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Motivation

• “Deep” learning algorithms (Hinton et al., 2006; 
Bengio et al., 2006; Ranzato et al., 2007)

– Inspired by hierarchical organization of the brain

– Try to learn hierarchical feature representation 
where high level features are composed of simpler 
low level features

– Mostly unsupervised

– Single learning algorithm along the hierarchy

• We are interested in scaling up deep belief 
networks to learn generative models and to 
perform inference on challenging problems.
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Background

• Restricted Boltzmann Machine (RBM)

– Undirected, bipartite graphical model 

– Block Gibbs sampling is used for inference and 
learning

– Unsupervised training using Contrastive Divergence 
approximation to maximum likelihood
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Background

• Deep Belief Network (DBN) (Hinton et al., 2006)

– Hierarchical generative model

– Greedy layerwise training

using Restricted Boltzmann machines

– Applications

• Recognizing handwritten digits

• Learning motion capture data

– Input Dimension ~ 1,000 (e.g., 30x30 pixels)

• How can we scale to realistic image sizes (e.g. 
200x200 pixels)?
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Background

• Convolutional Architectures (e.g., LeCun et al., 1989)

– Alternate between “detection” and “pooling” layers

– Detection layers involve weights shared between all 
image locations; computed efficiently with convolution

– Each pooling unit computes the maximum of the 
activation of several detection units.

• Shrinks the representation in higher layers

• Provides invariance to local transformations

• Max pooling is deterministic and feed-forward;      
we give it a probabilistic semantics that enables to 
combine bottom-up and top-down information.
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Our Algorithms



Convolutional RBM (CRBM)
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Hidden nodes (binary)

Visible nodes (binary or real)

‘’max-pooling’’ node (binary)

(Related work: Desjardins and Bengio, 2008)

“Filter“ weights
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• Joint Probability distribution

• Block Gibbs sampling using linear filtering 
followed by multinomial (softmax) sampling.

• Training using sparse RBM formulation (Lee et 
al., 2008)

Convolutional RBM
S
T
A
N
F
O
R
D

Constraint for probabilistic max pooling
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Probabilistic Max pooling
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Xj are stochastic binary 
and mutually exclusive.  

X3X1 X2 X4

Collapse 2n configurations into n+1 
configurations. Permits bottom up 
and top down inference.  
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Probabilistic Max pooling
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X3X1 X2 X4

Y

Bottom-up inference
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Convolutional Deep Belief Networks

• Greedy, layerwise Training

– Train one layer (convolutional RBM) at a time.

(Related work: Salakhutdinov and Hinton, 2009)

• Inference (approximate)

– Undirected connections for all layers

– Block Gibbs sampling or Mean-field

– Hierarchical probabilistic inference
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Hierarchical Probabilistic Inference
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Combining bottom-up and top-down information
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Experimental Results



Handwritten digit classification (MNIST)

• Trained a two-layer CDBN on unlabeled MNIST 
training data

• The first layer learns “strokes”; the second 
layer learns “groupings of the strokes.”

• Classification results (test error):
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Labeled examples 1,000 2,000 3,000 5,000 60,000

CDBN 2.62% 2.13% 1.91% 1.59% 0.82%

Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%

Hinton et al. (2006) - - - - 1.25%

Weston et al. (2008) 2.73% - 1.83% - 1.50%



Unsupervised learning from natural images

First layer bases

Second layer bases
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Localized, oriented edges

Contours, Corners, Arcs, 
Surface boundaries



Self-taught learning for object recognition

• Caltech 101 classification: 65.4% accuracy

(Convolutional DBN trained on natural images.)

• Our model is also comparable to the results using 
state-of-the-art single features (e.g., SIFT).
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Unsupervised learning of object-parts
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Quantitative evaluation

• For each feature, measure area under precision-
recall curve (AUC-PR, or “average precision”)  for 
binary classification (faces vs. non-faces).

• The higher layers are informative for object class.
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Features Avg. AUC-PR

First layer 0.39 ± 0.17

Second layer 0.86 ± 0.13

Third layer 0.95 ± 0.03



Unsupervised learning of object-parts
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Trained from multiple classes    
(cars, faces, motorbikes, airplanes)

object-specific features 

& shared features

“Grouping” the object parts

(highly specific)



• Conditional entropy: H(Class|”feature active”)

• The higher layers are more object specific.

Quantitative evaluation
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Hierarchical Probabilistic Inference

• Generating posterior samples from faces by “filling in” 
experiments (cf. Lee and Mumford, 2003).  

• Combines bottom-up and top-down inference. 
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Input images

Samples from 
feed-forward
inference 
(control)

Samples from 
full posterior
inference 



Summary

• Convolutional Restricted Boltzmann Machine

– Probabilistic max-pooling

• Convolutional Deep Belief Networks

– Scalable to realistic image sizes

– Discovers hierarchical object-part representation

– Excellent performance in object recognition tasks

– Hierarchical probabilistic inference by combining 
bottom-up and top-down information
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Thank you!


