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Clustering as graph partitioning

Given: any data with some similarity measure
Goal: divide data into subsets that optimize some clustering objective

Representation of data as undirected, weighted Graph G (V ,E ) with
edges E and vertices V

Weight matrix W encodes similarity

Clustering problem can be formulated as graph partitioning problem

Bühler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 2 / 13



Clustering as graph partitioning

Given: any data with some similarity measure
Goal: divide data into subsets that optimize some clustering objective

Representation of data as undirected, weighted Graph G (V ,E ) with
edges E and vertices V

Weight matrix W encodes similarity

Clustering problem can be formulated as graph partitioning problem

Bühler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 2 / 13



Balanced graph cut criteria

Balancing of cardinality: Balancing of volume:

Ratio cut (Hagen & Kahng, 91) Normalized cut (Shi & Malik, 00)

RCut(C ,C ) = cut(C ,C)
|C | + cut(C ,C)

|C | NCut(C ,C ) = cut(C ,C)
vol(C) + cut(C ,C)

vol(C)

Ratio Cheeger cut Normalized Cheeger cut

RCC(C ,C ) = cut(C ,C)

min{|C |,|C |} NCC(C ,C ) = cut(C ,C)

min{vol(C),vol(C)}
where vol(C) =

∑
i∈C di and di =

∑
j∈V wij .
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Spectral Clustering as relaxation of balanced graph cuts

Reformulation of RCut:
For any partition C ,C define the function fC as

(fC )i =

{
1
|C | , i ∈ C

− 1

|C | , i /∈ C .

It holds for the well-known unnormalized graph Laplacian ∆2 = D −W :

RCut(C ,C ) = F2(fC ) where F2(f ) =

〈
f ,∆2f

〉
‖f ‖2

2

.

Relaxation of RCut:

v (2) = arg min
f ∈RV

{〈
f ,∆2f

〉
‖f ‖2

2

| 〈f , 1〉 = 0

}
.
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Quality guarantees on the standard relaxation

From the eigenvector v (2) to a partition C ,C :

Thresholding: C = arg min
Ct={i∈V | v (2)(i)>t}

RCC(Ct ,Ct) .

How good is this partition?

Standard isoperimetric inequality (unnormalized case):

h2
RCC

2 maxi di
≤ λ

(2)
2 ≤ 2 hRCC (see Chung, 97),

where hRCC = infC
{
RCC(C ,C )

}
.

Relation to Cheeger cut h∗RCC after thresholding:

hRCC

maxi∈V di
≤

h∗RCC

maxi∈V di
≤ 2

(
hRCC

maxi∈V di

) 1
2

.

Bühler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 5 / 13



Quality guarantees on the standard relaxation

From the eigenvector v (2) to a partition C ,C :

Thresholding: C = arg min
Ct={i∈V | v (2)(i)>t}

RCC(Ct ,Ct) .

How good is this partition?

Standard isoperimetric inequality (unnormalized case):

h2
RCC

2 maxi di
≤ λ

(2)
2 ≤ 2 hRCC (see Chung, 97),

where hRCC = infC
{
RCC(C ,C )

}
.

Relation to Cheeger cut h∗RCC after thresholding:

hRCC

maxi∈V di
≤

h∗RCC

maxi∈V di
≤ 2

(
hRCC

maxi∈V di

) 1
2

.

Bühler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 5 / 13



Quality guarantees on the standard relaxation

From the eigenvector v (2) to a partition C ,C :

Thresholding: C = arg min
Ct={i∈V | v (2)(i)>t}

RCC(Ct ,Ct) .

How good is this partition?

Standard isoperimetric inequality (unnormalized case):

h2
RCC

2 maxi di
≤ λ

(2)
2 ≤ 2 hRCC (see Chung, 97),

where hRCC = infC
{
RCC(C ,C )

}
.

Relation to Cheeger cut h∗RCC after thresholding:

hRCC

maxi∈V di
≤

h∗RCC

maxi∈V di
≤ 2

(
hRCC

maxi∈V di

) 1
2

.

Bühler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 5 / 13



Quality guarantees on the standard relaxation

From the eigenvector v (2) to a partition C ,C :

Thresholding: C = arg min
Ct={i∈V | v (2)(i)>t}

RCC(Ct ,Ct) .

How good is this partition?

Standard isoperimetric inequality (unnormalized case):

h2
RCC

2 maxi di
≤ λ

(2)
2 ≤ 2 hRCC (see Chung, 97),

where hRCC = infC
{
RCC(C ,C )

}
.

Relation to Cheeger cut h∗RCC after thresholding:

hRCC

maxi∈V di
≤

h∗RCC

maxi∈V di
≤ 2

(
hRCC

maxi∈V di

) 1
2

.

Bühler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 5 / 13



Quality guarantees on the standard relaxation

From the eigenvector v (2) to a partition C ,C :

Thresholding: C = arg min
Ct={i∈V | v (2)(i)>t}

RCC(Ct ,Ct) .

