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Clustering as graph partitioning

Given: any data with some similarity measure
Goal: divide data into subsets that optimize some clustering objective
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Clustering as graph partitioning

Given: any data with some similarity measure
Goal: divide data into subsets that optimize some clustering objective

@ Representation of data as undirected, weighted Graph G(V/, E) with
edges E and vertices V

@ Weight matrix W encodes similarity

@ Clustering problem can be formulated as graph partitioning problem
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Balanced graph cut criteria

Balancing of cardinality: Balancing of volume:

NS
| e ./
ra
Ratio cut (Hagen & Kahng, 91)  Normalized cut (Shi & Malik, 00)
RCut(C,f) _ cut(C,C) + cut(ﬁ,’,?) NCut(C C) . cut(f g) + cut(C,C)

€] C| vol(C)
Ratio Cheeger cut Normalized Cheeger cut
= _ cut(C,@ ) — cut(C,C) _
RCC(C’ C) B m|n{\C|,|C|} NCC(C’ C) min{vol(C),vol(C)}

where vol(C) =37, di and di = 3., w;.
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Spectral Clustering as relaxation of balanced graph cuts

Reformulation of RCut:
For any partition C, C define the function f¢ as

() { o ieC
iTY) - Ji¢cC
|C| 9 ¢
It holds for the well-known unnormalized graph Laplacian A, = D — W:

_ f,Axf
RCut(C, C) = Fy(fc) where Fp(f) = <|7|f”22> )
2

Biihler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 4/13



Spectral Clustering as relaxation of balanced graph cuts

Reformulation of RCut:
For any partition C, C define the function f¢ as

() { o ieC
iTY) - Ji¢cC
|C| 9 ¢
It holds for the well-known unnormalized graph Laplacian A, = D — W:

_ f,Axf
RCut(C, C) = Fy(fc) where Fp(f) = <|7|f”22> )
2

Relaxation of RCut:

v :argmin{<f7A2f> | (f,1) :0} .

FeRY If1I3
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Quality guarantees on the standard relaxation

From the eigenvector v(?) to a partition C, C:

@ Thresholding: C = arg min RCC(C, Gt) .
C={ieV | vA(i)>t}
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Quality guarantees on the standard relaxation

From the eigenvector v(?) to a partition C, C:

@ Thresholding: C = arg min RCC(C, Gt) .
C={ieV | vA(i)>t}

How good is this partition?
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Quality guarantees on the standard relaxation

From the eigenvector v(?) to a partition C, C:
@ Thresholding: C = arg min RCC(C, Gt) .

C={ieV | vA(i)>t}
How good is this partition?
e Standard isoperimetric inequality (unnormalized case):

thcc (2)
— Y N < 2h Ch o7
2max;d; — % — RCC (see Chung, 97),

where hroo = inf¢ {RCC(C,?)} )
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Quality guarantees on the standard relaxation

From the eigenvector v(?) to a partition C, C:
@ Thresholding: C = arg min RCC(C, Gt) .

C={ieV | vA(i)>t}
How good is this partition?
e Standard isoperimetric inequality (unnormalized case):

thcc (2)
— Y N < 2h Ch o7
2max;d; — % — RCC (see Chung, 97),

where hroo = inf¢ {RCC(C,?)} )

@ Relation to Cheeger cut hi; after thresholding:

1
hrcc < hizcc < hrce ) 2
maxjev di ~ maxjey d; max;cy d;
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The graph p-Laplacian

Quadratic form induced by the standard graph Laplacian:

1
(f, Dof) = 5 S wilfi - £)2.

ijev
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The graph p-Laplacian

Quadratic form induced by the standard graph Laplacian:

1
(F.082f) =5 D wilfi = ).
ijev
What is the operator A, that for p > 1 induces the general form

1
(F.0pF) =5 > wylfi = £17 2
ijev
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The graph p-Laplacian

Quadratic form induced by the standard graph Laplacian:

