
Split Variational Inference

Guillaume Bouchard
Onno Zoeter

Xerox Research Centre Europe

June 2009

Bouchard and Zoeter Split Variational Inference



High-Dimensional Integrals in Machine Learning

From a numerical point of view many core problems in machine
learning are the computation of high-dimensional integrals

I Integrating over latent or nuisance parameters (E-step);

I Bayesian treatment of parameters;

I Computing general marginals;

I · · ·
We will concentrate on the general integral

I =

∫
X

f (x)dx .
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Variational approximations

Variational approximations (Mean Field, Belief Propagation,
. . .): approximate integration as optimization over a tractable
family.

Fast and effective for
“easy” models

Problematic for harder problems:
asymmetry, multi-modality, . . .

Split variational inference provides a general way to improve
basic variational approaches using an any-time algorithm.
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How to improve a basic variational approximation?

Basic idea: soft-binning functions sk : X ×B 7→ [0, 1] “split” and
“focus” the integration problem.

A collection of K soft-binning functions satisfies

∀x∈X ,β∈B
K∑

k=1

sk(x ; β) = 1 .

Example: a sigmoid function and its complement

+ = .
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Split an integral

I =
∫
X f (x)dx

=
∫
X [s1(x) + s2(x)]f (x)dx

=

∫
X

s1(x)f (x)dx︸ ︷︷ ︸
I1
≈
Ĩ1

+

∫
X

s2(x)f (x)dx︸ ︷︷ ︸
I2
≈
Ĩ2

=
∫
X

 +

× dx

=
∫
X dx +

∫
X dx

≈ + =
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Split Mean Field

The soft-binning trick is simple, powerful, and very general.

This talk: Split Mean Field, a Split Variational Approach with
Gaussian Mean Field approximations within each bin.

The Mean Field approximation is based on the positivity of the
Kullback-Leibler divergence and yields a lower bound

Ik(β) ≡
∫
X

sk(x ;β)f (x)dx

≥ exp

(
−
∫
X

qk(x) log
qk(x)

sk(x ; β)f (x)

)
≡ Ik(β, q) .

For SMF assume ∀x f (x) ≥ 0, i.e. a potential.
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Optimizing Bins and Local Approximations

I The bins have free parameters β.

I Bound I ≥
∑K

k=1 Ik(β) allows principled maximization over
β.

A basic coordinate ascent approach works very well in practice.

With K fixed this alternates between

I Optimize bin parameters β with {qk} fixed.

I Optimize local approximations {qk} with β fixed.
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Flexible binning functions

Soft-max function eβT
k x∑

k′ e
βT
k′

x
is notably hard to integrate.

A product of sigmoids is simple and effective.

A hierarchy is particularly flexible.
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Incrementally growing K

Increase K iteratively.
When I plateaus add an extra split.

I Keep old tree fixed

I Decide on a leaf node to split

I Initialize the split with σ(β>x + α) with β = 0.

+

Approximation does not change after split

I Optimizing further can only improve approximation.
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A two dimensional example

f (x) = N (x)σ(20x1 + 4)σ(20x2 − 10x1 + 4)

Exact integral = 0.261
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Free energy computation

Ik(β, qk) ≡ exp

(
−
∫
X

qk(x) log
qk(x)

sk(x ; β)f (x)

)
.

Since qk is Gaussian, the entropy term is easy.

The energy term involving f (x) consists of

I Gaussian integral

EN (x ;µ,Σ) [log f (x)]

I Same as in standard MF
I Sometimes analytic
I Otherwise based on an additional lower bound
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Free energy computation

Ik(β, qk) ≡ exp

(
−
∫
X

qk(x) log
qk(x)

sk(x ; β)f (x)

)
.

The energy term involving sk(x) has product of sigmoids in the log

I Separate Gaussian integrals

EN (x ;µk ,Σk )[log σ(β>l x + αl)] = EN (z;mkl ,vkl )[log σ(z)] (1D!)

I Standard approach: bound sigmoid by Gaussian [Jaakkola &

Jordan 96].
Fast updates (closed form), but loose since based on

∀xg(x) ≥ g(x)⇒
∫
X

g(x)dx ≥
∫
X

g(x)dx .

I Alternative: Exact integration using special functions (as for
erf function) or table indexed by (µ, σ).
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Exact versus approximate treatment of bin terms

EN (x ;µ,σ)[log sk(x)]
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Mixture Mean Field

Split Mean Field revisits the Mixture Mean Field idea.
[Jaakkola&Jordan,1996;Lawrence et al., 1997]

MMF: a single mean field approximation with q a mixture

q(x) =
K∑

k=1

πkqk(x) ,

yielding the bound

I ({πk , qk}) ≡ exp

(
−
∫
X

K∑
k=1

πkqk(x) log

∑K
k=1 πkqk(x)

f (x)

)
.

One can show that this is a special case of SMF with sk soft-max
functions:

sk(x) =
πkqk(x)∑K

k ′=1 πk ′qk ′(x)

Entropy term requires additional approximations.
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Correlated Gaussian example

I Full covariance Gaussian distribution
I Approximated by a mixture of diagonal covariance Gaussian

distributions
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Bayesian inference

I logistic regression model p(y |x , θ) = σ(yθT x)
I posterior on 10 observations
I I =

∫
Θ p0(θ)

∏10
i=1 p(yi |xi , θ)dθ

I compared with classical Mean Field and Annealed Importance
Sampling (AIS)

I relative bound improvement over Mean Field:
I 2 ≈ e0.7 in the Australian dataset
I 3 ≈ e1.2 in the Diabetes dataset

10
0

10
1

10
2

−2560

−2550

−2540

−2530

−2520

−2510

−2500

−2490

−2480

lo
g(

I)

time(seconds)

10
0

10
2

−2474

−2473.8

−2473.6

−2473.4

10
−1

10
0

10
1

10
2

10
3

−4720

−4700

−4680

−4660

−4640

−4620

−4600

lo
g(

I)

time(seconds)

10
0

10
2

−4622.5

−4622

−4621.5

Bouchard and Zoeter Split Variational Inference



Conclusion

I Split Variational Inference = “divide and conquer” idea:

1. take your favorite bounding technique
2. choose a split function family
3. alternatively optimize the splits and the bound in each bin

I improves Bayesian inference as the number of bins increases
I key messages:

I sigmoid decision tree: flexible and efficient choice
I exact sigmoid integrals instead of Jaakkola’s bound is much

more accurate

I future research
I use upper bounds, e.g. TRW
I convergence analysis as K reaches infinity.
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