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Motivation

 “Deep” learning algorithms (Hinton et al., 2006;
Bengio et al., 2006; Ranzato et al., 2007)
— Inspired by hierarchical organization of the brain

— Try to learn hierarchical feature representation
where high level features are composed of simpler
low level features

— Mostly unsupervised
— Single learning algorithm along the hierarchy

 We are interested in scaling up deep belief
networks to learn generative models and to
perform inference on challenging problem:s.



Background

e Restricted Boltzmann Machine (RBM)
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visible nodes (data)

— Undirected, bipartite graphical model

— Block Gibbs sampling is used for inference and
learning

— Unsupervised training using Contrastive Divergence
approximation to maximum likelihood



Background

* Deep Belief Network (DBN) (Hinton et al., 2006)

— Hierarchical generative model OO0
— Greedy layerwise training OC%)VS
using Restricted Boltzmann machines Tw,
— Applications OOCiOWOO
* Recognizing handwritten digits OOOO(lDO

* Learning motion capture data visible nodes (data)

— Input Dimension ~ 1,000 (e.g., 30x30 pixels)

 How can we scale to realistic image sizes (e.g.
200x200 pixels)?
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* Convolutional Architectures (e.g., LeCun et al., 1989)
— Alternate between “detection” and “pooling” layers

— Detection layers involve weights shared between all
image locations; computed efficiently with convolution

— Each pooling unit computes the maximum of the
activation of several detection units.

* Shrinks the representation in higher layers
* Provides invariance to local transformations

* Max pooling is deterministic and feed-forward;
we give it a probabilistic semantics that enables to
combine bottom-up and top-down information.



Our Algorithms
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For “filter” k, (Related work: Desjardins and Bengio, 2008)
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Convolutional RBM

* Joint Probability distribution
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* Block Gibbs sampling using linear filtering
followed by multinomial (softmax) sampling.

e Training using sparse RBM formulation (Lee et
al., 2008)




Probabilistic Max pooling
X; are stochastic binary  Collapse 2" configurations into n+1

and mutually exclusive.  configurations. Permits bottom up
and top down inference.
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Probabilistic Max pooling

Bottom-up inference
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* Greedy, layerwise Training

— Train one layer (convolutional RBM) at a time.
(Related work: Salakhutdinov and Hinton, 2009)

* Inference (approximate)
— Undirected connections for all layers
— Block Gibbs sampling or Mean-field
— Hierarchical probabilistic inference
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Combining bottom-up and top-down information
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Experimental Results
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Handwritten digit classification (MNIST) S

* Trained a two-layer CDBN on unlabeled MNIST
training data

* The first layer learns “strokes”; the second
layer learns “groupings of the strokes.”

e Classification results (test error):

Labeled examples | 1,000 | 2,000 | 3,000 | 5,000 | 60,000

CDBN

2.62%

2.13%

1.91%

1.59%

0.82%

Ranzato et al. (2007)
Hinton et al. (2006)
Weston et al. (2008)

3.21%

2.13%

2.53%

1.83%

1.52%

0.64%
1.25%
1.50%
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Unsupervised learning from natural images: S

Second layer bases

Contours, Corners, Arcs,
Surface boundaries

First layer bases
Localized, oriented edges




Self-taught learning for object recognition

OxOmMZ2>»4H40n

* Caltech 101 classification: 65.4% accuracy

(Convolutional DBN trained on natural images.)
ITraining Size 15 30
CDBN (first layer) F3.2+1.2% | 60.5E1.1%
CDBN (first+second layers) | 57.7+1.5% | 65.4+0.5%
Raina et al. (2007) 46.6%% _
Ranzato et al. (2007) - 54.0%
Mutch and Lowe (2006) 51.0% 56.0%
Lazebnik et al. (2006) 54.0% 64.6%
Zhang et al. (2006 ) 59 040.56% | 66.240.5%

 Our modelis also comparable to the results using
state-of-the-art single features (e.g., SIFT).



Unsupervised learning of object-parts
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Elephants




Quantitative evaluation : @

* For each feature, measure area under precision-
recall curve (AUC-PR, or “average precision”) for
binary classification (faces vs. non-faces).

Faces

0.6

Wfirst layer
Mlsecond layer Features Avg. AUC-PR

0.4 Jthird layer First layer 0.39+0.17
, Second layer 0.86+0.13
J Third layer 0.95+0.03

0.2 0.4 0.6 0.8 1
Area under the PR curve (AUC)

* The higher layers are informative for object class.
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“Grouping” the object parts

(highly specific)

object-specific features

& shared features

Trained from multiple classes
(cars, faces, motorbikes, airplanes)



Quantitative evaluation

e Conditional entropy: H(Class|”feature active”)
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* The higher layers are more object specific.
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e Generating posterior samples from faces by “filling in”
experiments (cf. Lee and Mumford, 2003).

e Combines bottom-up and top-down inference.

-

Input images

Samples from
feed-forward
inference
(control)

Samples from
full posterior
inference

IHI



Summary

e Convolutional Restricted Boltzmann Machine

— Probabilistic max-pooling

* Convolutional Deep Belief Networks
— Scalable to realistic image sizes
— Discovers hierarchical object-part representation
— Excellent performance in object recognition tasks

— Hierarchical probabilistic inference by combining
bottom-up and top-down information



Thank youl!



