Orbit-Product Representation and Correction of Gaussian Belief Propagation

Jason Johnson ${ }^{\text {a }}$, Vladimir Chernyak ${ }^{\text {b,a }}$, Michael Chertkov ${ }^{\text {a }}$
${ }^{\text {a }}$ Los Alamos National Laboratory, Los Alamos, New Mexico ${ }^{b}$ Wayne State University, Detroit, Michigan

International Conference on Machine Learning Montreal, Quebec June 16, 2009

Graphical Models

A graphical model is a multivariate probability distribution that is expressed in terms of interactions among subsets of variables (e.g. pairwise interactions on the edges of a graph G).

$$
P(x)=\frac{1}{Z} \prod_{i \in V} \psi_{i}\left(x_{i}\right) \prod_{\{i, j\} \in G} \psi_{i j}\left(x_{i}, x_{j}\right)
$$

Markov property:

$$
P\left(x_{A}, x_{B} \mid x_{S}\right)=P\left(x_{A} \mid x_{S}\right) P\left(x_{B} \mid x_{S}\right)
$$

Given the potential functions ψ, the goal of inference is to compute marginals $P\left(x_{i}\right)=\sum_{x_{V \backslash i}} P(x)$ or the normalization constant Z, which is generally difficult in large, complex graphical models.

Gaussian Graphical Model

Information form of Gaussian density.

$$
P(x) \propto \exp \left\{-\frac{1}{2} x^{T} J x+h^{T} x\right\}
$$

Inference corresponds to calculation of mean vector $\mu=J^{-1} h$, covariance matrix $K=J^{-1}$ or determinant $Z=\operatorname{det} J^{-1}$.

Gaussian graphical model: sparse J matrix

$$
J_{i j} \neq 0 \text { if and only if }\{i, j\} \in G
$$

Potentials:

$$
\begin{aligned}
\psi_{i}\left(x_{i}\right) & =e^{-\frac{1}{2} J_{i i} x_{i}^{2}+h_{i} x_{i}} \\
\psi_{i j}\left(x_{i}, x_{j}\right) & =e^{-J_{i j} x_{i} x_{j}}
\end{aligned}
$$

Marginals $P\left(x_{i}\right)$ specified by means μ_{i} and variances $K_{i i}$.

Belief Propagation

Belief Propagation iteratively updates a set of messages $\mu_{i \rightarrow j}\left(x_{j}\right)$ defined on directed edges of the graph G using the rule:

$$
\mu_{i \rightarrow j}\left(x_{j}\right) \propto \sum_{x_{i}} \psi_{i}\left(x_{i}\right) \prod_{k \in N(i) \backslash j} \mu_{k \rightarrow i}\left(x_{i}\right) \psi\left(x_{i}, x_{j}\right)
$$

Iterate message updates until converges to a fixed point.

Marginal Estimates: combine messages at a node

$$
P\left(x_{i}\right)=\frac{1}{Z_{i}} \underbrace{\psi_{i}\left(x_{i}\right) \prod_{k \in N(i)} \mu_{k \rightarrow i}\left(x_{i}\right)}_{\tilde{\psi}_{i}\left(x_{i}\right)}
$$

Belief Propagation II

Pairwise Estimates (on edges of graph):

$$
P\left(x_{i}, x_{j}\right)=\frac{1}{Z_{i j}} \tilde{\psi}_{i}\left(x_{i}\right) \tilde{\psi}_{j}\left(x_{j}\right) \underbrace{\frac{\psi\left(x_{i}, x_{j}\right)}{\mu_{i \rightarrow j}\left(x_{j}\right) \mu_{j \rightarrow i}\left(x_{i}\right)}}_{\tilde{\psi}_{i j}\left(x_{i}, x_{j}\right)}
$$

Estimate of Normalization Constant:

$$
Z^{\mathrm{bp}}=\prod_{i \in V} Z_{i} \prod_{\{i, j\} \in G} \frac{Z_{i j}}{Z_{i} Z_{j}}
$$

BP fixed point is saddle point of RHS with respect to messages/reparameterizations.
In trees, BP converges in finite number of steps and is exact (equivalent to variable elimination).

