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Graphical Models

A graphical model is a multivariate probability distribution that is
expressed in terms of interactions among subsets of variables (e.g.
pairwise interactions on the edges of a graph G ).

P(x) =
1

Z

∏
i∈V

ψi (xi )
∏
{i ,j}∈G

ψij(xi , xj)

Markov property:

BA S

P(xA, xB |xS) = P(xA|xS)P(xB |xS)

Given the potential functions ψ, the goal of inference is to compute
marginals P(xi ) =

∑
xV\i

P(x) or the normalization constant Z ,

which is generally difficult in large, complex graphical models.



Gaussian Graphical Model

Information form of Gaussian density.

P(x) ∝ exp
{
−1

2xT Jx + hT x
}

Inference corresponds to calculation of mean vector µ = J−1h,
covariance matrix K = J−1 or determinant Z = det J−1.

Gaussian graphical model: sparse J matrix

Jij 6= 0 if and only if {i , j} ∈ G

Potentials:
ψi (xi ) = e−

1
2Jiix

2
i +hixi

ψij(xi , xj) = e−Jijxixj

Marginals P(xi ) specified by means µi and variances Kii .



Belief Propagation

Belief Propagation iteratively updates a set of messages µi→j(xj)
defined on directed edges of the graph G using the rule:

µi→j(xj) ∝
∑
xi

ψi (xi )
∏

k∈N(i)\j

µk→i (xi )ψ(xi , xj)

Iterate message updates until converges to a fixed point.

Marginal Estimates: combine messages at a node

P(xi ) =
1

Zi
ψi (xi )

∏
k∈N(i)

µk→i (xi )︸ ︷︷ ︸
ψ̃i (xi )



Belief Propagation II

Pairwise Estimates (on edges of graph):

P(xi , xj) =
1

Zij
ψ̃i (xi )ψ̃j(xj)

ψ(xi , xj)

µi→j(xj)µj→i (xi )︸ ︷︷ ︸
ψ̃ij (xi ,xj )

Estimate of Normalization Constant:

Zbp =
∏
i∈V

Zi

∏
{i ,j}∈G

Zij

ZiZj

BP fixed point is saddle point of RHS with respect to
messages/reparameterizations.

In trees, BP converges in finite number of steps and is exact
(equivalent to variable elimination).



Gaussian Belief Propagation (GaBP)

Messages µi→j(xj) ∝ exp{1
2αi→jx

2
j + βi→jxj}.

BP fixed-point equations reduce to:

αi→j = J2
ij (Jii − αi\j)

−1

βi→j = −Jij(Jii − αi\j)
−1(hi + βi\j)

where αi\j =
∑

k∈N(i)\j αk→i and βi\j =
∑

k∈N(i)\j αk→i .

Marginals specified by:

Kbp
i = (Jii −

∑
k∈N(i)

αk→i )
−1

µbp
i = Kbp

i (hi +
∑

k∈N(i)

βk→i )



Gaussian BP Determinant Estimate

Estimates of pairwise covariance on edges:

Kbp
(ij) =

(
Jii − αi\j Jij

Jij Jjj − αj\i

)−1

Estimate of Z , det K = det J−1:

Zbp =
∏
i∈V

Zi

∏
{i ,j}∈G

Zij

ZiZj

where Zi = Kbp
i and Zij = det Kbp

(ij).

Exact in tree models (equivalent to Gaussian elimination),
approximate in loopy models.



The BP Computation Tree

BP marginal estimates are equivalent to the exact marginal in a
tree-structured model [Weiss & Freeman].
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The BP messages correspond to upwards variable elimination steps
in this computation tree.



Neumann Series and Walk-Sums†

Let J = I − R. If ρ(R) < 1 then (I − R)−1 =
∑∞

L=0 RL.

Walk-Sum interpretation of inference:

Kij =
∞∑

L=0

∑
w :i

L→j

Rw ?
=
∑

w :i→j

Rw

µi =
∑

j

hj

∞∑
L=0

∑
w :j

L→i

Rw ?
=
∑

w :∗→i

h∗R
w

Walk-Summable if
∑

w :i→j |Rw | converges for all i , j . Absolute
convergence implies convergence of walk-sums (to same value) for
arbitrary orderings and partitions of the set of walks. Equivalent to
ρ(|R|) < 1.

†Prior work with D. Malioutov and A. Willsky (NIPS, JMLR).



Zeta Function and Orbit-Product

What about the determinant?

Definition of Orbits:

I A walk is closed if it begins and ends at same vertex.

