Accelerated Gibbs Sampling for the Indian Buffet Process

Finale Doshi-Velez, Cambridge/MIT
Zoubin Ghahramani, Cambridge

Motivation

Bilinear models of the form

$$
\begin{gathered}
X=U V+E \\
\text { data = matrix product + error }
\end{gathered}
$$

are very common in machine learning.

Examples

Factor Analysis

$$
Y=L X+E
$$

Examples

Factor Analysis

$$
Y=L X+E
$$

Probabilistic PCA

$$
T=W X+E
$$

Examples

Factor Analysis

$$
Y=L X+E
$$

Probabilistic PCA

$$
T=W X+E
$$

Probabilistic Matrix Factorization

$$
X=U V+E
$$

Examples

Factor Analysis

$$
Y=L X+E
$$

Probabilistic PCA

$$
T=W X+E
$$

Probabilistic Matrix Factorization

$$
X=U V+E
$$

Indian Buffet Process with a linear likelihood

$$
X=Z A+E
$$

Motivation

- We are interested in doing large-scale Bayesian inference in these models (focus on the IBP for now):

$$
X=Z A+E
$$

- Suppose
- We can compute $P(X \mid Z)$, but it's expensive
- We can compute $P(A \mid X, Z)$
- We cannot compute $P(Z, A \mid X)$
- We develop a fast sampler for inference in these models.

Indian Buffet Process

Customers enter an "infinite buffet" one at a time and

- Sample a previously sampled dish based on its popularity.
- Sample Poisson(alpha / n) new dishes.

Indian Buffet Process

Customers enter an "infinite buffet" one at a time and

- Sample a previously sampled dish based on its popularity.
- Sample Poisson(alpha / n) new dishes.

Indian Buffet Process

Customers enter an "infinite buffet" one at a time and

- Sample a previously sampled dish based on its popularity.
- Sample Poisson(alpha / n) new dishes.

Indian Buffet Process

Customers enter an "infinite buffet" one at a time and

- Sample a previously sampled dish based on its popularity.
- Sample Poisson(alpha / n) new dishes.

Indian Buffet Process

Result is a non-parametric prior on feature assignments-a general tool for many latent feature models-with some nice properties:

- Observations are exchangeable.
- Infinite features, but finite datasets contain a finite number of features.

Full Model

Full Model

Data
Matrix X

Features
Present
Z

Feature
Values
A

Note: this is not Blocked
Gibbs Sampling!

The Graphical Model

Basic Sampling

First sample $Z_{w} \mid X, A, Z_{-w}$

Basic Sampling

First sample $Z_{w} \mid X, A, Z_{-w}$ and then $Z_{-w} \mid X, A, Z_{w}$

Basic Sampling

First sample $Z_{w} \mid X, A, Z_{-w}$ and then $Z_{-w} \mid X, A, Z_{w}$ and then $A \mid Z, X$...

Basic Sampling

First sample $Z_{w} \mid X, A, Z_{-w}$ and then $Z_{-w} \mid X, A, Z_{w}$ and then $A \mid Z, X$ and then $Z_{w} \mid X, A, Z_{-w} \cdots$

Basic Sampling

Advantage: Each iteration is fast to compute.
Disadvantage: Often slow to mix.

Collapsed Gibbs Sampling

Since we can compute $P(X \mid Z)$, integrate out A

Collapsed Gibbs Sampling

Since we can compute $P(X \mid Z)$, integrate out A

Collapsed Gibbs Sampling

Sample each Z in turn, as before

Collapsed Gibbs Sampling

Sample each Z in turn, as before

Collapsed Gibbs Sampling

Advantage: Faster to mix.
Disadvantage: Inference no longer scales!

Our solution: Accelerated Sampling

Keep a posterior on A. Observations stay independent!

More formally: Consider one element

$$
\begin{aligned}
& P\left(Z_{n k}=1 \mid Z_{-n k}, X\right) \propto \\
& \quad P\left(Z_{n k}=1 \mid Z_{-n k}\right) P(X \mid Z) \\
& \quad P\left(Z_{n k}=1 \mid Z_{-n k}\right) \int_{A} P(X \mid Z, A) P(A) d A \\
& P\left(Z_{n k}=1 \mid Z_{-n k}\right) \int_{A} P\left(X_{n} \mid Z_{n}, A\right) P\left(X_{-n} \mid Z_{-n}, A\right) P(A) d A \\
& P\left(Z_{n k}=1 \mid Z_{-n k}\right) \int_{A} P\left(X_{n} \mid Z_{n}, A\right) P\left(A \mid Z_{-n}, X_{-n}\right) d A
\end{aligned}
$$