1
(F.082f) =5 D wilfi = ).
ijev
What is the operator A, that for p > 1 induces the general form

1
(F.0pF) =5 > wylfi = £17 2
ijev

The unnormalized graph p-Laplacian

(Bof)i = 3 wij by (i — )

Jjev

where ¢,(x) = |x|P~! sign(x)
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The graph p-Laplacian

Quadratic form induced by the standard graph Laplacian:

1
(F.082f) =5 D wilfi = ).
ijev
What is the operator A, that for p > 1 induces the general form

1
(F.0pF) =5 > wylfi = £17 2
ijev

The unnormalized graph p-Laplacian

C =2:
(Bpf)i= Y wydp(fi — 1) P

jev (Baf)i = wy (fi = £)
jev
where ¢,(x) = |x|P~! sign(x) Je
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Variational characterization of second eigenvalue

Eigenvalue )\, € R and eigenvector v, ¢ RY of the p-Laplacian Ap:

Vie Vi (Bpvp)i =X dp((vp)i) . dp(x) = |x|P7" sign(x).

(f.0pf)

Motivation: Eigenvectors as critical points of Fp(f) =~
P
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Variational characterization of second eigenvalue

Eigenvalue )\, € R and eigenvector v, € RY of the p-Laplacian Ap:
ViV (Bpve)i = dp((w)) . dp(x) = X7 sign(x).

(f.0pf)

Motivation: Eigenvectors as critical points of Fp(f) =~
P

Variational characterization of second eigenvalue (Amghibech, 2003)

Oy = —(PBeh) 5 Siey wilfi— 017
P mincer [|f — c1|? minceg || f — 1|8
Second eigenvalue: Second eigenvector:
A£;2) = MinfcRrn F[S2)(f) computed from arg min ngz)(f)
fern

Biihler & Hein (Saarland University) p-Spectral Clustering June 15, 2009 7/13



p-Spectral Relaxation of balanced graph cuts

Analogously to the case p = 2, for each partition C, C, there exists a
function f, ¢ such that

1 1
1 —, L
7 [P

_l’_

F,gz)(fpvc) = cut(C,C)‘
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p-Spectral Relaxation of balanced graph cuts

Analogously to the case p = 2, for each partition C, C, there exists a
function f, ¢ such that

p—1

F,gz)(fpvc) = cut(C,C)‘ — +

Special cases:

F$(f,¢) = RCut(C, C),
lim F(f,c) = RCC(C, ).
p—
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p-Spectral Relaxation of balanced graph cuts

Analogously to the case p = 2, for each partition C, C, there exists a
function f, ¢ such that

1 1
1 —, L
7 [P

_l’_

F,gz)(fpvc) = cut(C,C)‘

Special cases:

F$(f,¢) = RCut(C, C),
lim F(f,c) = RCC(C, ).
p—

The second p-eigenvector is a relaxation of the above problem.
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Bound in terms of the optimal cut

From the p-eigenvector v,(,z) to a partition C, C:

@ Thresholding: C = arg min RCC(Ct, Gt) -
C={ieV|v?(i)>t}
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Bound in terms of the optimal cut

From the p-eigenvector v,(,z) to a partition C, C:

@ Thresholding: C = arg min RCC(Ct, Gt) -
C={ieV|v?(i)>t}

Found Cheeger cut A : optimal Cheeger cut hgcc

1
hrcc - hicc < hrcc  \*
maxjey di — maxjev d; — max;cv d;
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Bound in terms of the optimal cut

From the p-eigenvector v,(,z) to a partition C, C:

@ Thresholding: C = arg min RCC(Ct, Gt) -
C={ieV|v?(i)>t}

Found Cheeger cut hjoc  vs. optimal Cheeger cut hgcc

1
hrcc - hicc < hrcc  \*
maxjey di — maxjev d; — max;cv d;

The cut found by p-Spectral Clustering converges
to the optimal Cheeger cut as p — 1
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Consecutive minimization of the functional F,gz)

Problem: Direct minimization of Féz) leads often to fast convergence to
non-optimal local minimum.
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()

Consecutive minimization of the functional F,

Problem: Direct minimization of Fé2) leads often to fast convergence to
non-optimal local minimum.

