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Motivation

Bilinear models of the form

are very common in machine learning.

X = UV + E
data = matrix product + error 
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Examples
Factor Analysis

Y = LX + E
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Examples
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Examples
Factor Analysis

Probabilistic PCA

Probabilistic Matrix Factorization

Y = LX + E

T = WX + E

X = UV + E
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Examples
Factor Analysis

Probabilistic PCA

Probabilistic Matrix Factorization

Indian Buffet Process with a linear likelihood

Y = LX + E

T = WX + E

X = UV + E

X = ZA + E

... *=
...

Data
Feature
Present?

Feature
Values
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Motivation
● We are interested in doing large-scale Bayesian inference 

in these models (focus on the IBP for now):

● Suppose
– We can compute P(X|Z) , but it's expensive
– We can compute P(A|X,Z)
– We cannot compute P(Z,A|X)

● We develop a fast sampler for inference in these models.

X = ZA + E
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Indian Buffet Process
Customers enter an “infinite buffet” one at a time and
● Sample a previously sampled dish based on its popularity.
● Sample Poisson( alpha / n ) new dishes.

...
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Indian Buffet Process
Customers enter an “infinite buffet” one at a time and
● Sample a previously sampled dish based on its popularity.
● Sample Poisson( alpha / n ) new dishes.

...
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Indian Buffet Process

F1     F2       F3      F4     F5     ...
X1

X2

X3

X4

Z

Result is a non-parametric prior on feature assignments—a general tool 
for many latent feature models—with some nice properties:

● Observations are exchangeable.
● Infinite features, but finite datasets contain a finite number of 

features.
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Full Model

... *
=

...

Data
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Full Model

... *
=

...

Data
Matrix

X

Features
Present

Z

Feature
Values

A

Xw 

Z-w

Zw 

X-w

Note: this is not Blocked  
Gibbs Sampling!
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The Graphical Model

Z-w

Zw

X-w

Xw

A

... *=
...

Xw 

Z-w

Zw 

X-w 



ICML 2009 16

Basic Sampling

First sample Zw|X,A,Z-w

Z-w

Zw

X-w

Xw

A
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Basic Sampling

First sample Zw|X,A,Z-w and then Z-w|X,A,Zw 

Z-w

Zw

X-w

Xw

A
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Basic Sampling

First sample Zw|X,A,Z-w and then Z-w|X,A,Zw 

and then A|Z,X ... 
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Basic Sampling

First sample Zw|X,A,Z-w and then Z-w|X,A,Zw 

and then A|Z,X and then Zw|X,A,Z-w ...   

Z-w

Zw

X-w

Xw

A
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Basic Sampling

Advantage: Each iteration is fast to compute.
Disadvantage: Often slow to mix.

Z-w

Zw

X-w

Xw

A
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Collapsed Gibbs Sampling

Since we can compute P(X|Z), integrate out A

Z-w

Zw

X-w

Xw

A
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Collapsed Gibbs Sampling

Since we can compute P(X|Z), integrate out A

Z-w

Zw

X-w

Xw
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Collapsed Gibbs Sampling

Sample each Z in turn, as before

Z-w

Zw

X-w

Xw
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Collapsed Gibbs Sampling

Sample each Z in turn, as before

Z-w

Zw

X-w

Xw
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Collapsed Gibbs Sampling

Advantage: Faster to mix.
Disadvantage: Inference no longer scales!

Z-w

Zw

X-w

Xw
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Our solution: Accelerated Sampling

Keep a posterior on A.  Observations stay independent!

