Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Honglak Lee

Roger Grosse, Rajesh Ranganath, Andrew Ng

Computer Science Department Stanford University

Outline

S T A N F O R D

- Motivation
- Background
- Our Algorithms
- Experimental results
- Summary

Motivation

- "Deep" learning algorithms (Hinton et al., 2006; Bengio et al., 2006; Ranzato et al., 2007)
 - Inspired by hierarchical organization of the brain
 - Try to learn hierarchical feature representation where high level features are composed of simpler low level features
 - Mostly unsupervised
 - Single learning algorithm along the hierarchy
- We are interested in scaling up deep belief networks to learn generative models and to perform inference on challenging problems.

Background

N F O

Restricted Boltzmann Machine (RBM)

hidden nodes

visible nodes (data)

- Undirected, bipartite graphical model
- Block Gibbs sampling is used for inference and learning
- Unsupervised training using Contrastive Divergence approximation to maximum likelihood

Background

- STANFORD
- Deep Belief Network (DBN) (Hinton et al., 2006)
 - Hierarchical generative model
 - Greedy layerwise training
 - using Restricted Boltzmann machines
 - Applications
 - Recognizing handwritten digits
 - Learning motion capture data

visible nodes (data)

- Input Dimension ~ 1,000 (e.g., 30x30 pixels)
- How can we scale to realistic image sizes (e.g. 200x200 pixels)?

Background

- Convolutional Architectures (e.g., LeCun et al., 1989)
 - Alternate between "detection" and "pooling" layers
 - Detection layers involve weights shared between all image locations; computed efficiently with convolution
 - Each pooling unit computes the maximum of the activation of several detection units.
 - Shrinks the representation in higher layers
 - Provides invariance to local transformations
- Max pooling is deterministic and feed-forward; we give it a *probabilistic semantics* that enables to *combine bottom-up and top-down information*.

Our Algorithms

Convolutional RBM (CRBM)

Convolutional RBM

Joint Probability distribution

$$P(\mathbf{v}, \mathbf{h}) = \frac{1}{Z} \exp(-E(\mathbf{v}, \mathbf{h}))$$

$$E(\mathbf{v}, \mathbf{h}) = -\sum_{k} \sum_{i,j} \left(h_{i,j}^{k} (\tilde{W}^{k} * v)_{i,j} + b^{k} h_{i,j}^{k} \right) - c \sum_{i,j} v_{i,j}$$
subject to
$$\sum_{(i,j)\in B_{\alpha}} h_{i,j}^{k} \leq 1, \forall k, \alpha.$$
convolution

Constraint for probabilistic max pooling

- Block Gibbs sampling using linear filtering followed by multinomial (softmax) sampling.
- Training using sparse RBM formulation (Lee et al., 2008)

Probabilistic Max pooling

X_j are *stochastic binary* and *mutually exclusive*.

Collapse 2ⁿ configurations into n+1 configurations. Permits bottom up and top down inference.

Probabilistic Max pooling

Bottom-up inference

- Greedy, layerwise Training
 - Train one layer (convolutional RBM) at a time.
 (Related work: Salakhutdinov and Hinton, 2009)
- Inference (approximate)
 - Undirected connections for all layers
 - Block Gibbs sampling or Mean-field
 - Hierarchical probabilistic inference

Combining bottom-up and top-down information

Experimental Results

Handwritten digit classification (MNIST)

- Trained a two-layer CDBN on unlabeled MNIST training data
- The first layer learns "strokes"; the second layer learns "groupings of the strokes."
- Classification results (test error):

Labeled examples	1,000	2,000	3,000	5,000	60,000
CDBN	2.62%	2.13%	1.91%	1.59%	0.82%
Ranzato et al. (2007)	3.21%	2.53%	-	1.52%	0.64%
Hinton et al. (2006)	-	-	-	-	1.25%
Weston et al. (2008)	2.73%	_	1.83%	_	1.50%

Unsupervised learning from natural images

Second layer bases Contours, Corners, Arcs, Surface boundaries

First layer bases Localized, oriented edges Self-taught learning for object recognition

 Caltech 101 classification: 65.4% accuracy (Convolutional DBN trained on natural images.)

Training Size	15	30
CDBN (first layer)	$53.2 \pm 1.2\%$	$60.5 \pm 1.1\%$
CDBN (first+second layers)	$57.7 {\pm} 1.5\%$	$65.4{\pm}0.5\%$
Raina et al. (2007)	46.6%	-
Ranzato et al. (2007)	-	54.0%
Mutch and Lowe (2006)	51.0%	56.0%
Lazebnik et al. (2006)	54.0%	64.6%
Zhang et al. (2006)	$59.0 {\pm} 0.56\%$	$66.2 {\pm} 0.5\%$

• Our model is also comparable to the results using state-of-the-art single features (e.g., SIFT).

Unsupervised learning of object-parts

Quantitative evaluation

 For each feature, measure area under precisionrecall curve (AUC-PR, or "average precision") for binary classification (faces vs. non-faces).

The higher layers are informative for object class.

Unsupervised learning of object-parts

"Grouping" the object parts (highly specific)

object-specific features

& shared features

Trained from multiple classes (cars, faces, motorbikes, airplanes)

Quantitative evaluation

- TANFORD
- Conditional entropy: H(Class | "feature active")

• The higher layers are more object specific.

Hierarchical Probabilistic Inference

- Generating posterior samples from faces by "filling in" experiments (cf. Lee and Mumford, 2003).
- Combines bottom-up and top-down inference.

Summary

- Convolutional Restricted Boltzmann Machine

 Probabilistic max-pooling
- Convolutional Deep Belief Networks
 - Scalable to realistic image sizes
 - Discovers hierarchical object-part representation
 - Excellent performance in object recognition tasks
 - Hierarchical probabilistic inference by combining bottom-up and top-down information

Thank you!