.2%	$\mathbf{87.1\%}$	78.8%
Cars	66.1%	70.1%	71.6%	78.1 %	79.3%
Dermatology	58.8%	63.6%	64.8%	66.3 %	76.3%
Ecoli	94.9%	95.6%	94.8%	96.0 %	95.6%
Wine	68.0%	68.5%	68.3%	69.7 %	71.5%
OptDigits 4 vs. 9	94.4%	99.2%	99.6%	99.8 %	98.6%

Conclusion

- SPE finds low-dimensional representations of graphs that implicitly preserve topology
- Preserving local distances is insufficient for faithfully embedding graphs in low-dimensional space, need to preserve graph topology