Convex Variational Bayesian Inference for Large Scale Generalized Linear Models

Hannes Nickisch¹ and Matthias W. Seeger²

¹Max Planck Institute for Biological Cybernetics Tübingen, Germany ²Saarland University, Saarbrücken, Germany

June 16, 2009

Motivation

• Image acquisition in MRI

• Binary classification

Motivation

• Image acquisition in MRI

• Binary classification

Motivation

• Image acquisition in MRI

• Binary classification

 \mathbb{R}

Motivation

• Image acquisition in MRI

• Binary classification

Generalized Linear Model and Experimental Design

- Generalized Linear Model of $\mathbf{y} = \mathbf{X}\mathbf{u} + \boldsymbol{\varepsilon}$, $\mathbf{s} = \mathbf{B}\mathbf{u}$
- Gaussian $\mathcal{N}(r_i|y_i, \sigma^2)$ and non-Gaussian potentials $t_i(s_i)$

```
\mathbb{P}(\mathbf{u}|\mathcal{D}) \propto \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{u},\sigma^2\mathbf{I})\prod_{i=1}^n t_i(s_i)
```


Generalized Linear Model and Experimental Design

- Generalized Linear Model of $\mathbf{y} = \mathbf{X}\mathbf{u} + \boldsymbol{\varepsilon}$, $\mathbf{s} = \mathbf{B}\mathbf{u}$
- Gaussian $\mathcal{N}(r_i|y_i, \sigma^2)$ and non-Gaussian potentials $t_i(s_i)$

```
\mathbb{P}(\mathbf{u}|\mathcal{D}) \propto \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{u},\sigma^2\mathbf{I})\prod_{i=1}^n t_i(s_i)
```


Experimental Design / Measurement Optimization Along which \mathbf{x}_i or \mathbf{b}_i shall I measure? \Rightarrow Needs posterior covariance info!

Generalized Linear Model and Experimental Design

- Generalized Linear Model of $\mathbf{y} = \mathbf{X}\mathbf{u} + \boldsymbol{\varepsilon}$, $\mathbf{s} = \mathbf{B}\mathbf{u}$
- Gaussian $\mathcal{N}(r_i|y_i, \sigma^2)$ and non-Gaussian potentials $t_i(s_i)$

```
\mathbb{P}(\mathbf{u}|\mathcal{D}) \propto \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{u},\sigma^2\mathbf{I})\prod_{i=1}^n t_i(s_i)
```


Experimental Design / Measurement Optimization

Along which \mathbf{x}_i or \mathbf{b}_i shall I measure? \Rightarrow Needs posterior covariance info!

MRI: u unknown image

- scanner output y, measurement design X
- sparsity prior $t_i(s_i)$ on multi scale gradients **Bu**

Generalized Linear Model and Experimental Design

- Generalized Linear Model of $\mathbf{y} = \mathbf{X}\mathbf{u} + \boldsymbol{\varepsilon}$, $\mathbf{s} = \mathbf{B}\mathbf{u}$
- Gaussian $\mathcal{N}(r_i|y_i, \sigma^2)$ and non-Gaussian potentials $t_i(s_i)$

```
\mathbb{P}(\mathbf{u}|\mathcal{D}) \propto \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{u},\sigma^2\mathbf{I})\prod_{i=1}^n t_i(s_i)
```


Experimental Design / Measurement Optimization Along which \mathbf{x}_i or \mathbf{b}_i shall I measure? \Rightarrow Needs posterior covariance info!

- Classification: u classifier weights
 - Bernoulli potentials and sparsity prior $t_i(s_i)$ or Gaussian prior \mathcal{N} on **u**

Posterior I: Site Bounding

• Legendre-Fenchel (super Gaussian) site bounding:

Posterior II: Variational Inference Problem

Convexity

$$\phi(\boldsymbol{\gamma}) = \widehat{\ln |\mathbf{A}_{\boldsymbol{\gamma}}|} + \underbrace{\sum_{j=1}^{3.} h_j(\gamma_j)}_{j} + \underbrace{\min_{\mathbf{u}} R(\mathbf{u}, \boldsymbol{\gamma})}_{\mathbf{u}}$$

 $\mathbf{A}_{\gamma} = \mathbf{X}^{\top}\mathbf{X} + \mathbf{B}^{\top}\mathbf{\Gamma}^{-1}\mathbf{B}, \quad R(\mathbf{u}, \gamma) = \|\mathbf{X}\mathbf{u} - \mathbf{y}\|^{2} + \mathbf{u}^{\top}\mathbf{B}^{\top}\mathbf{\Gamma}^{-1}\mathbf{B}\mathbf{u} - 2\beta^{\top}\mathbf{B}\mathbf{u}$