Gaussian Belief Propagation (GaBP)

Messages $\mu_{i \rightarrow j}\left(x_{j}\right) \propto \exp \left\{\frac{1}{2} \alpha_{i \rightarrow j} x_{j}^{2}+\beta_{i \rightarrow j} x_{j}\right\}$.
BP fixed-point equations reduce to:

$$
\begin{aligned}
\alpha_{i \rightarrow j} & =J_{i j}^{2}\left(J_{i i}-\alpha_{i \backslash j}\right)^{-1} \\
\beta_{i \rightarrow j} & =-J_{i j}\left(J_{i i}-\alpha_{i \backslash j}\right)^{-1}\left(h_{i}+\beta_{i \backslash j}\right)
\end{aligned}
$$

where $\alpha_{i \backslash j}=\sum_{k \in N(i) \backslash j} \alpha_{k \rightarrow i}$ and $\beta_{i \backslash j}=\sum_{k \in N(i) \backslash j} \alpha_{k \rightarrow i}$.
Marginals specified by:

$$
\begin{aligned}
K_{i}^{\mathrm{bp}} & =\left(J_{i i}-\sum_{k \in N(i)} \alpha_{k \rightarrow i}\right)^{-1} \\
\mu_{i}^{\mathrm{bp}} & =K_{i}^{\mathrm{bp}}\left(h_{i}+\sum_{k \in N(i)} \beta_{k \rightarrow i}\right)
\end{aligned}
$$

Gaussian BP Determinant Estimate

Estimates of pairwise covariance on edges:

$$
K_{(i j)}^{\mathrm{bp}}=\left(\begin{array}{cc}
J_{i i}-\alpha_{i \backslash j} & J_{i j} \\
J_{i j} & J_{j j}-\alpha_{j \backslash i}
\end{array}\right)^{-1}
$$

Estimate of $Z \triangleq \operatorname{det} K=\operatorname{det} J^{-1}$:

$$
Z^{\mathrm{bp}}=\prod_{i \in V} Z_{i} \prod_{\{i, j\} \in G} \frac{Z_{i j}}{Z_{i} Z_{j}}
$$

where $Z_{i}=K_{i}^{\mathrm{bp}}$ and $Z_{i j}=\operatorname{det} K_{(i j)}^{\mathrm{bp}}$.
Exact in tree models (equivalent to Gaussian elimination), approximate in loopy models.

The BP Computation Tree

BP marginal estimates are equivalent to the exact marginal in a tree-structured model [Weiss \& Freeman].

The BP messages correspond to upwards variable elimination steps in this computation tree.

Neumann Series and Walk-Sums ${ }^{\dagger}$

$$
\text { Let } J=I-R \text {. If } \rho(R)<1 \text { then }(I-R)^{-1}=\sum_{L=0}^{\infty} R^{L} \text {. }
$$

Walk-Sum interpretation of inference:

$$
\begin{gathered}
K_{i j}=\sum_{L=0}^{\infty} \sum_{w: i \rightarrow j} R^{w} \stackrel{?}{=} \sum_{w: i \rightarrow j} R^{w} \\
\mu_{i}=\sum_{j} h_{j} \sum_{L=0}^{\infty} \sum_{w: j \rightarrow i} R^{w} \stackrel{?}{=} \sum_{w: * \rightarrow i} h_{*} R^{w}
\end{gathered}
$$

Walk-Summable if $\sum_{w: i \rightarrow j}\left|R^{w}\right|$ converges for all i, j. Absolute convergence implies convergence of walk-sums (to same value) for arbitrary orderings and partitions of the set of walks. Equivalent to $\rho(|R|)<1$.
${ }^{\dagger}$ Prior work with D. Malioutov and A. Willsky (NIPS, JMLR).

Zeta Function and Orbit-Product

What about the determinant?
Definition of Orbits:

- A walk is closed if it begins and ends at same vertex.
- It is primitive if does not repeat a shorter walk.
- Two primitive walks are equivalent if one is a cyclic shift of the other.
- Define orbits $\ell \in \mathcal{L}$ of G to be equivalence classes of closed, primitive walks.
Theorem. Let $Z \triangleq \operatorname{det}(I-R)^{-1}$. If $\rho(|R|)<1$ then

$$
Z=\prod_{\ell}\left(1-R^{\ell}\right)^{-1} \triangleq \prod_{\ell} z_{\ell}
$$

Closely resembles definition of zeta functions in graph theory.

Walk-Sum Interpretation of GaBP^{\dagger}

Combine interpretation of BP as exact inference on computation tree with walk-sum interpretation of Gaussian inference in trees:

- complete walk-sum for the means
- incomplete walk-sum for the variances
- messages represent walk-sums in subtrees of computation tree
${ }^{\dagger}$ Prior work with D. Malioutov and A. Willsky (NIPS,JMLR).