I It is primitive if does not repeat a shorter walk.

I Two primitive walks are equivalent if one is a cyclic shift of
the other.

I Define orbits ` ∈ L of G to be equivalence classes of closed,
primitive walks.

Theorem. Let Z , det(I − R)−1. If ρ(|R|) < 1 then

Z =
∏
`

(1− R`)−1 ,
∏
`

Z`.

Closely resembles definition of zeta functions in graph theory.



Walk-Sum Interpretation of GaBP†

Combine interpretation of BP as exact inference on computation
tree with walk-sum interpretation of Gaussian inference in trees:

I complete walk-sum for the means

I incomplete walk-sum for the variances

I messages represent walk-sums in subtrees of computation tree

†Prior work with D. Malioutov and A. Willsky (NIPS,JMLR).



Zbp as Totally-Backtracking Orbit-Product

Classification of Orbits:

I Orbit is reducible if it contains backtracking steps ...(ij)(ji)...,
else it is irreducible (or backtrackless).

I Every orbit ` has a unique irreducible core γ = Γ(`) obtained
by iteratively deleting pairs of backtracking steps until no more
remain. Let Lγ denote the set of all orbits that reduce to γ.

I Orbit is totally backtracking (or trivial) if it reduces to the
empty orbit Γ(`) = ∅, else it is non-trivial.

Theorem. If ρ(|R|) < 1 then Zbp (defined earlier) is equal to the
totally-backtracking orbit-product:

Zbp =
∏
`∈L∅

Z`



Orbit-Product Correction and Error Bound

Orbit-product correction to Zbp:

Z = Zbp
∏
6̀∈L∅

Z`

Error Bound: missing orbits must all involve cycles of the graph...∣∣∣∣log
Z

Zbp

∣∣∣∣ ≤ ρg

g(1− ρ)

where ρ , ρ(|R|) < 1 and g is girth of the graph (length of
shortest cycle).



Reduction to Backtrackless Orbit-Product Correction

We may reduce the orbit-product correction to one over just
backtrackless orbits γ

Z = Zbp

∏
`

Z` = Zbp

∏
γ

 ∏
`∈L(γ)

Z`


︸ ︷︷ ︸

Z ′γ

with modified orbit-factors Z ′γ based on GaBP

Z ′γ = (1−
∏

(ij)∈γ

r ′ij)
−1 where r ′ij , (1− αi\j)

−1rij

The factor (1− αi\j)
−1 serves to reconstruct totally-backtracking

walks at each point i along the backtrackless orbit γ.



Backtrackless Determinant Correction

Define backtrackless graph G ′ of G as follows: nodes of G ′

correspond to directed edges of G , edges (ij)→ (jk) for k 6= i .
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Let R ′ be adjacency matrix of G ′ with modified edge-weights r ′

based on GaBP. Then,

Z = Zbp det(I − R ′)−1



Block-Resummation Method

Let B be a collection of subsets of nodes (blocks) B ⊂ V such that
if A,B ∈ B the A ∩ B ∈ B. Define nB = 1−

∑
B′)B nB′ .

To capture all orbits covered by any block (without over-counting)
we calculate the estimate:

ZB ,
∏
B

ZnB
B ,

∏
B

(det(I − RB)−1)nB

Error Bounds. Select blocks to cover all orbits up to length L.
Then, ∣∣∣∣1n log

ZB
Z

∣∣∣∣ ≤ ρL

L(1− ρ)

Similar approach to estimate Z ′ , det(I − R ′)−1 from
sub-matrices of R ′. Error controlled by ρ′ ≤ ρ.



Example: 2-D Grids
256× 256 Periodic Grid, uniform edge weights r ∈ [0, .25].
Blocks: L× L, L× L

2 , L
2 × L and L

2 ×
L
2 shifted by L

2 .
Test with L = 2, 4, 8, 16, 32.
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Conclusion and Future Work

Graphical view of inference in walk-summable Gaussian graphical
models give a very intuitive framework for understanding iterative
inference algorithms and approximation methods.

Future Work:

I Extension to Generalized Belief Propagation (iterative
message-passing between blocks).

I Extension to Non-Walksummable Models: compute
corrections to inference based on nearest walk-summable
model.

I Boot-Strapping GaBP using powers of a matrix.

I Multiscale resummation methods to approximate long orbits
from coarse-grained model.


	Introduction
	Graphical Interpretation of Inference
	Corrections to Gaussian BP
	Conclusion