Idea:
@ Solve sequence of minimization problems

FOFP . FP, withpy=2>p>..>p,

and each step is initialized with the solution of the previous step.

@ The subproblems are minimized via approximate Newton steps.

Motivation:
@ Global minimizer for p = 2 is second eigenvector of standard graph Laplacian.
@ As F£2) continuous in p: Local minimizer of F,Sf) should be close to local minimizer
of F,(,f) if p1 close to ps.
@ Superlinear convergence of Newton-like methods close to a local optimum.

June 15, 2009 10 / 13
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High dimensional noisy two moons

iCut

— cc
0.14) ——2nd eigenvalue
Error

NCut 0.1461 NCC 0.07374 NCut 0.1155 NCC 0. 05791
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Multiway clustering: USPS/MNIST

@ More than two clusters are obtained via recursive clustering scheme
k

e Multi-partition criterion: RCut(Cy, ..., Ck) = Z Cut(lg'ic')
i=1 i
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Multiway clustering: USPS/MNIST

@ More than two clusters are obtained via recursive clustering scheme
k

e Multi-partition criterion: RCut(Cy, ..., Ck) = Z Cut(lg'ic')
i—1 i

Results for the full USPS and MNIST datasets:

USPS MNIST
P RCut ERROR RCut ERROR
2.0 0.819 0.233 0.225 0.189
1.9 0.741 0.142 0.209 0.172
1.8 0.718 0.141 0.186 0.170
1.7 0.698 0.139 0.170 0.169
1.6 0.684 0.134 0.164 0.170
1.5 0.676 0.133 0.161 0.133
1.4  0.693 0.141 0.158 0.132
1.3 0.684 0.138 0.155 0.131
1.2 0.679 0.137 0.153 0.129
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Multiway clustering: USPS/MNIST

@ More than two clusters are obtained via recursive clustering scheme

k JR—
) " L cut(C;, G
e Multi-partition criterion: RCut(Cy, ..., Ck) = E cut(G;, Ci)
= ldl
Results for the full USPS and MNIST datasets:
USPS MNIST
p ~RCut ERROR RCut ERROR The price you pay
2.0 0.819 0.233 0.225 0.189 for better cuts:
1.9 0.741  0.142  0.209  0.172 RUNTINE USPS
1.8 0718 0.141 0.186 0.170 P £/ sec
1.7 0.698 0.139  0.170  0.169 50 )
1.6 0.684 0.134 0.164 0.170 18 99
1.5 0.676  0.133 0.1§1 0.133 16 294
1.4 0.693 0.141 0.158 0.132 14 1147
1.3 0.684 0.138 0.155 0.131 12 4660

1.2 0.679 0.137 0.153 0.129
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Conclusion

The graph p-Laplacian and its eigenvectors
@ Variational characterization of the eigenvectors of the p-Laplacian

o Efficient numerical scheme to compute the second eigenvector
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Theoretical justification of p-Spectral Clustering
o p-Spectral Clustering as relaxation of balanced graph cuts

@ Convergence of cut found by p-Spectral Clustering towards the
optimal Cheeger cut as p — 1
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Conclusion

The graph p-Laplacian and its eigenvectors
@ Variational characterization of the eigenvectors of the p-Laplacian

o Efficient numerical scheme to compute the second eigenvector

Theoretical justification of p-Spectral Clustering
o p-Spectral Clustering as relaxation of balanced graph cuts
@ Convergence of cut found by p-Spectral Clustering towards the
optimal Cheeger cut as p — 1
Experimental Evaluation

@ Strong improvement in the clustering result for decreasing values of p
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