$Z_{b p}$ as Totally-Backtracking Orbit-Product

Classification of Orbits:

- Orbit is reducible if it contains backtracking steps ...(ij)(ji)..., else it is irreducible (or backtrackless).
- Every orbit ℓ has a unique irreducible core $\gamma=\Gamma(\ell)$ obtained by iteratively deleting pairs of backtracking steps until no more remain. Let \mathcal{L}_{γ} denote the set of all orbits that reduce to γ.
- Orbit is totally backtracking (or trivial) if it reduces to the empty orbit $\Gamma(\ell)=\emptyset$, else it is non-trivial.

Theorem. If $\rho(|R|)<1$ then $Z^{\text {bp }}$ (defined earlier) is equal to the totally-backtracking orbit-product:

$$
Z^{\mathrm{bp}}=\prod_{\ell \in \mathcal{L}_{\emptyset}} Z_{\ell}
$$

Orbit-Product Correction and Error Bound

Orbit-product correction to $Z^{\text {bp }}$:

$$
Z=Z^{\mathrm{bp}} \prod_{\ell \notin \mathcal{L}_{\emptyset}} Z_{\ell}
$$

Error Bound: missing orbits must all involve cycles of the graph...

$$
\left|\log \frac{Z}{Z^{\mathrm{bp}}}\right| \leq \frac{\rho^{g}}{g(1-\rho)}
$$

where $\rho \triangleq \rho(|R|)<1$ and g is girth of the graph (length of shortest cycle).

Reduction to Backtrackless Orbit-Product Correction

We may reduce the orbit-product correction to one over just backtrackless orbits γ

$$
Z=Z_{\mathrm{bp}} \prod_{\ell} Z_{\ell}=Z_{\mathrm{bp}} \prod_{\gamma} \underbrace{\left(\prod_{\ell \in \mathcal{L}(\gamma)} Z_{\ell}\right)}_{Z_{\gamma}^{\prime}}
$$

with modified orbit-factors Z_{γ}^{\prime} based on GaBP

$$
Z_{\gamma}^{\prime}=\left(1-\prod_{(i j) \in \gamma} r_{i j}^{\prime}\right)^{-1} \quad \text { where } \quad r_{i j}^{\prime} \triangleq\left(1-\alpha_{i \backslash j}\right)^{-1} r_{i j}
$$

The factor $\left(1-\alpha_{i \backslash j}\right)^{-1}$ serves to reconstruct totally-backtracking walks at each point i along the backtrackless orbit γ.

Backtrackless Determinant Correction

Define backtrackless graph G^{\prime} of G as follows: nodes of G^{\prime} correspond to directed edges of G, edges $(i j) \rightarrow(j k)$ for $k \neq i$.

Let R^{\prime} be adjacency matrix of G^{\prime} with modified edge-weights r^{\prime} based on GaBP. Then,

$$
Z=Z_{\mathrm{bp}} \operatorname{det}\left(I-R^{\prime}\right)^{-1}
$$

Block-Resummation Method

Let \mathcal{B} be a collection of subsets of nodes (blocks) $B \subset V$ such that if $A, B \in \mathcal{B}$ the $A \cap B \in \mathcal{B}$. Define $n_{B}=1-\sum_{B^{\prime} \supsetneq B} n_{B^{\prime}}$.
To capture all orbits covered by any block (without over-counting) we calculate the estimate:

$$
Z_{\mathcal{B}} \triangleq \prod_{B} Z_{B}^{n_{B}} \triangleq \prod_{B}\left(\operatorname{det}\left(I-R_{B}\right)^{-1}\right)^{n_{B}}
$$

Error Bounds. Select blocks to cover all orbits up to length L. Then,

$$
\left|\frac{1}{n} \log \frac{Z_{\mathcal{B}}}{Z}\right| \leq \frac{\rho^{L}}{L(1-\rho)}
$$

Similar approach to estimate $Z^{\prime} \triangleq \operatorname{det}\left(I-R^{\prime}\right)^{-1}$ from sub-matrices of R^{\prime}. Error controlled by $\rho^{\prime} \leq \rho$.

Example: 2-D Grids

256×256 Periodic Grid, uniform edge weights $r \in[0, .25]$. Blocks: $L \times L, L \times \frac{L}{2}, \frac{L}{2} \times L$ and $\frac{L}{2} \times \frac{L}{2}$ shifted by $\frac{L}{2}$.
Test with $L=2,4,8,16,32$.

Conclusion and Future Work

Graphical view of inference in walk-summable Gaussian graphical models give a very intuitive framework for understanding iterative inference algorithms and approximation methods.

Future Work:

- Extension to Generalized Belief Propagation (iterative message-passing between blocks).
- Extension to Non-Walksummable Models: compute corrections to inference based on nearest walk-summable model.
- Boot-Strapping GaBP using powers of a matrix.
- Multiscale resummation methods to approximate long orbits from coarse-grained model.

