Bayesian Group Lasso for Analyzing Contingency Tables

Sudhir Raman, Thomas J. Fuchs, Peter J. Wild, Edgar Dahl, Volker Roth

Talk Outline

- Motivation
- Introduction
- Feature Selection
- Contingency Tables
- Application Breast Cancer
- Results
- Summary

Motivation

- Applications involving
 - Feature selection Finding bio-markers.

Categorical variables - leading to sparsity in groups.

 Count data – Frequently encountered in medical applications.

Meaningful Variance estimates

Introduction

Consider a standard linear regression problem

$$y_i = \mathbf{x}_i^t \boldsymbol{\beta} + \varepsilon_i \quad s.t. \ g(\boldsymbol{\beta}) \leq \kappa.$$

A Bayesian version:

Posterior

Likelihood

Prior

Feature Selection

Feature Selection

Lasso

$$\|\boldsymbol{y} - X\boldsymbol{\beta}\|_2^2$$
 subject to $\|\boldsymbol{\beta}\|_1 \le \kappa$.

Prior (Park & Casella, 2008):
$$p(\beta|0, k^{-1}) = \prod_{i=1}^{D} \frac{k}{2} exp(-k|\beta_i|)$$

Group-Lasso

GPrior:

 $ightharpoonup \prod$ M-Laplace $(oldsymbol{eta}_g|\mathbf{0},c^{-1}) \propto c^{p_g/2} \exp(-c\|oldsymbol{eta}_g\|_2),$ g=1

Prior - Hierarchical model

Hierarchical model

$$p(\beta_g|\rho) = \int_0^\infty N(\beta_g|0, \sigma^2 \lambda_g^2 I) p(\lambda_g^2|\rho) d\lambda_g^2$$

Normal-Gamma model:

$$\begin{split} p(\boldsymbol{\beta}_g|\rho) &= \int_0^\infty N(\boldsymbol{\beta}_g|0,\sigma^2\lambda_g^2) \mathrm{Gamma}(\lambda_g^2|\frac{p_g+1}{2},\frac{2}{a_g})\,d\lambda_g^2 \\ &\propto \mathrm{M-Laplace}(\boldsymbol{\beta}_g|\mathbf{0},(a_g/\sigma^2)^{-\frac{1}{2}}). \end{split}$$

where $a_g=p_g\rho$ and $b_g=\|\beta_g\|_2^2/\sigma^2$ (for each group g), using the generalized inverse gaussian distribution.

Generalized linear models

- Stochastic component:
 - Z distributed based on mean θ.

$$Z \sim f(\theta)$$

Random Effect:

$$\eta_i = x_i^t \beta + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2)$$

Link Function:

$$g(\theta) = \eta$$

Contingency tables for count data

Contingency Tables

- Contingency tables
 - Count data
 - Categorical variables
- Poisson for Modeling:
 - Random counts, fixed time period.

$$z_i | \theta_i \sim \mathsf{Poisson}(\theta_i) = \frac{\theta_i^{z_i} e^{-\theta_i}}{z_i!},$$

Example – a clinical study of fixed time period.

What is X?

Dummy Coding - Example

Construction of X

$$X = \underbrace{[X^{C_1}, \dots, X^{C_d}}_{\text{main effects}}, \underbrace{X^{C_1:C_2}, \dots, X^{C_{d-1}:C_d}}_{\text{1st order interactions}}, \dots, \underbrace{X^{C_1:\dots:C_{Q+1}}, \dots, X^{C_{d-Q}:\dots:C_d}}_{\text{highest order interactions}}].$$

- Polynomial Contrast Codes
 - Used for ordered variables.
 - Avoids over-parameterization.
 - Orthogonal in nature results in an orthogonal design matrix
 - $(X^TX = I)$.

4

Inference:

- Gibbs Sampling:
 - Highly efficient (no matrix inversion).
- Standard posterior conditionals.
- Sampling the η variable:
 - Adaptive Rejection sampling.
 - Laplace approximation:

$$p(\eta_i|\boldsymbol{\beta},\sigma^2,X,\boldsymbol{z}) \propto \exp\Big[\sum_i \eta_i z_i - \exp(\eta_i) - \frac{1}{2\sigma^2} (x_i^t \boldsymbol{\beta} - \eta_i)^2\Big].$$

Experiments

Computational Pathology

Application – Breast Cancer

- Breast Cancer Leading cause for tumor-related death of women, particularly in Western countries.
 - Finding biomarkers for prediction and prognosis is important.
- Immunohistochemistry:
 - Labeling proteins in tissue sections using antibody-antigen interaction.
 - Cost effective, used on a routine basis.
- Tissue Microarray Technology:
 - TMA: allows simultaneous in situ analysis of 1000 primary tumors.
 - Promises to significantly accelerate studies seeking for biomarkers.

Tissue Microarrays

Primary samples are taken from cancerous breast tissue.

Tissue cylinders of size 0.6mm are arrayed in a paraffin block.

Slices of 0.6µm are cut off and are stained.

TMA spot from a single patient with breast cancer stained with the YB-1 antigen.

- Two patient groups Find difference:
 - Low/High risk groups.
- Intensity levels for 7 proteins, with higher-order interactions up to order 2.

Low Risk Group

High Risk Group

Summary

- Bayesian Group-Lasso to deal with
 - Count data Poisson Model
 - Feature selection with categorical variables
- Detection of novel compound bio-markers in the breast cancer dataset.
- Advantages:
 - Average over solutions, meaningful variance estimates.
 - Higher-order interactions.
- Future work:
 - Extending to other types of data (Weibull, Beta, Dirichlet).
 - Going beyond Group-Lasso Applying more sparse constraints, based on [Caron & Doucet, 2008]).
 - Clustering.

Thank you for your attention.