- approximate posterior $\mathbb{Q}(\mathbf{u}|\mathcal{D}) = \mathcal{N}(\mathbf{u}^*, \mathbf{A}_{\gamma}^{-1})$
- Image ($\mathbf{u}, oldsymbol{\gamma}$) jointly convex \Rightarrow min_u $R(\mathbf{u}, oldsymbol{\gamma})$ convex
- 2 $\ln |\mathbf{A}_{\gamma}|$ convex in γ

Convexity

$$\phi(\boldsymbol{\gamma}) = \widehat{\ln |\mathbf{A}_{\boldsymbol{\gamma}}|} + \underbrace{\sum_{j=1}^{3} h_j(\boldsymbol{\gamma}_j)}_{j} + \underbrace{\max_{\mathbf{u} \in R(\mathbf{u}, \boldsymbol{\gamma})}}_{\mathbf{u}}$$

 $\mathbf{A}_{\gamma} = \mathbf{X}^{\top}\mathbf{X} + \mathbf{B}^{\top}\mathbf{\Gamma}^{-1}\mathbf{B}, \quad R(\mathbf{u}, \gamma) = \|\mathbf{X}\mathbf{u} - \mathbf{y}\|^{2} + \mathbf{u}^{\top}\mathbf{B}^{\top}\mathbf{\Gamma}^{-1}\mathbf{B}\mathbf{u} - 2\beta^{\top}\mathbf{B}\mathbf{u}$

- approximate posterior $\mathbb{Q}(\mathbf{u}|\mathcal{D}) = \mathcal{N}(\mathbf{u}^*, \mathbf{A}_{\gamma}^{-1})$
- $R(\mathbf{u}, \gamma)$ jointly convex $\Rightarrow \min_{\mathbf{u}} R(\mathbf{u}, \gamma)$ convex • $\ln |\mathbf{A}_{\gamma}|$ convex in γ • $h_i(\gamma_i)$ convex in $\gamma_i \Leftrightarrow \ln t_i(s_i)$ concave

Convexity

$$\phi(\boldsymbol{\gamma}) = \prod_{j=1}^{[2,1]} + \sum_{j=1}^{3} h_j(\gamma_j) + \prod_{\boldsymbol{\mathsf{u}} \in R} h_j(\boldsymbol{\mathsf{u}}, \boldsymbol{\gamma})$$

 $\mathbf{A}_{\gamma} = \mathbf{X}^{\top}\mathbf{X} + \mathbf{B}^{\top}\mathbf{\Gamma}^{-1}\mathbf{B}, \quad R(\mathbf{u}, \gamma) = \|\mathbf{X}\mathbf{u} - \mathbf{y}\|^{2} + \mathbf{u}^{\top}\mathbf{B}^{\top}\mathbf{\Gamma}^{-1}\mathbf{B}\mathbf{u} - 2\beta^{\top}\mathbf{B}\mathbf{u}$

- approximate posterior $\mathbb{Q}(\mathbf{u}|\mathcal{D}) = \mathcal{N}(\mathbf{u}^*, \mathbf{A}_{\gamma}^{-1})$
- $R(\mathbf{u}, \gamma)$ jointly convex $\Rightarrow \min_{\mathbf{u}} R(\mathbf{u}, \gamma)$ convex • $\ln |\mathbf{A}_{\gamma}|$ convex in γ

Convexity

$$\phi(\boldsymbol{\gamma}) = \prod_{j=1}^{2} \left[\frac{|\mathbf{A}_{\gamma}|}{h_{j}} + \sum_{j=1}^{2} \frac{|\mathbf{A}_{\gamma}|}{h_{j}(\gamma_{j})} + \prod_{\mathbf{u}} \frac{1}{R(\mathbf{u}, \boldsymbol{\gamma})} \right]$$
$$\mathbf{A}_{\boldsymbol{\gamma}} = \mathbf{X}^{\top} \mathbf{X} + \mathbf{B}^{\top} \mathbf{\Gamma}^{-1} \mathbf{B}, \quad R(\mathbf{u}, \boldsymbol{\gamma}) = \|\mathbf{X}\mathbf{u} - \mathbf{y}\|^{2} + \mathbf{u}^{\top} \mathbf{B}^{\top} \mathbf{\Gamma}^{-1} \mathbf{B}\mathbf{u} - 2\beta^{\top} \mathbf{B}\mathbf{u}$$