How good is this partition?

Standard isoperimetric inequality (unnormalized case):

h2
RCC

2 maxi di
≤ λ

(2)
2 ≤ 2 hRCC (see Chung, 97),

where hRCC = infC
{
RCC(C ,C )

}
.

Relation to Cheeger cut h∗RCC after thresholding:

hRCC

maxi∈V di
≤

h∗RCC

maxi∈V di
≤ 2

(
hRCC

maxi∈V di

) 1
2

.

Bühler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 5 / 13



Quality guarantees on the standard relaxation

From the eigenvector v (2) to a partition C ,C :

Thresholding: C = arg min
Ct={i∈V | v (2)(i)>t}

RCC(Ct ,Ct) .

How good is this partition?

Standard isoperimetric inequality (unnormalized case):

h2
RCC

2 maxi di
≤ λ

(2)
2 ≤ 2 hRCC (see Chung, 97),

where hRCC = infC
{
RCC(C ,C )

}
.

Relation to Cheeger cut h∗RCC after thresholding:

hRCC

maxi∈V di
≤

h∗RCC

maxi∈V di
≤ 2

(
hRCC

maxi∈V di

) 1
2

.

Bühler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 5 / 13



The graph p-Laplacian

Quadratic form induced by the standard graph Laplacian:〈
f ,∆2f

〉
=

1

2

∑
i ,j∈V

wij(fi − fj)
2.

What is the operator ∆p that for p ≥ 1 induces the general form

〈
f ,∆pf

〉
=

1

2

∑
i ,j∈V

wij |fi − fj |p ?

The unnormalized graph p-Laplacian

(∆pf )i =
∑
j∈V

wij φp (fi − fj)

where φp(x) = |x |p−1 sign(x)

Case p = 2 :

(∆2f )i =
∑
j∈V

wij (fi − fj)
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Variational characterization of second eigenvalue

Eigenvalue λp ∈ R and eigenvector vp ∈ RV of the p-Laplacian ∆p:

∀i ∈ V : (∆pvp)i = λp φp ((vp)i ) , φp(x) = |x |p−1 sign(x) .

Motivation: Eigenvectors as critical points of Fp(f ) =

〈
f ,∆p f

〉
‖f ‖pp

Variational characterization of second eigenvalue (Amghibech, 2003)

F
(2)
p (f ) =

〈
f ,∆p f

〉
minc∈R ‖f − c1‖pp

=
1
2

∑
i ,j∈V wij |fi − fj |p

minc∈R ‖f − c1‖pp

Second eigenvalue: Second eigenvector:

λ
(2)
p = minf ∈Rn F

(2)
p (f ) computed from arg min

f ∈Rn
F

(2)
p (f )

Bühler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 7 / 13



Variational characterization of second eigenvalue

Eigenvalue λp ∈ R and eigenvector vp ∈ RV of the p-Laplacian ∆p:

∀i ∈ V : (∆pvp)i = λp φp ((vp)i ) , φp(x) = |x |p−1 sign(x) .

Motivation: Eigenvectors as critical points of Fp(f ) =

〈
f ,∆p f

〉
‖f ‖pp

Variational characterization of second eigenvalue (Amghibech, 2003)

F
(2)
p (f ) =

〈
f ,∆p f

〉
minc∈R ‖f − c1‖pp

=
1
2

∑
i ,j∈V wij |fi − fj |p

minc∈R ‖f − c1‖pp

Second eigenvalue: Second eigenvector:

λ
(2)
p = minf ∈Rn F

(2)
p (f ) computed from arg min

f ∈Rn
F

(2)
p (f )

Bühler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 7 / 13



p-Spectral Relaxation of balanced graph cuts

Analogously to the case p = 2, for each partition C ,C , there exists a
function fp,C such that

F
(2)
p (fp,C ) = cut(C ,C )

∣∣∣∣ 1

|C |
1

p−1

+
1∣∣C ∣∣ 1
p−1

∣∣∣∣p−1

Special cases:

F
(2)
2 (f2,C ) = RCut(C ,C ),

lim
p→1

F
(2)
p (fp,C ) = RCC(C ,C ).

The second p-eigenvector is a relaxation of the above problem.
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Bound in terms of the optimal cut

From the p-eigenvector v
(2)
p to a partition C ,C :

Thresholding: C = arg min
Ct={i∈V | v (2)

p (i)>t}
RCC(Ct ,Ct) .

Found Cheeger cut h∗RCC vs. optimal Cheeger cut hRCC

hRCC

maxi∈V di
≤

h∗RCC

maxi∈V di
≤ p

(
hRCC

maxi∈V di

) 1
p

The cut found by p-Spectral Clustering converges
to the optimal Cheeger cut as p → 1

Bühler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 9 / 13



Bound in terms of the optimal cut

From the p-eigenvector v
(2)
p to a partition C ,C :

Thresholding: C = arg min
Ct={i∈V | v (2)

p (i)>t}
RCC(Ct ,Ct) .

