Accelerated Gibbs Sampling for the Indian Buffet Process

Finale Doshi-Velez, Cambridge/MIT Zoubin Ghahramani, Cambridge

Motivation

Bilinear models of the form

X = UV + E

data = matrix product + error

are very common in machine learning.

Factor Analysis Y = LX + E

Factor Analysis Y = LX + E

Probabilistic PCA T = WX + E

Factor Analysis Y = LX + E

Probabilistic PCA

 $\mathsf{T} = \mathsf{WX} + \mathsf{E}$

Probabilistic Matrix Factorization

X = UV + E

Probabilistic PCA T = WX + E

Probabilistic Matrix Factorization

X = UV + E

Indian Buffet Process with a linear likelihood

$$X = ZA + E$$

Motivation

• We are interested in doing large-scale Bayesian inference in these models (focus on the IBP for now):

X = ZA + E

- Suppose
 - We can compute P(X|Z), but it's expensive
 - We can compute P(A|X,Z)
 - We <u>cannot</u> compute P(Z,A|X)
- We develop a fast sampler for inference in these models.

- Sample a previously sampled dish based on its popularity.
- Sample Poisson(alpha / n) new dishes.

- Sample a previously sampled dish based on its popularity.
- Sample Poisson(alpha / n) new dishes.

- Sample a previously sampled dish based on its popularity.
- Sample Poisson(alpha / n) new dishes.

- Sample a previously sampled dish based on its popularity.
- Sample Poisson(alpha / n) new dishes.

Result is a non-parametric prior on feature assignments—a general tool for many latent feature models—with some nice properties:

- Observations are exchangeable.
- Infinite features, but finite datasets contain a finite number of features.

Full Model

Full Model

Note: this is not Blocked Gibbs Sampling!

The Graphical Model

First sample Z_w|X,A,Z_{-w}

First sample $Z_w|X,A,Z_w$ and then $Z_w|X,A,Z_w$

First sample $Z_w|X,A,Z_w$ and then $Z_w|X,A,Z_w$ and then A|Z,X ...

First sample $Z_w|X,A,Z_w$ and then $Z_w|X,A,Z_w$ and then A|Z,X and then $Z_w|X,A,Z_w$...

Advantage: Each iteration is fast to compute.

Disadvantage: Often slow to mix.

Since we can compute P(X|Z), integrate out A

Since we can compute P(X|Z), integrate out A

Sample each Z in turn, as before

Sample each Z in turn, as before

Advantage: Faster to mix.

Disadvantage: Inference no longer scales!

Our solution: Accelerated Sampling

Keep a posterior on A. Observations stay independent!

$$P(Z_{nk}\!\!=\!\!1|Z_{-nk},X)\!\propto$$

$$\begin{split} & P(Z_{nk} = 1 | Z_{-nk}) P(X | Z) \\ & P(Z_{nk} = 1 | Z_{-nk}) \int_{A} P(X | Z, A) P(A) \, dA \\ & P(Z_{nk} = 1 | Z_{-nk}) \int_{A} P(X_{n} | Z_{n}, A) P(X_{-n} | Z_{-n}, A) P(A) \, dA \\ & P(Z_{nk} = 1 | Z_{-nk}) \int_{A} P(X_{n} | Z_{n}, A) \, P(A | Z_{-n}, X_{-n}) \, dA \end{split}$$

$$\begin{split} P(Z_{nk} = 1 | Z_{-nk}, X) & & \\ P(Z_{nk} = 1 | Z_{-nk}) P(X | Z) \\ P(Z_{nk} = 1 | Z_{-nk}) \int_{A} P(X | Z, A) P(A) \, dA \\ P(Z_{nk} = 1 | Z_{-nk}) \int_{A} P(X_{n} | Z_{n}, A) P(X_{-n} | Z_{-n}, A) P(A) \, dA \\ P(Z_{nk} = 1 | Z_{-nk}) \int_{A} P(X_{n} | Z_{n}, A) P(X_{-n} | Z_{-n}, A) P(A) \, dA \end{split}$$

$$P(Z_{nk}=1|Z_{-nk}) P(X|Z)$$

$$P(Z_{nk}=1|Z_{-nk}) \int_{A} P(X|Z, A) P(A) dA$$

$$P(Z_{nk}=1|Z_{-nk}) \int_{A} P(X_{n}|Z_{n}, A) P(X_{-n}|Z_{-n}, A) P(A) dA$$

$$P(Z_{nk}=1|Z_{-nk}) \int_{A} P(X_{n}|Z_{n}, A) P(A|Z_{-n}, X_{-n}) dA$$
Bayes

 $P(Z_{nk}=1|Z_{-nk},X)\propto$

Rule

EXACT!

$$P(Z_{nk}\!\!=\!\!1|Z_{-nk},X) \propto$$

$$P(Z_{nk}=1|Z_{-nk}) P(X|Z)$$

$$P(Z_{nk}=1|Z_{-nk}) \int_{A} P(X|Z, A) P(A) dA$$

$$P(Z_{nk}=1|Z_{-nk}) \int_{A} P(X_{n}|Z_{n}, A) P(X_{-n}|Z_{-n}, A) P(A) dA$$

$$P(Z_{nk}=1|Z_{-nk}) \int_{A} P(X_{n}|Z_{n}, A) P(A|Z_{-n}, X_{-n}) dA$$

ICML 2009

Accelerated Gibbs Sampling

- 1. Initialise some Z, feature posterior
- 2. For each window of observations W

Considerations: how many observations should we consider at once? Depends on the cost of computing P(A|X,Z) and P(X|Z,A), numerical errors.

Details for the IBP Model

If the prior on A, noise is Gaussian, then

- Posterior on A is Gaussian.
- Posterior can be updated with rank-one updates.
- Optimal window is 1.

Also, intelligently choosing to represent Gaussians in information form (h, Σ^{-1}) or covariance form (μ , Σ) helps maintain numerical precision. Details in the paper.

Experiments on Synthetic Data

Data generated from the prior; D=10, N = {50,100,250, 500}.

Experiments on Smaller Datasets

magnitude faster!

Experiments on Larger Datasets

D=1598, N = 2600

D=161, N = 10000

ICML 2009

Returning to an age-old question...

To marginalize or not marginalize, that is the question:

- Whether 'tis more tractable for the sampler to suffer the hills and valleys of local optima,
- Or to take expectations against a set of variables, and by integrating collapse them?

Returning to an age-old question...

To marginalize or not marginalize, that is the question:

- Whether 'tis more tractable for the sampler to suffer the hills and valleys of local optima,
- Or to take expectations against a set of variables, and by integrating collapse them?

In answer: of a third example...

Conclusions

- Maintaining a posterior within a sampler allows us to perform fast inference in an important class of models
- In particular, our approach allows us to scale inference to large Indian Buffet Process models.

... code available on my website: http://mlg.eng.cam.ac.uk/finale/wiki

Effect of Window Size

ICML 2009

Experiments on Real Data

EEG Dataset