[O]]

- approximate posterior $\mathbb{Q}(\mathbf{u}|\mathcal{D}) = \mathcal{N}(\mathbf{u}^*, \mathbf{A}_{\gamma}^{-1})$
- $R(\mathbf{u}, \gamma)$ jointly convex $\Rightarrow \min_{\mathbf{u}} R(\mathbf{u}, \gamma)$ convex
- 2 $\ln |\mathbf{A}_{\gamma}|$ convex in γ

Optimization

$$\phi(\boldsymbol{\gamma}) = \ln |\mathbf{A}| + h(\boldsymbol{\gamma}) + \min_{\mathbf{u}} \left(\|\mathbf{X}\mathbf{u} - \mathbf{y}\|^2 + \mathbf{s}^\top \mathbf{\Gamma}^{-1} \mathbf{s} - 2\beta^\top \mathbf{s} \right)$$
$$\mathbf{A} = \mathbf{X}^\top \mathbf{X} + \mathbf{B}^\top \mathbf{\Gamma}^{-1} \mathbf{B}, \quad \mathbf{s} = \mathbf{B} \mathbf{u}$$

- $\phi(\gamma)$ is convex, so things are easy, right?
- gradient hard: $\nabla_{\gamma^{-1}} \ln |\mathbf{A}| = \operatorname{diag}(\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\top})$
- coordinate descent hard: n linear systems
- coupling term $\ln |\mathbf{A}|$ causing trouble \Rightarrow decouple
- $\gamma^{-1} \mapsto \ln |\mathsf{A}|$ concave
- Legendre duality: $\ln |\mathbf{A}| \leq \underline{\mathbf{z}^{\top}(\gamma^{-1}) - g^{*}(\mathbf{z})}$

Optimization

$$\phi(\boldsymbol{\gamma}) = \ln |\mathbf{A}| + h(\boldsymbol{\gamma}) + \min_{\mathbf{u}} \left(\|\mathbf{X}\mathbf{u} - \mathbf{y}\|^2 + \mathbf{s}^\top \mathbf{\Gamma}^{-1} \mathbf{s} - 2\beta^\top \mathbf{s} \right)$$
$$\mathbf{A} = \mathbf{X}^\top \mathbf{X} + \mathbf{B}^\top \mathbf{\Gamma}^{-1} \mathbf{B}, \quad \mathbf{s} = \mathbf{B} \mathbf{u}$$

- $\phi(\gamma)$ is convex, so things are easy, right?
- gradient hard: $\nabla_{\gamma^{-1}} \ln |\mathbf{A}| = \operatorname{diag}(\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\top})$
- coordinate descent hard: *n* linear systems
- coupling term $\ln |\mathbf{A}|$ causing trouble \Rightarrow decouple

•
$$\gamma^{-1}\mapsto \ln |\mathsf{A}|$$
 concave

• Legendre duality: $\ln |\mathbf{A}| \leq \underline{\mathbf{z}^{\top}(\gamma^{-1}) - g^{*}(\mathbf{z})}$

Optimization

$$\phi(\boldsymbol{\gamma}) = \ln |\mathbf{A}| + h(\boldsymbol{\gamma}) + \min_{\mathbf{u}} \left(\|\mathbf{X}\mathbf{u} - \mathbf{y}\|^2 + \mathbf{s}^\top \mathbf{\Gamma}^{-1} \mathbf{s} - 2\beta^\top \mathbf{s} \right)$$
$$\mathbf{A} = \mathbf{X}^\top \mathbf{X} + \mathbf{B}^\top \mathbf{\Gamma}^{-1} \mathbf{B}, \quad \mathbf{s} = \mathbf{B} \mathbf{u}$$

- $\phi(\gamma)$ is convex, so things are easy, right?
- gradient hard: $\nabla_{\gamma^{-1}} \ln |\mathbf{A}| = \operatorname{diag}(\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\top})$
- coordinate descent hard: *n* linear systems
- coupling term $\ln |\mathbf{A}|$ causing trouble \Rightarrow decouple

•
$$\gamma^{-1} \mapsto \ln |\mathbf{A}|$$
 concave
• Legendre duality:
 $\ln |\mathbf{A}| \leq \underline{z^{\top}(\gamma^{-1}) - g^{*}(z)}$
convex in γ
 $ln|\mathbf{A}|$