Found Cheeger cut h∗RCC vs. optimal Cheeger cut hRCC

hRCC

maxi∈V di
≤

h∗RCC

maxi∈V di
≤ p

(
hRCC

maxi∈V di

) 1
p

The cut found by p-Spectral Clustering converges
to the optimal Cheeger cut as p → 1

Bühler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 9 / 13



Bound in terms of the optimal cut

From the p-eigenvector v
(2)
p to a partition C ,C :

Thresholding: C = arg min
Ct={i∈V | v (2)

p (i)>t}
RCC(Ct ,Ct) .

Found Cheeger cut h∗RCC vs. optimal Cheeger cut hRCC

hRCC

maxi∈V di
≤

h∗RCC

maxi∈V di
≤ p

(
hRCC

maxi∈V di

) 1
p

The cut found by p-Spectral Clustering converges
to the optimal Cheeger cut as p → 1

Bühler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 9 / 13



Consecutive minimization of the functional F
(2)
p

Problem: Direct minimization of F
(2)
p leads often to fast convergence to

non-optimal local minimum.

Idea:

Solve sequence of minimization problems

F
(2)
p0 ,F

(2)
p1 , ...,F

(2)
p , with p0 = 2 > p1 > ... > p ,

and each step is initialized with the solution of the previous step.

The subproblems are minimized via approximate Newton steps.

Motivation:

Global minimizer for p = 2 is second eigenvector of standard graph Laplacian.

As F
(2)
p continuous in p: Local minimizer of F

(2)
p1 should be close to local minimizer

of F
(2)
p2 if p1 close to p2.

Superlinear convergence of Newton-like methods close to a local optimum.
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High dimensional noisy two moons

p = 2.0 p = 1.4 p = 1.1
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Multiway clustering: USPS/MNIST

More than two clusters are obtained via recursive clustering scheme

Multi-partition criterion: RCut(C1, . . . ,Ck) =
k∑

i=1

cut(Ci ,Ci )

|Ci |

Results for the full USPS and MNIST datasets:

USPS MNIST
p RCut Error RCut Error

2.0 0.819 0.233 0.225 0.189
1.9 0.741 0.142 0.209 0.172
1.8 0.718 0.141 0.186 0.170
1.7 0.698 0.139 0.170 0.169
1.6 0.684 0.134 0.164 0.170
1.5 0.676 0.133 0.161 0.133
1.4 0.693 0.141 0.158 0.132
1.3 0.684 0.138 0.155 0.131
1.2 0.679 0.137 0.153 0.129

The price you pay
for better cuts:

Runtime USPS
p t / sec

2.0 10
1.8 99
1.6 224
1.4 1147
1.2 4660
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Conclusion

The graph p-Laplacian and its eigenvectors

Variational characterization of the eigenvectors of the p-Laplacian

Efficient numerical scheme to compute the second eigenvector

Theoretical justification of p-Spectral Clustering

p-Spectral Clustering as relaxation of balanced graph cuts

Convergence of cut found by p-Spectral Clustering towards the
optimal Cheeger cut as p → 1

Experimental Evaluation

Strong improvement in the clustering result for decreasing values of p

Bühler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 13 / 13



Conclusion

The graph p-Laplacian and its eigenvectors

Variational characterization of the eigenvectors of the p-Laplacian

Efficient numerical scheme to compute the second eigenvector

Theoretical justification of p-Spectral Clustering

p-Spectral Clustering as relaxation of balanced graph cuts

Convergence of cut found by p-Spectral Clustering towards the
optimal Cheeger cut as p → 1

Experimental Evaluation

Strong improvement in the clustering result for decreasing values of p

Bühler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 13 / 13



Conclusion

The graph p-Laplacian and its eigenvectors

Variational characterization of the eigenvectors of the p-Laplacian

Efficient numerical scheme to compute the second eigenvector

Theoretical justification of p-Spectral Clustering

p-Spectral Clustering as relaxation of balanced graph cuts

Convergence of cut found by p-Spectral Clustering towards the
optimal Cheeger cut as p → 1

Experimental Evaluation

Strong improvement in the clustering result for decreasing values of p

Bühler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 13 / 13


	Background: Spectral Clustering as relaxation of balanced graph cuts
	Spectral Clustering as relaxation of balanced graph cuts
	Quality guarantees for the standard relaxation

	The p-Laplacian and its eigenvalues
	The graph p-Laplacian
	Variational characterization of the first eigenvalue

	Connection between the p-Laplacian and balanced graph cuts
	p-Spectral Clustering as Relaxation of balanced graph cuts

	An algorithm for p-Laplacian based Spectral Clustering
	Experimental Evaluation
	High dimensional noisy two moons
	Multiway clustering: USPS/MNIST

	Conclusion & Outlook