More formally: Consider one element

$$
\begin{aligned}
& P\left(Z_{n k}=1 \mid Z_{-n k}, X\right) \propto \\
& P\left(Z_{n k}=1 \mid Z_{-n k}\right) P(X \mid Z) \\
& P\left(Z_{n k}=1 \mid Z_{-n k}\right) \int_{A} P(X \mid Z, A) P(A) d A \\
& P\left(Z_{n k}=1 \mid Z_{-n k}\right) \int_{A} P\left(X_{n} \mid Z_{n}, A\right) P\left(X_{-n} \mid Z_{-n}, A\right) P(A) d A \\
& P\left(Z_{n k}=1 \mid Z_{-n k}\right) \int_{A} P\left(X_{n} \mid Z_{n}, A\right) P\left(A \mid Z_{-n}, X_{-n}\right) d A
\end{aligned}
$$

More formally: Consider one element

$$
P\left(Z_{n k}=1 \mid Z_{-n k}, X\right) \propto
$$

$$
\begin{array}{ll}
P\left(Z_{n k}=1 \mid Z_{-n k}\right) P(X \mid Z) & \begin{array}{c}
\text { Joints and } \\
\text { conditionals }
\end{array} \\
P\left(Z_{n k}=1 \mid Z_{-n k}\right) \int_{A} P(X \mid Z, A) P(A) d A \\
P\left(Z_{n k}=1 \mid Z_{-n k}\right) \int_{A} P\left(X_{n} \mid Z_{n}, A\right) P\left(X_{-n} \mid Z_{-n}, A\right) P(A) d A \\
P\left(Z_{n k}=1 \mid Z_{-n k}\right) \int_{A} P\left(X_{n} \mid Z_{n}, A\right) P\left(A \mid Z_{-n}, X_{-n}\right) d A
\end{array}
$$

More formally: Consider one element

$$
\begin{aligned}
& P\left(Z_{n k}=1 \mid Z_{-n k}, X\right) \propto \\
& \quad P\left(Z_{n k}=1 \mid Z_{-n k}\right) P(X \mid Z) \\
& P\left(Z_{n k}=1 \mid Z_{-n k}\right) \int_{A} P(X \mid Z, A) P(A) d A \\
& P\left(Z_{n k}=1 \mid Z_{-n k}\right) \int_{A} P\left(X_{n} \mid Z_{n}, A\right) P\left(X_{-n} \mid Z_{-n}, A\right) P(A) d A \\
& P\left(Z_{n k}=1 \mid Z_{-n k}\right) \int_{A} P\left(X_{n} \mid Z_{n}, A\right) P\left(A \mid Z_{-n}, X_{-n}\right) d A
\end{aligned}
$$

More formally: Consider one element

$$
\begin{aligned}
& P\left(Z_{n k}=1 \mid Z_{-n k}, X\right) \propto \\
& \quad P\left(Z_{n k}=1 \mid Z_{-n k}\right) P(X \mid Z) \\
& \quad P\left(Z_{n k}=1 \mid Z_{-n k}\right) \int_{A} P(X \mid Z, A) P(A) d A \\
& P\left(Z_{n k}=1 \mid Z_{-n k}\right) \int_{A} P\left(X_{n} \mid Z_{n}, A\right) P\left(X_{-n} \mid Z_{-n}, A\right) P(A) d A \\
& P\left(Z_{n k}=1 \mid Z_{-n k}\right) \int_{A} P\left(X_{n} \mid Z_{n}, A\right) P\left(A \mid Z_{-n}, X_{-n}\right) d A
\end{aligned}
$$

EXACT!

Accelerated Gibbs Sampling

1. Initialise some Z, feature posterior
2. For each window of observations W

Get feature posterior P(A|X,Z)

Considerations: how many observations should we consider at once? Depends on the cost of computing $P(A \mid X, Z)$ and $P(X \mid Z, A)$, numerical errors.

Details for the IBP Model

If the prior on A, noise is Gaussian, then

- Posterior on A is Gaussian.
- Posterior can be updated with rank-one updates.
- Optimal window is 1.

Also, intelligently choosing to represent Gaussians in information form (h, Σ^{-1}) or covariance form (μ, Σ) helps maintain numerical precision. Details in the paper.

Experiments on Synthetic Data

Data generated from the prior; $D=10, N=\{50,100,250,500\}$.

Mixing similar to collapsed sampler

Runtime similar to semi-collapsed sampler

Experiments on Smaller Datasets

Experiments on Larger Datasets

$\mathrm{D}=1598, \mathrm{~N}=2600$
$D=161, N=10000$

Standard samplers become impractical...

Returning to an age-old question...

To marginalize or not marginalize, that is the question:
Whether 'tis more tractable for the sampler to suffer the hills and valleys of local optima,
Or to take expectations against a set of variables, and by integrating collapse them?

Returning to an age-old question...

To marginalize or not marginalize, that is the question:
Whether 'tis more tractable for the sampler to suffer the hills and valleys of local optima,
Or to take expectations against a set of variables, and by integrating collapse them?

In answer: of a third example...

Conclusions

- Maintaining a posterior within a sampler allows us to perform fast inference in an important class of models
- In particular, our approach allows us to scale inference to large Indian Buffet Process models.
... code available on my website: http://mlg.eng.cam.ac.uk/finale/wiki

Effect of Window Size

Experiments on Real Data

EEG Dataset