Double Loop Details

$$\phi(\boldsymbol{\gamma}) = \ln |\mathbf{A}| + h(\boldsymbol{\gamma}) + \min_{\mathbf{u}} \left(\|\mathbf{X}\mathbf{u} - \mathbf{y}\|^2 + \mathbf{s}^\top \mathbf{\Gamma}^{-1} \mathbf{s} - 2\beta^\top \mathbf{s} \right)$$
$$\mathbf{A} = \mathbf{X}^\top \mathbf{X} + \mathbf{B}^\top \mathbf{\Gamma}^{-1} \mathbf{B}, \quad \mathbf{s} = \mathbf{B} \mathbf{u}$$

• outer:
$$\phi = \phi_{\cap} + \phi_{\cup} \le \phi_{/} + \phi_{\cup}$$
,

• inner: $\min_{\gamma} \phi_{/} + \phi_{\cup}$

Ð

 $|\mathbf{\mathsf{n}}|\mathbf{\mathsf{A}}| \leq \mathsf{z}^{ op}(\gamma^{-1}) - g^*(\mathsf{z})$

Double Loop Summary

$$\phi(\boldsymbol{\gamma}) = \ln |\mathbf{A}| + h(\boldsymbol{\gamma}) + \min_{\mathbf{u}} \left(\|\mathbf{X}\mathbf{u} - \mathbf{y}\|^2 + \mathbf{s}^\top \mathbf{\Gamma}^{-1} \mathbf{s} - 2\beta^\top \mathbf{s} \right)$$
$$\mathbf{A} = \mathbf{X}^\top \mathbf{X} + \mathbf{B}^\top \mathbf{\Gamma}^{-1} \mathbf{B}, \quad \mathbf{s} = \mathbf{B} \mathbf{u}$$

Gradient Based Algorithm

Double Loop Algorithm

- for t = 1..O(n)
 - compute gradient $abla_{m{\gamma}}\phi$
 - get descent direction δ
 - compute stepsize λ
 - $\boldsymbol{\gamma}^{t+1} \leftarrow \boldsymbol{\gamma}^t + \lambda \boldsymbol{\delta}$

- for t = 1..O(1)
 - outer loop update: compute gradient $abla_{\gamma}\phi$
 - inner loop optim: $\pmb{\gamma}^{t+1} \leftarrow \texttt{IRLS}(\pmb{\gamma}^t)$

• efficient use of expensive computations

- approximate posterior $\mathbb{Q}(\mathbf{u}) = \mathcal{N}(\mathbf{u}^*, \mathbf{A}^{-1})$, conditioned on \mathcal{D}
- \bullet relative entropy $\mathsf{KL}[\mathbb{Q}'||\mathbb{Q}]=\mathcal{H}[\mathbb{Q}'||\mathbb{Q}]-\mathcal{H}[\mathbb{Q}']\geq 0$
- information gain score
- MRI: continuous Gaussian sites

$$S_{IG}(\mathbf{x}_i) = \int \mathbb{Q}(y_i) \mathsf{KL}[\mathbb{Q}'(\mathbf{u}|y_i)||\mathbb{Q}(\mathbf{u})] \mathsf{d}y_i$$

• Classification: binary Bernoulli sites

$$S_{IG}(\mathbf{b}_j) = \sum_{c_j=\pm 1} \mathbb{Q}(c_j) \mathsf{KL}[\mathbb{Q}'(\mathbf{u}|c_j)||\mathbb{Q}(\mathbf{u})]$$

• design loop: (1) update \mathbb{Q} , (2) design decision, (3) measurement

- approximate posterior $\mathbb{Q}(\mathbf{u}) = \mathcal{N}(\mathbf{u}^*, \mathbf{A}^{-1})$, conditioned on \mathcal{D}
- \bullet relative entropy $\mathsf{KL}[\mathbb{Q}'||\mathbb{Q}]=\mathcal{H}[\mathbb{Q}'||\mathbb{Q}]-\mathcal{H}[\mathbb{Q}']\geq 0$
- information gain score
- MRI: continuous Gaussian sites

$$S_{IG}(\mathbf{x}_i) = \int \mathbb{Q}(y_i) \mathsf{KL}[\mathbb{Q}'(\mathbf{u}|y_i)||\mathbb{Q}(\mathbf{u})] \mathrm{d}y_i$$

• Classification: binary Bernoulli sites

$$S_{IG}(\mathbf{b}_j) = \sum_{c_j=\pm 1} \mathbb{Q}(c_j) \mathsf{KL}[\mathbb{Q}'(\mathbf{u}|c_j)||\mathbb{Q}(\mathbf{u})]$$