Z-w

Zw

X-w

Xw

A
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More formally: Consider one element

Z-n

Zn

X-n

Xn

A
P Znk=1∣Z−nk , X ∝

P Znk=1∣Z−nkP X∣Z 
P Znk=1∣Z−nk∫A

P X∣Z , AP AdA

P Znk=1∣Z−nk∫A
P Xn∣Zn , AP X−n∣Z−n , AP AdA

P Znk=1∣Z−nk∫A
P Xn∣Zn , AP A∣Z−n , X−ndA
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P Znk=1∣Z−nk , X ∝ Bayes
Rule

More formally: Consider one element

Z-n

Zn

X-n

Xn

A

P Znk=1∣Z−nkP X∣Z 
P Znk=1∣Z−nk∫A

P X∣Z , AP AdA

P Znk=1∣Z−nk∫A
P Xn∣Zn , AP X−n∣Z−n , AP AdA

P Znk=1∣Z−nk∫A
P Xn∣Zn , AP A∣Z−n , X−ndA
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P Znk=1∣Z−nk , X ∝

Joints and 
conditionals

More formally: Consider one element

Z-n

Zn

X-n

Xn

A

P Znk=1∣Z−nkP X∣Z 
P Znk=1∣Z−nk∫A

P X∣Z , AP AdA

P Znk=1∣Z−nk∫A
P Xn∣Zn , AP X−n∣Z−n , AP AdA

P Znk=1∣Z−nk∫A
P Xn∣Zn , AP A∣Z−n , X−ndA
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P Znk=1∣Z−nk , X ∝

Bayes
Rule

More formally: Consider one element

Z-n

Zn

X-n

Xn

A

P Znk=1∣Z−nkP X∣Z 
P Znk=1∣Z−nk∫A

P X∣Z , AP AdA

P Znk=1∣Z−nk∫A
P Xn∣Zn , AP X−n∣Z−n , AP AdA
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P Znk=1∣Z−nk , X ∝

More formally: Consider one element

EXACT!

Z-n

Zn

X-n

Xn

A

P Znk=1∣Z−nkP X∣Z 
P Znk=1∣Z−nk∫A

P X∣Z , AP AdA

P Znk=1∣Z−nk∫A
P Xn∣Zn , AP X−n∣Z−n , AP AdA

P Znk=1∣Z−nk∫A
P Xn∣Zn , AP A∣Z−n , X−ndA
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Accelerated Gibbs Sampling
1. Initialise some Z, feature posterior
2. For each window of observations W

Considerations: how many observations should we 
consider at once?  Depends on the cost of computing 
P(A|X,Z) and P(X|Z,A), numerical errors.

Get feature 
posterior 
P(A|X,Z)

Remove W's 
effect to get 
P(A|X-w,Z-w)

Perform
inference 
on Z

W

Reconstruct 
P(A|X,Z) with 
new Z

W
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Details for the IBP Model
If the prior on A, noise is Gaussian, then
● Posterior on A is Gaussian.
● Posterior can be updated with rank-one updates.
● Optimal window is 1.

Also, intelligently choosing to represent Gaussians in information 
form (h, Σ-1) or covariance form (μ, Σ) helps maintain numerical 
precision.  Details in the paper.
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Experiments on Synthetic Data

Data generated from the prior; D=10, N = {50,100,250, 500}.

Mixing similar to 
collapsed sampler

Runtime similar to 
semi-collapsed sampler
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Experiments on Smaller Datasets

Reach mode orders of 
magnitude faster!

D=36, N = 1000 D=1024, N = 722
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Experiments on Larger Datasets

Standard samplers 
become impractical...

D=1598, N = 2600 D=161, N = 10000
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Returning to an age-old question...

To marginalize or not marginalize, that is the question:
Whether 'tis more tractable for the sampler to suffer the 

hills and valleys of local optima,
Or to take expectations against a set of variables, and 

by integrating collapse them?
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Returning to an age-old question...

To marginalize or not marginalize, that is the question:
Whether 'tis more tractable for the sampler to suffer the 

hills and valleys of local optima,
Or to take expectations against a set of variables, and 

by integrating collapse them?

In answer: of a third example...
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Conclusions
● Maintaining a posterior within a sampler allows us to 

perform fast inference in an important class of models
● In particular, our approach allows us to scale inference 

to large Indian Buffet Process models.

... code available on my website:          
http://mlg.eng.cam.ac.uk/finale/wiki
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Effect of Window Size
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Experiments on Real Data
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EEG Dataset