• design loop: (1) update \mathbb{Q} , (2) design decision, (3) measurement

- approximate posterior $\mathbb{Q}(\mathbf{u}) = \mathcal{N}(\mathbf{u}^*, \mathbf{A}^{-1})$, conditioned on \mathcal{D}
- \bullet relative entropy $\mathsf{KL}[\mathbb{Q}'||\mathbb{Q}]=\mathcal{H}[\mathbb{Q}'||\mathbb{Q}]-\mathcal{H}[\mathbb{Q}']\geq 0$
- information gain score
- MRI: continuous Gaussian sites

$$S_{IG}(\mathbf{x}_i) = \int \mathbb{Q}(y_i) \mathsf{KL}[\mathbb{Q}'(\mathbf{u}|y_i)||\mathbb{Q}(\mathbf{u})] \mathsf{d}y_i$$

• Classification: binary Bernoulli sites

$$S_{IG}(\mathbf{b}_j) = \sum_{\mathbf{c}_j = \pm 1} \mathbb{Q}(\mathbf{c}_j) \mathsf{KL}[\mathbb{Q}'(\mathbf{u}|\mathbf{c}_j)||\mathbb{Q}(\mathbf{u})]$$

• design loop: (1) update \mathbb{Q} , (2) design decision, (3) measurement

- approximate posterior $\mathbb{Q}(\mathbf{u}) = \mathcal{N}(\mathbf{u}^*, \mathbf{A}^{-1})$, conditioned on \mathcal{D}
- relative entropy $\mathsf{KL}[\mathbb{Q}'||\mathbb{Q}]=\mathcal{H}[\mathbb{Q}'||\mathbb{Q}]-\mathcal{H}[\mathbb{Q}']\geq 0$
- information gain score
- MRI: continuous Gaussian sites

$$S_{IG}(\mathbf{x}_i) = \int \mathbb{Q}(y_i) \mathsf{KL}[\mathbb{Q}'(\mathbf{u}|y_i)||\mathbb{Q}(\mathbf{u})] \mathsf{d}y_i$$

• Classification: binary Bernoulli sites

$$S_{IG}(\mathbf{b}_j) = \sum_{\mathbf{c}_j = \pm 1} \mathbb{Q}(\mathbf{c}_j) \mathsf{KL}[\mathbb{Q}'(\mathbf{u}|\mathbf{c}_j)||\mathbb{Q}(\mathbf{u})]$$

 \bullet design loop: (1) update $\mathbb{Q},$ (2) design decision, (3) measurement

Experiments

• large scale active learning using approximate inference

Conclusions

- variational relaxation convex iff. MAP estimation convex
- posterior approximation successfully drives experimental design
- fully scalable and generic double loop algorithm
- computational primitives: CG (means), Lanczos (variances)
- complexity = speed of MVMs with \mathbf{X} and \mathbf{B}

Appendix: Convexity of log determinant

Theorem

$$\gamma \mapsto \ln |\mathbf{A}_{\gamma}|$$
 is convex. $\mathbf{A}_{\gamma} = \mathbf{X}^{\top}\mathbf{X} + \mathbf{B}^{\top}\mathbf{\Gamma}^{-1}\mathbf{B}$

•
$$(\mathbf{u}, \gamma) \mapsto \mathbf{u}^{\top} \left(\mathbf{X}^{\top} \mathbf{X} + \mathbf{B}^{\top} \mathbf{\Gamma}^{-1} \mathbf{B} \right) \mathbf{u}$$
 jointly convex

•
$$(\mathbf{u}, \gamma) \mapsto \exp(-\frac{1}{2}\mathbf{u}^{\top} \mathbf{A}_{\gamma} \mathbf{u})$$
 jointly log-concave

- marginalization theorem (Prékopa)
 - Log-concave functions are closed under marginalization.
- Gaussian integral: $\ln |\mathbf{A}_{\gamma}| = n \ln 2\pi 2 \ln \int \exp(-\frac{1}{2}\mathbf{u}^{\top} \mathbf{A}_{\gamma} \mathbf{u}) d\mathbf{u}$

Theorem

$$\gamma \mapsto \ln |\mathbf{X}^{\top}\mathbf{X} + \mathbf{B}^{\top}f(\mathbf{\Gamma})\mathbf{B}|$$
 is convex iff. In $f(\gamma)$ is convex.

Appendix: Convexity of individual height functions

Theorem

 $h(\gamma)$ is convex iff. $g(s) = \ln t(s)$ is concave in s and convex in $x = s^2$.

If the set of the set of